Что такое ip интернет пакеты
Вообще, аббревиатура IP расшифровывается как «интернет-протокол», который, собственно, она и означает. Однако в современном лексиконе под IP ещё понимают адрес шлюза или узла сети. О том, что это — IP, будет рассказано далее.
Описание
Как следует из определения, IP — это маршрутизируемый протокол, объединивший малые сети в Интернет. Одной из его главных характеристик является IP-адрес.
Задача протокола — доставить нужный пакет адресату через множество промежуточных узлов. Для IP характерна ненадёжная доставка пакетов. То есть они могут приходить немного не в том порядке, котором были отправлены. Также пакеты иногда бывают продублированы в ходе доставки или вовсе повреждены.
Для успешного получения применяются более «высокие» протоколы в модели OSI, например TCP.
Свойства протокола
Путь IP пакета от отправителя к адресату может быть извилистым и проходить через множество различных серверов. Каждый бывает настроен по-своему или же перегружен. Поэтому могут возникать ситуации, когда узел физически не может пропустить пакет из-за его размера. Тогда протокол разбивает пакет на составные, более мелкие части и спокойно их переправляет через проблемный сервер. «Куски» пакета доставляются адресату и протокол IP объединяет их в единое целое. Свойство IP, которое может дробить данные, а затем соединять их, называется фрагментацией.
Стоит сказать, что IP также может и запретить разбивать пакеты на составляющие. Если такие данные не могут пройти через узел полностью, то они будут уничтожены, а отправителю направлено сообщение о проблеме.
Пакеты IP
Структура пакета выглядит как сообщение с заголовком и телом письма. Под заголовок IP-пакета выделяется 20 байт. По порядку в нем содержится следующая информация:
IP-адрес
Что это — IP-адрес? Это уникальный номер каждого узла, по которому его можно идентифицировать. Наверное, каждый пользователь встречал что-то подобное — 127.0.0.1 или 192.168.0.1. Это и есть типичные примеры IP-адресов.
Статические и динамические типы адресов
IP-адрес может оставаться неизменным на протяжении всей работы узла. Тогда он называется статическим. Он уникален в рамках одной сети и может быть только у одного абонента.
Большинство провайдеров интернет применяют динамические IP-адреса. То есть при каждом подключении или по истечении определённого времени выдаётся новый номер. Таким образом, чтобы выполнить смену IP, можно просто отключиться и подключиться вновь.
Такое же подход в настройке IP предусмотрен в простом бытовом Wi-Fi маршрутизаторе. Wi-Fi — это и есть локальная сеть, которая имеет шлюз, узлы, а соответственно, и IP-адреса. По умолчанию роутеры имеют IP 192.168.0.1. Подключающимся же к ним устройствам посредством DHCP автоматически выдаются новые IP адреса в рамках диапазона 192.168.0.2 — 192.168.0.255. Это оправдано, так как не приходится резервировать и запоминать каждого пользователя.
Домены
Доменные имена сайтов преобразовываются в IP для того, чтобы узел мог правильно получить информацию от него. Например, IP-сервера google.ru — 172.217.16.195. Если набрать в адресной строке эти цифры, то браузер все равно откроет страницу поисковика.
Для уменьшения нагрузки на определённый узел могут использоваться несколько IP-адресов. И наоборот, на одном IP иногда «висят» множество сайтов. Это вызывает определённые проблемы, в связи с последними событиями, когда ресурсы блокируют направо и налево. Из-за одного плохого сайта в бан могут попасть и хорошие, законные сервисы и порталы, так как происходит по одному IP сервера, без идентификации точного домена.
Смена адреса
Иногда нужно скрыть своё присутствие в сети или же просто сделать так, чтобы сайт не «узнал» пользователя. А может и обойти очередную блокировку. Вне зависимости от того, что нужно поменять, адрес компьютера или IP телефона, можно применить сторонние ресурсы, называемые анонимайзерами. Они делают простую вещь — выступают в роли посредника между пользователем и желаемым сайтом. Соответственно, используя свой IP-адрес. Таким образом, сайт думает, что к нему подключился человек, например, из Дании, который находится на самом деле в Саратове.
Существуют также специальные расширения для браузеров, меняющие IP, и программы, обладающие таким же функционалом.
