Что такое heap и stack память в java
JVM изнутри – организация памяти внутри процесса Java
Наверное, все, работающие с Java, знают об управлении памяти на уровне, что для ее распределения используется сборщик мусора. Не все, к сожалению, знают, как именно этот сборщик (-и) работает, и как именно организована память внутри процесса Java.
Из-за этого иногда делается неверный вывод, что memory leaks в Java не бывает, и слишком задумываться о памяти не надо. Так же часто идут холивары по поводу чрезмерного расхода памяти.
Все описанное далее относится к Sun-овской реализации JVM (HotSpot), версий 5.0+, конкретные детали и алгоритмы могут различаться для разных версий.
Итак, память процесса различается на heap (куча) и non-heap (стек) память, и состоит из 5 областей (memory pools, memory spaces):
• Eden Space (heap) – в этой области выделятся память под все создаваемые из программы объекты. Большая часть объектов живет недолго (итераторы, временные объекты, используемые внутри методов и т.п.), и удаляются при выполнении сборок мусора это области памяти, не перемещаются в другие области памяти. Когда данная область заполняется (т.е. количество выделенной памяти в этой области превышает некоторый заданный процент), GC выполняет быструю (minor collection) сборку мусора. По сравнению с полной сборкой мусора она занимает мало времени, и затрагивает только эту область памяти — очищает от устаревших объектов Eden Space и перемещает выжившие объекты в следующую область.
• Survivor Space (heap) – сюда перемещаются объекты из предыдущей, после того, как они пережили хотя бы одну сборку мусора. Время от времени долгоживущие объекты из этой области перемещаются в Tenured Space.
• Tenured (Old) Generation (heap) — Здесь скапливаются долгоживущие объекты (крупные высокоуровневые объекты, синглтоны, менеджеры ресурсов и проч.). Когда заполняется эта область, выполняется полная сборка мусора (full, major collection), которая обрабатывает все созданные JVM объекты.
• Permanent Generation (non-heap) – Здесь хранится метаинформация, используемая JVM (используемые классы, методы и т.п.). В частноси
• Code Cache (non-heap) — эта область используется JVM, когда включена JIT-компиляция, в ней кешируется скомпилированный платформенно — зависимый код.
Вот тут — blogs.sun.com/vmrobot/entry/основы_сборки_мусора_в_hotspot есть хорошее описание работы сборщиков мусора, перепечатывать не вижу смысла, советую всем интересующимся ознакомиться подробней по ссылке.
Статья не моя. но камрада Zorkus’a, который хотел бы получить инвайт :).
Java-модель памяти (часть 1)
Привет, Хабр! Представляю вашему вниманию перевод первой части статьи «Java Memory Model» автора Jakob Jenkov.
Прохожу обучение по Java и понадобилось изучить статью Java Memory Model. Перевёл её для лучшего понимания, ну а чтоб добро не пропадало решил поделиться с сообществом. Думаю, для новичков будет полезно, и если кому-то понравится, то переведу остальное.
Первоначальная Java-модель памяти была недостаточно хороша, поэтому она была пересмотрена в Java 1.5. Эта версия модели все ещё используется сегодня (Java 14+).
Внутренняя Java-модель памяти
Java-модель памяти, используемая внутри JVM, делит память на стеки потоков (thread stacks) и кучу (heap). Эта диаграмма иллюстрирует Java-модель памяти с логической точки зрения:
Каждый поток, работающий в виртуальной машине Java, имеет свой собственный стек. Стек содержит информацию о том, какие методы вызвал поток. Я буду называть это «стеком вызовов». Как только поток выполняет свой код, стек вызовов изменяется.
Стек потока содержит все локальные переменные для каждого выполняемого метода. Поток может получить доступ только к своему стеку. Локальные переменные, невидимы для всех других потоков, кроме потока, который их создал. Даже если два потока выполняют один и тот же код, они всё равно будут создавать локальные переменные этого кода в своих собственных стеках. Таким образом, каждый поток имеет свою версию каждой локальной переменной.
Все локальные переменные примитивных типов (boolean, byte, short, char, int, long, float, double) полностью хранятся в стеке потоков и не видны другим потокам. Один поток может передать копию примитивной переменной другому потоку, но не может совместно использовать примитивную локальную переменную.
Куча содержит все объекты, созданные в вашем приложении, независимо от того, какой поток создал объект. К этому относятся и версии объектов примитивных типов (например, Byte, Integer, Long и т.д.). Неважно, был ли объект создан и присвоен локальной переменной или создан как переменная-член другого объекта, он хранится в куче.
Ниже диаграмма, которая иллюстрирует стек вызовов и локальные переменные (они хранятся в стеках), а также объекты (они хранятся в куче):
Локальная переменная может быть примитивного типа, в этом случае она полностью хранится в стеке потока.
Локальная переменная также может быть ссылкой на объект. В этом случае ссылка (локальная переменная) хранится в стеке потоков, но сам объект хранится в куче.
Объект может содержать методы, и эти методы могут содержать локальные переменные. Эти локальные переменные также хранятся в стеке потоков, даже если объект, которому принадлежит метод, хранится в куче.