Развитие IP
Современный интернет имеет просто колоссальное количество сайтов, ресурсов и узлов. И каждый день их число увеличивается. А им необходимо постоянно присваивать новые адреса. Так как IP в текущем формате скоро перестанет хватать, был придуман стандарт протокола IP версии 6. Вот так выглядит его запись:
Такой формат адресации может охватить гораздо больше адресов, запаса которого должно хватить на долгое время для всего мира. Помимо расширения адресов, IPv6 наделен и многими улучшающими характеристиками, например, значительно увеличен объем поддерживаемого пакета — до 4 ГБ. Правда актуально это для высокоскоростных сетей. Время жизни в новой версии стало Hop Limit, то есть лимит переходов от узла к узлу. Из протокола версии 6 было устранено использование фрагментирования пакета, то есть теперь он просто уничтожается. Также в заголовке больше нет поля «Контрольная сумма». Это связано с тем, что многие протоколы канального и транспортного уровня имеют свои инструменты обработки контрольных сумм. Сам же заголовок пакета IPv6 увеличился всего на 20 байт, то есть стал 40-байтным.
Заключение
В статье подробно разобрано, что это — IP, как сам протокол, так и структура адреса. Конечно, объяснить на пальцах такой сложный сетевой механизм невозможно. Поэтому любознательные читатели могут самостоятельно более подробно изучить строение и особенности протокола IP.
Описание и структура IPv4
IP (internet protocol — протокол) — маршрутизируемый сетевой протокол, протокол сетевого уровня семейства («стека») TCP/IP. IPv4 описан в RFC 791 (сентябрь 1981 года).
Основные положения:
Структура IP пакета
Пакет протокола IP состоит из заголовка и поля данных. Максимальная длина пакета 65 535 байт. Заголовок обычно имеет длину 20 байт и содержит информацию о сетевых адресах отправителя и получателя, о параметрах фрагментации, о времени жизни пакета, о контрольной сумме и некоторых других. В поле данных IP- пакета находятся сообщения более высокого уровня.
Рассмотрим поля структуру IP- пакета на конкретном примере.
IP фрагментация, MTU, MSS, и PMTUD
Фрагментация IP пакетов: MTU, MSS, и PMTUD. PMTUD (Path MTU Discovery) и проблема фрагментации пакетов (network mtu ping packet)
Фрагментация подразумевает разбиение блока данных (пакета) на равные части. Соответственно после фрагментации следующим этапом следует сборка фрагментов. Протокол IP позволяет выполнять фрагментацию только тех пакетов, которые поступают на входные порты маршрутизаторов. Следует различать фрагментацию сообщений в узле-отправителе, и динамическую фрагментацию сообщений в маршрутизаторах. Дело в том, что практически во всех стеках протоколов есть протоколы, которые осуществляют фрагментацию сообщений прикладного уровня на такие части, которые укладываются в кадры канального уровня. В стеке TCP/IP, например, эту задачу решает протокол транспортного уровня TCP. Этот протокол может разбивать поток байтов, передаваемый ему с прикладного уровня на сообщения нужного размера (например, на 1460 байт для протокола Ethernet).
Поэтому протокол IP в узле-отправителе не использует свои возможности по фрагментации пакетов.
А вот при необходимости передать пакет в следующую сеть, для которой размер пакета является слишком большим, IP-фрагментация становится необходимой.
В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.
В большинстве типов локальных и глобальных сетей значения MTU, то есть максимальный размер поля данных, в которое должен инкапсулировать свой пакет протокол IP, значительно отличается.
Итак, необходимость фрагментации пакетов на уровне IP мы пояснили. Теперь перейдем к самому процессу фрагментации пакетов IP.
Как мы уже выяснили из предыдущего раздела нашего урока, в поле Flags заголовка IP-пакет может быть помечен как не фрагментируемый. Любой пакет, помеченный таким образом, не может быть фрагментирован модулем IP ни при каких условиях.
Даже в том случае, если пакет, помеченный как не фрагментируемый, не может достигнуть получателя без фрагментации, то он просто уничтожается, а узлу-отправителю посылается соответствующее сообщение.
Протокол IP допускает возможность использования в пределах отдельной подсети ее собственных средств фрагментирования, невидимых для протокола IP.
Процедуры фрагментации и сборки протокола IP рассчитаны на то, чтобы пакет мог быть разбит на практически любое количество частей, которые впоследствии могли бы быть вновь собраны.
Для того, чтобы не перепутать фрагмент различных типов, в заголовке IP-пакетов используется поле Identification.
Поле смещения фрагмента (Fragment Offset) сообщает получателю положение фрагмента в исходном пакете. Смещение фрагмента и длина определяют часть исходного пакета, принесенную этим фрагментом. Флаг «more fragments» показывает появление последнего фрагмента. Модуль протокола IP, отправляющий неразбитый на фрагменты пакет, устанавливает в нуль флаг «more fragments» и смещение во фрагменте.
Все эти поля дают достаточное количество информации для сборки пакета.
Итак, чтобы разделить на фрагменты большой пакет, модуль протокола IP, установленный, например, на маршрутизаторе, создает несколько новых пакетов и копирует содержимое полей IP-заголовка из большого пакета в IP-заголовки всех новых пакетов. Данные из старого пакета делятся на соответствующее число частей, размер каждой из которых, кроме самой последней, обязательно должен быть кратным 8 байт.
Размер последней части данных равен полученному остатку.
Каждая из полученных частей данных помещается в новый пакет.
Когда происходит фрагментация, то некоторые параметры IP-заголовка копируются в заголовки всех фрагментов, а другие остаются лишь в заголовке первого фрагмента.
Процесс фрагментации может изменить значения данных, расположенных в поле параметров, и значение контрольной суммы заголовка, изменить значение флага «more fragments» и смещение фрагмента, изменить длину IP-заголовка и общую длину пакета.
В заголовок каждого пакета заносятся соответствующие значения в поле смещения «fragment offset», а в поле общей длины пакета помещается длина каждого пакета.
Теперь давайте рассмотрим процесс сборки фрагментов пакетов.
Чтобы собрать фрагменты пакета, модуль протокола IP объединяет IP-пакеты, имеющие одинаковые значения в полях идентификатора, отправителя, получателя и протокола.
Таким образом, отправитель должен выбрать идентификатор таким образом, чтобы он был уникален для данной пары отправитель-получатель, для данного протокола и в течение того времени, пока данный пакет (или любой его фрагмент) может существовать в составной IP-сети.
Вполне очевидно, что модуль протокола IP, отправляющий пакеты, должен иметь таблицу идентификаторов, где каждая запись соотносится с каждым отдельным получателем, с которым осуществлялась связь, и указывает последнее значение максимального времени жизни пакета в IP-сети.
Однако, поскольку поле идентификатора допускает 65 536 различных значений, некоторые хосты могут использовать просто уникальные идентификаторы, не зависящие от адреса получателя.
В некоторых случаях целесообразно, чтобы идентификаторы IP-пакетов выбирались протоколами более высокого, чем IP, уровня.
Процедура объединения заключается в помещении данных из каждого фрагмента в позицию, указанную в заголовке пакета в поле «fragment offset».
Итак, после длительных объяснений давайте закрепим на примере все, что мы сейчас узнали о фрагментации IP-пакетов.
Рассмотрим процесс фрагментации IP-пакетов при передаче между сетями с разным размером пакетов на примере, который показан на этом рисунке.
Канальный и физический уровни обозначены, как К1, Ф1, К2, Ф2 соответственно.
Пусть компьютер 1 связан с сетью, имеющей значение MTU в 4096 байт, например с сетью FDDI.
При поступлении на IP-уровень компьютера 1 сообщения от транспортного уровня размером в 5600 байт протокол IP делит его на два IP-пакета. В первом пакете устанавливает признак фрагментации и присваивает пакету уникальный идентификатор, например 486.
Признак фрагментации во втором пакете равен нулю, что показывает, что это последний фрагмент пакета.
Общая величина IP-пакета составляет 2800 плюс 20 (размер IP-заголовка), то есть 2820 байт, что умещается в поле данных кадра FDDI.
Далее модуль IP компьютера 1 передает эти пакеты своему сетевому интерфейсу (образуемому протоколами канального уровня К1 и физического уровня Ф1)
Сетевой интерфейс отправляет кадры следующему маршрутизатору.
После того, как кадры пройдут уровень сетевого интерфейса маршрутизатора (К1 и Ф1) и освободятся от заголовков FDDI, модуль IP по сетевому адресу определяет, что прибывшие два пакета нужно передать в сеть 2, которая является сетью Ethernet и имеет значение MTU, равное 1500.
Следовательно, прибывшие IP-пакеты необходимо фрагментировать.
Маршрутизатор извлекает поле данных из каждого пакета и делит его еще пополам, чтобы каждая часть уместилась в поле данных кадра Ethernet.
Затем он формирует новые IP-пакеты, каждый из которых имеет длину 1400 + 20 = 1420 байт, что меньше 1500 байт, поэтому они нормально помещаются в поле данных кадров Ethernet.
В результате в компьютер 2 по сети Ethernet приходят четыре IP-пакета с общим идентификатором 486.
Протокол IP, работающий в компьютере 2, должен правильно собрать исходное сообщение.
Если пакеты пришли не в том порядке, в котором были посланы, то смещение укажет правильный порядок их объединения.
Отметим, что IP-маршрутизаторы не собирают фрагменты пакетов в более крупные пакеты, даже если на пути встречается сеть, допускающая такое укрупнение. Это связано с тем, что отдельные фрагменты сообщения могут перемещаться по интерсети по различным маршрутам, поэтому нет гарантии, что все фрагменты проходят через какой-либо промежуточный маршрутизатор на их пути.
При приходе первого фрагмента пакета узел назначения запускает таймер, который определяет максимально допустимое время ожидания прихода остальных фрагментов этого пакета.
Таймер устанавливается на максимальное из двух значений: первоначальное установочное время ожидания и время жизни, указанное в принятом фрагменте.
Таким образом, первоначальная установка таймера является нижней границей для времени ожидания при c6opке. Если таймер истекает раньше прибытия последнего фрагмента, то все ресурсы сборки, связанные с данным пакетом, освобождаются, все полученные к этому моменту фрагменты пакета отбрасываются, а в узел, пославший исходный пакет, направляется сообщение об ошибке.
Протокол IP — протокол интернет. Формат заголовка IP-пакета.
IP расшифровывается как Internet Protocol, часто его называют протокол интернет. Но строго говоря это не совсем так, правильный перевод межсетевой протокол или протокол межсетевого взаимодействия.
Протокол Ip возник задолго до того, как появилась и стала набирать популярность сеть, которую мы называем интернет. В англоязычной терминологии internetworking означает объединение сетей, и цель протокола ip как раз объединить сети, построенные с помощью разных технологий канального уровня. У этой терминологии словом internet называлась объединенная сеть, а subnet — подсеть или отдельная сеть. Словом Internet с большой буквы сейчас называется самая крупная объединенная сеть построенная по протоколу ip.
Место в моделях OSI и TCP/IP
В модели взаимодействия открытых систем и в модели TCP/IP протокол IP, находится на одном и том же уровне — сетевом.
Сетевой уровень стека протоколов TCP/IP включая также и другие протоколы кроме ip. Это ARP, DHCP и ICMP, но для передачи данных используется только протокол ip, остальные протоколы служат для обеспечения корректной работы крупной составной сети.
Сервисы IP
IP также, как и Ethernet обеспечивают передачи данных без гарантии доставки, не гарантируется как доставка, так и порядок следования сообщений. Протокол Ip так же как и Ethernet использует передачу данных без установки соединения.
IP пакет просто отправляется в сеть в надежде, что он дойдет до получателя, если пакет по каким-то причинам не дошел, не предпринимается никаких попыток оповестить отправителя, и также не предпринимается попыток запросить этот пакет снова. Считается, что ошибка должна быть исправлена протоколами, которые находятся на вышестоящих уровнях.
Задачей IP является объединение сети, построенных на основе разных технологий канального уровня, которые могут значительно отличаться друг от друга в одну крупную объединенную сеть, в которой компьютеры могут свободно общаться друг с другом не взирая на различия конкретной сетевой технологии. Вторая важная задача протокола IP, это маршрутизация, то есть поиск маршрута от отправителя к получателю в крупной составной сети через промежуточные узлы маршрутизаторы. Также IP обеспечивает необходимое качество обслуживания.
Формат заголовка IP-пакета
Для того чтобы понять, как протокол IP реализует эту задачу, рассмотрим формат заголовка IP пакета.
Номер версии
Первое поле номер версии. Сейчас используется две версии протокола IP 4 и 6. Большая часть компьютеров использует IPv4. Длина адреса в этой версии 4 байта. Формат адреса IP версии 4 мы рассматривали подробно. Проблема в том, что адресов IPv4, четыре с небольшим миллиарда, что уже сейчас не хватает для всех устройств в сети, а в будущем точно не хватит. Поэтому была предложена новая версия IPv6 в которой длина IP адреса составляет 16 байт. Сейчас эта версия вводится в эксплуатацию, но процесс занимает очень долгое время.
Длина заголовка
Следующее поле длина заголовка. В отличии от Ethernet заголовок IP включает обязательные поля, а также может включать дополнительные поля, которые называются опции. В поле длина заголовка записывается полная длина, как обязательной части, так и опции.
Тип сервиса
Следующее поле тип сервиса. Это поле нужно для обеспечения необходимого качества обслуживания, но сейчас на практике используется очень редко.
Общая длина
Следующее поле общая длина. Общая длина содержит длину всего IP пакета, включая заголовок и данные. Максимальная длина пакета 65 535 байт, но на практике такие большие пакеты не используются, а максимальный размер ограничен размером кадра канального уровня, а для Ethernet это 1 500 байт. В противном случае для передачи одного IP пакета необходимо было бы несколько кадров канального уровня что неудобно.
Идентификатор пакета
Поля идентификатор пакета, флаги и смещение фрагмента используются для реализации фрагментации.
Время жизни
Дальше идет поле время жизни. Время жизни Time To Live или TTL — это максимальное время в течение которого пакет может перемещаться по сети. Оно введено для того чтобы пакеты не гуляли по сети бесконечно, если в конфигурации сети возникла какая-то ошибка. Например, в результате неправильной настройке маршрутизаторов в сети, может образоваться петля. Раньше, время жизни измерялось в секундах, но сейчас маршрутизаторы обрабатывают пакет значительно быстрее чем за секунду, поэтому время жизни уменьшается на единицу на каждом маршрутизаторе, и оно измеряется в количествах прохождения через маршрутизаторы по-английски (hop) от слова прыжок. Таким образом название время жизни сейчас стало уже некорректным.
Тип протокола
После времени жизни, указывается тип протокола следующего уровня. Это поле необходимо для реализации функции мультиплексирования и демультиплексирования, то есть передачи с помощью протокола IP данных от разных протоколов следующего уровня. В этом поле указывается код протокола следующего уровня, некоторые примеры кодов для TCP код 6, UDP — 17 и ICMP — 1.
Контрольная сумма
Затем идет контрольная сумма, которая используется для проверки правильности доставки пакета, если при проверке контрольные суммы обнаруженные ошибки, то пакет отбрасывается, никакой информации отправителю пакета не отправляется. Контрольная сумма рассчитывается только по заголовку IP пакета и она пересчитывается на каждом маршрутизаторе из-за того что данные в заголовке меняются. Как минимум изменяется время жизни пакета, а также могут измениться некоторые опции.
IP адрес получателя и отправителя
После контрольной суммы идут IP адрес отправителя, и IP адрес получателя. В IPv4 длина IP адреса четыре байта, 32 бита на этом обязательная часть IP заголовка заканчивается, после этого идут не обязательные поля которые в IP называются опции.
Опции
Некоторые примеры опций. Для диагностики работы сети используется опция — записать маршрут, при которой в IP пакет записывается адрес каждого маршрутизатора через которую он проходит.
И опция — временные метки, при установке которой, каждый маршрутизатор записывает время прохождения пакеты.
Также опции позволяют отказаться от автоматической маршрутизации, и задать маршрут отправитель:
Опции в заголовке IP может быть несколько и они могут иметь разный размер. В то же время длина IP заголовка должна быть кратна 32, поэтому при необходимости, в конце IP заголовок заполняются нулями до выравнивание по границе 32 бита. Следует отметить, что сейчас опции в заголовке IP почти не используются.
В статье был рассмотрен протокол IP (Internet Protocol) — протокол межсетевого взаимодействия. Протокол IP является основой интернета. В OSI находится на сетевом уровне.
Основы TCP/IP для будущих дилетантов
Предположим, что вы плохо владеете сетевыми технологиями, и даже не знаете элементарных основ. Но вам поставили задачу: в быстрые сроки построить информационную сеть на небольшом предприятии. У вас нет ни времени, ни желания изучать толстые талмуды по проектированию сетей, инструкции по использованию сетевого оборудования и вникать в сетевую безопасность. И, главное, в дальнейшем у вас нет никакого желания становиться профессионалом в этой области. Тогда эта статья для вас.
Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ: Заметки о Cisco Catalyst: настройка VLAN, сброс пароля, перепрошивка операционной системы IOS
Понятие о стеке протоколов
Задача — передать информацию от пункта А в пункт В. Её можно передавать непрерывно. Но задача усложняется, если надо передавать информацию между пунктами A B и A C по одному и тому же физическому каналу. Если информация будет передаваться непрерывно, то когда С захочет передать информацию в А — ему придётся дождаться, пока В закончит передачу и освободит канал связи. Такой механизм передачи информации очень неудобен и непрактичен. И для решения этой проблемы было решено разделять информацию на порции.
На получателе эти порции требуется составить в единое целое, получить ту информацию, которая вышла от отправителя. Но на получателе А теперь мы видим порции информации как от В так и от С вперемешку. Значит, к каждой порции надо вписать идентификационный номер, что бы получатель А мог отличить порции информации с В от порций информации с С и собрать эти порции в изначальное сообщение. Очевидно, получатель должен знать, куда и в каком виде отправитель приписал идентификационные данные к исходной порции информации. И для этого они должны разработать определённые правила формирования и написания идентификационной информации. Далее слово «правило» будет заменяться словом «протокол».
Для соответствия запросам современных потребителей, необходимо указывать сразу несколько видов идентификационной информации. А так же требуется защита передаваемых порций информации как от случайных помех (при передаче по линиям связи), так и от умышленных вредительств (взлома). Для этого порция передаваемой информации дополняется значительным количеством специальной, служебной информацией.
В протоколе Ethernet находятся номер сетевого адаптера отправителя (MAC-адрес), номер сетевого адаптера получателя, тип передаваемых данных и непосредственно передаваемые данные. Порция информации, составленная в соответствии с протоколом Ethernet, называется кадром. Считается, что сетевых адаптеров с одинаковым номером не существует. Сетевое оборудование извлекает передаваемые данные из кадра (аппаратно или программно), и производит дальнейшую обработку.
Как правило, извлечённые данные в свою очередь сформированы в соответствии с протоколом IP и имеют другой вид идентификационной информации — ip адрес получателя (число размером в 4 байта), ip адрес отправителя и данные. А так же много другой необходимой служебной информации. Данные, сформированные в соответствии с IP протоколом, называются пакетами.
Далее извлекаются данные из пакета. Но и эти данные, как правило, ещё не являются изначально отправляемыми данными. Этот кусок информации тоже составлен в соответствии определённому протоколу. Наиболее широко используется TCP протокол. В нём содержится такая идентификационная информация, как порт отправителя (число размером в два байта) и порт источника, а так же данные и служебная информация. Извлечённые данные из TCP, как правило, и есть те данные, которые программа, работающая на компьютере В, отправляла «программе-приёмнику» на компьютере A.
Вложность протоколов (в данном случае TCP поверх IP поверх Ethernet) называется стеком протоколов.
ARP: протокол определения адреса
Существуют сети классов A, B, C, D и E. Они различаются по количеству компьютеров и по количеству возможных сетей/подсетей в них. Для простоты, и как наиболее часто встречающийся случай, будем рассматривать лишь сеть класса C, ip-адрес которой начинается на 192.168. Следующее число будет номером подсети, а за ним — номер сетевого оборудования. К примеру, компьютер с ip адресом 192.168.30.110 хочет отправить информацию другому компьютеру с номером 3, находящемуся в той же логической подсети. Это значит, что ip адрес получателя будет такой: 192.168.30.3
Важно понимать, что узел информационной сети — это компьютер, соединённый одним физическим каналом с коммутирующим оборудованием. Т.е. если мы отправим данные с сетевого адаптера «на волю», то у них одна дорога — они выйдут с другого конца витой пары. Мы можем послать совершенно любые данные, сформированные по любому, выдуманному нами правилу, ни указывая ни ip адреса, ни mac адреса ни других атрибутов. И, если этот другой конец присоединён к другому компьютеру, мы можем принять их там и интерпретировать как нам надо. Но если этот другой конец присоединён к коммутатору, то в таком случае пакет информации должен быть сформирован по строго определённым правилам, как бы давая коммутатору указания, что делать дальше с этим пакетом. Если пакет будет сформирован правильно, то коммутатор отправит его дальше, другому компьютеру, как было указано в пакете. После чего коммутатор удалит этот пакет из своей оперативной памяти. Но если пакет был сформирован не правильно, т.е. указания в нём были некорректны, то пакет «умрёт», т.е. коммутатор не будет отсылать его куда либо, а сразу удалит из своей оперативной памяти.
Для передачи информации другому компьютеру, в отправляемом пакете информации надо указать три идентификационных значения — mac адрес, ip адрес и порт. Условно говоря, порт — это номер, который, выдаёт операционная система каждой программе, которая хочет отослать данные в сеть. Ip адрес получателя вводит пользователь, либо программа сама получает его, в зависимости от специфики программы. Остаётся неизвестным mac адрес, т.е. номер сетевого адаптера компьютера получателя. Для получения необходимой данной, отправляется «широковещательный» запрос, составленный по так называемому «протоколу разрешения адресов ARP». Ниже приведена структура ARP пакета.
Сейчас нам не надо знать значения всех полей на приведённой картинке. Остановимся лишь на основных.
В поля записываются ip адрес источника и ip адрес назначения, а так же mac адрес источника.
Поле «адрес назначения Ethernet» заполняется единицами (ff:ff:ff:ff:ff:ff). Такой адрес называется широковещательным, и такой фрейм будер разослан всем «интерфейсам на кабеле», т.е. всем компьютерам, подключённым к коммутатору.
Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес». Когда другой компьютер получает такой ARP запрос, он сверяет ip адрес назначения со своим собственным. И если он совпадает, то компьютер, на место единиц вставляет свой mac адрес, меняет местами ip и mac адреса источника и назначения, изменяет некоторую служебную информацию и отсылает пакет обратно коммутатору, а тот обратно — изначальному компьютеру, инициатору ARP запроса.
Таким образом ваш компьютер узнаёт mac адрес другого компьютера, которому вы хотите отправить данные. Если в сети находится сразу несколько компьютеров, отвечающих на этот ARP запрос, то мы получаем «конфликт ip адресов». В таком случае необходимо изменить ip адрес на компьютерах, что бы в сети не было одинаковых ip адресов.
Построение сетей
Задача построения сетей
На практике, как правило, требуется построить сети, число компьютеров в которой будет не менее ста. И кроме функций файлообмена, наша сеть должна быть безопасной и простой в управлении. Таким образом, при построении сети, можно выделить три требования:
Существует большое множество приложений, программных модулей и сервисов, которые, для своей работы отправляют в сеть широковещательные сообщения. Описанный в пункте ARP: протокол определения адреса лишь один из множества ШС, отправляемый вашим компьютером в сеть. Например, когда вы заходите в «Сетевое окружение» (ОС Windows), ваш компьютер посылает ещё несколько ШС со специальной информацией, сформированной по протоколу NetBios, что бы просканировать сеть на наличие компьютеров, находящихся в той же рабочей группе. После чего ОС рисует найденные компьютеры в окне «Сетевое окружение» и вы их видите.
Так же стоит заметить, что во время процесса сканирования той или иной программой, ваш компьютер отсылает ни одно широковещательное сообщение, а несколько, к примеру для того, что бы установить с удалёнными компьютерами виртуальные сессии или ещё для каких либо системных нужд, вызванных проблемами программной реализации этого приложения. Таким образом, каждый компьютер в сети для взаимодействия с другими компьютерами вынужден посылать множество различных ШС, тем самым загружая канал связи не нужной конечному пользователю информацией. Как показывает практика, в больших сетях широковещательные сообщения могут составить значительную часть трафика, тем самым замедляя видимую для пользователя работу сети.
Виртуальные локальные сети
Для решения первой и третьей проблем, а так же в помощь решения второй проблемы, повсеместно используют механизм разбиения локальной сети на более маленькие сети, как бы отдельные локальные сети (Virtual Local Area Network). Грубо говоря, VLAN — это список портов на коммутаторе, принадлежащих одной сети. «Одной» в том смысле, что другой VLAN будет содержать список портов, принадлежащих другой сети.
Фактически, создание двух VLAN-ов на одном коммутаторе эквивалентно покупке двух коммутаторов, т.е. создание двух VLAN-ов — это всё равно, что один коммутатор разделить на два. Таким образом происходит разбиение сети из ста компьютеров на более маленькие сети, из 5-20 компьютеров — как правило именно такое количество соответствует физическому местонахождению компьютеров по надобности файлообмена.
VLAN-ы, теория
Возможно, фраза «администратору достаточно удалить порт из одного VLAN-а и добавить в другой» могла оказаться непонятной, поэтому поясню её подробнее. Порт в данном случае — это не номер, выдаваемый ОС приложению, как было рассказано в пункте Стек протоколов, а гнездо (место) куда можно присоединить (вставить) коннектор формата RJ-45. Такой коннектор (т.е. наконечник к проводу) прикрепляется к обоим концам 8-ми жильного провода, называемого «витая пара». На рисунке изображён коммутатор Cisco Catalyst 2950C-24 на 24 порта:
Как было сказано в пункте ARP: протокол определения адреса каждый компьютер соединён с сетью одним физическим каналом. Т.е. к коммутатору на 24 порта можно присоединить 24 компьютера. Витая пара физически пронизывает все помещения предприятия — все 24 провода от этого коммутатора тянутся в разные кабинеты. Пусть, к примеру, 17 проводов идут и подсоединяются к 17-ти компьютерам в аудитории, 4 провода идут в кабинет спецотдела и оставшиеся 3 провода идут в только что отремонтированный, новый кабинет бухгалтерии. И бухгалтера Лиду, за особые заслуги, перевели в этот самый кабинет.
Как сказано выше, VLAN можно представлять в виде списка принадлежащих сети портов. К примеру, на нашем коммутаторе было три VLAN-а, т.е. три списка, хранящиеся во flash-памяти коммутатора. В одном списке были записаны цифры 1, 2, 3… 17, в другом 18, 19, 20, 21 и в третьем 22, 23 и 24. Лидин компьютер раньше был присоединён к 20-ому порту. И вот она перешла в другой кабинет. Перетащили её старый компьютер в новый кабинет, или она села за новый компьютер — без разницы. Главное, что её компьютер присоединили витой парой, другой конец которой вставлен в порт 23 нашего коммутатора. И для того, что бы она со своего нового места могла по прежнему пересылать файлы своим коллегам, администратор должен удалить из второго списка число 20 и добавить число 23. Замечу, что один порт может принадлежать только одному VLAN-у, но мы нарушим это правило в конце этого пункта.
Замечу так же, что при смене членства порта в VLAN, администратору нет никакой нужды «перетыкать» провода в коммутаторе. Более того, ему даже не надо вставать с места. Потому что компьютер администратора присоединён к 22-ому порту, с помощью чего он может управлять коммутатором удалённо. Конечно, благодаря специальным настройкам, о которых будет рассказано позже, лишь администратор может управлять коммутатором. О том, как настраивать VLAN-ы, читайте в пункте VLAN-ы, практика [в следующей статье].
Как вы, наверное, заметили, изначально (в пункте Построение сетей) я говорил, что компьютеров в нашей сети будет не менее 100. Но к коммутатору можно присоединить лишь 24 компьютера. Конечно, есть коммутаторы с большим количеством портов. Но компьютеров в корпоративной сети/сети предприятия всё равно больше. И для соединения бесконечно большого числа компьютеров в сеть, соединяют между собой коммутаторы по так называемому транк-порту (trunk). При настройки коммутатора, любой из 24-портов можно определить как транк-порт. И транк-портов на коммутаторе может быть любое количество (но разумно делать не более двух). Если один из портов определён как trunk, то коммутатор формирует всю пришедшую на него информацию в особые пакеты, по протоколу ISL или 802.1Q, и отправляет эти пакеты на транк-порт.
Всю пришедшую информацию — имеется в виду, всю информацию, что пришла на него с остальных портов. А протокол 802.1Q вставляется в стек протоколов между Ethernet и тем протоколом, по которому были сформированные данные, что несёт этот кадр.
В данном примере, как вы, наверное, заметили, администратор сидит в одном кабинете вместе с Лидой, т.к. витая пора от портов 22, 23 и 24 ведёт в один и тот же кабинет. 24-ый порт настроен как транк-порт. А сам коммутатор стоит в подсобном помещении, рядом со старым кабинетом бухгалтеров и с аудиторией, в которой 17 компьютеров.
Витая пара, которая идёт от 24-ого порта в кабинет к администратору, подключается к ещё одному коммутатору, который в свою очередь, подключён к роутеру, о котором будет рассказано в следующих главах. Другие коммутаторы, которые соединяют другие 75 компьютеров и стоят в других подсобных помещениях предприятия — все они имеют, как правило, один транк-порт, соединённый витой парой или по оптоволокну с главным коммутатором, что стоит в кабинете с администратором.
Выше было сказано, что иногда разумно делать два транк-порта. Второй транк-порт в таком случае используется для анализа сетевого трафика.
Примерно так выглядело построение сетей больших предприятий во времена коммутатора Cisco Catalyst 1900. Вы, наверное, заметили два больших неудобства таких сетей. Во первых, использование транк-порта вызывает некоторые сложности и создаёт лишнюю работу при конфигурировании оборудования. А во вторых, и в самых главных — предположим, что наши «как бы сети» бухгалтеров, экономистов и диспетчеров хотят иметь одну на троих базу данных. Они хотят, что бы та же бухгалтерша смогла увидеть изменения в базе, которые сделала экономистка или диспетчер пару минут назад. Для этого нам надо сделать сервер, который будет доступен всем трём сетям.
Как говорилось в середине этого пункта, порт может находиться лишь в одном VLAN-е. И это действительно так, однако, лишь для коммутаторов серии Cisco Catalyst 1900 и старше и у некоторых младших моделей, таких как Cisco Catalyst 2950. У остальных коммутаторов, в частности Cisco Catalyst 2900XL это правило можно нарушить. При настройке портов в таких коммутаторах, каждый пор может иметь пять режимов работы: Static Access, Multi-VLAN, Dynamic Access, ISL Trunk и 802.1Q Trunk. Второй режим работы именно то, что нам нужно для выше поставленной задачи — дать доступ к серверу сразу с трёх сетей, т.е. сделать сервер принадлежащим к трём сетям одновременно. Так же это называется пересечением или таггированием VLAN-ов. В таком случае схема подключения может быть такой:
Продолжение следует
Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ: Заметки о Cisco Catalyst: настройка VLAN, сброс пароля, перепрошивка операционной системы IOS