Переменные-члены объекта хранятся в куче вместе с самим объектом. Это верно как в случае, когда переменная-член имеет примитивный тип, так и в том случае, если она является ссылкой на объект.
Статические переменные класса также хранятся в куче вместе с определением класса.
К объектам в куче могут обращаться все потоки, имеющие ссылку на объект. Когда поток имеет доступ к объекту, он также может получить доступ к переменным-членам этого объекта. Если два потока вызывают метод для одного и того же объекта одновременно, они оба будут иметь доступ к переменным-членам объекта, но каждый поток будет иметь свою собственную копию локальных переменных.
Диаграмма, которая иллюстрирует описанное выше:
Два потока имеют набор локальных переменных. Local Variable 2 указывает на общий объект в куче (Object 3). Каждый из потоков имеет свою копию локальной переменной со своей ссылкой. Их ссылки являются локальными переменными и поэтому хранятся в стеках потоков. Тем не менее, две разные ссылки указывают на один и тот же объект в куче.
Обратите внимание, что общий Object 3 имеет ссылки на Object 2 и Object 4 как переменные-члены (показано стрелками). Через эти ссылки два потока могут получить доступ к Object 2 и Object 4.
На диаграмме также показана локальная переменная (Local variable 1). Каждая её копия содержит разные ссылки, которые указывают на два разных объекта (Object 1 и Object 5), а не на один и тот же. Теоретически оба потока могут обращаться как к Object 1, так и к Object 5, если они имеют ссылки на оба этих объекта. Но на диаграмме выше каждый поток имеет ссылку только на один из двух объектов.
Итак, мы посмотрели иллюстрацию, теперь давайте посмотрим, как тоже самое выглядит в Java-коде:
Метод run() вызывает methodOne(), а methodOne() вызывает methodTwo().
methodOne() объявляет примитивную локальную переменную (localVariable1) типа int и локальную переменную (localVariable2), которая является ссылкой на объект.
Каждый поток, выполняющий методOne(), создаст свою собственную копию localVariable1 и localVariable2 в своих соответствующих стеках. Переменные localVariable1 будут полностью отделены друг от друга, находясь в стеке каждого потока. Один поток не может видеть, какие изменения вносит другой поток в свою копию localVariable1.
Каждый поток, выполняющий методOne(), также создает свою собственную копию localVariable2. Однако две разные копии localVariable2 в конечном итоге указывают на один и тот же объект в куче. Дело в том, что localVariable2 указывает на объект, на который ссылается статическая переменная sharedInstance. Существует только одна копия статической переменной, и эта копия хранится в куче. Таким образом, обе копии localVariable2 в конечном итоге указывают на один и тот же экземпляр MySharedObject. Экземпляр MySharedObject также хранится в куче. Он соответствует Object 3 на диаграмме выше.
Обратите внимание, что класс MySharedObject также содержит две переменные-члены. Сами переменные-члены хранятся в куче вместе с объектом. Две переменные-члены указывают на два других объекта Integer. Эти целочисленные объекты соответствуют Object 2 и Object 4 на диаграмме.
Также обратите внимание, что methodTwo() создает локальную переменную с именем localVariable1. Эта локальная переменная является ссылкой на объект типа Integer. Метод устанавливает ссылку localVariable1 для указания на новый экземпляр Integer. Ссылка будет храниться в своей копии localVariable1 для каждого потока. Два экземпляра Integer будут сохранены в куче и, поскольку метод создает новый объект Integer при каждом выполнении, два потока, выполняющие этот метод, будут создавать отдельные экземпляры Integer. Они соответствуют Object 1 и Object 5 на диаграмме выше.
Обратите также внимание на две переменные-члены в классе MySharedObject типа long, который является примитивным типом. Поскольку эти переменные являются переменными-членами, они все еще хранятся в куче вместе с объектом. В стеке потоков хранятся только локальные переменные.
Основные принципы программирования: стек и куча
Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях — я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.
Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.
Стек — это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.
Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека — это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.
В итоге стек позволяет управлять памятью наиболее эффективным образом — но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.
Куча — это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.
27–29 декабря, Онлайн, Беcплатно
Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями — это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.
В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности — если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.
Заключение
Вот вы и познакомились с понятиями стека и кучи. Вкратце, стек — это очень быстрое хранилище памяти, работающее по принципу LIFO и управляемое процессором. Но эти преимущества приводят к ограниченному размеру стека и специальному способу получения значений. Для того, чтобы избежать этих ограничений, можно пользоваться кучей — она позволяет создавать динамические и глобальные переменные — но управлять памятью должен либо сборщик мусора, либо сам программист, да и работает куча медленнее.
Управление памятью Java
Это глубокое погружение в управление памятью Java позволит расширить ваши знания о том, как работает куча, ссылочные типы и сборка мусора.
Вероятно, вы могли подумать, что если вы программируете на Java, то вам незачем знать о том, как работает память. В Java есть автоматическое управление памятью, красивый и тихий сборщик мусора, который работает в фоновом режиме для очистки неиспользуемых объектов и освобождения некоторой памяти.
Поэтому вам, как программисту на Java, не нужно беспокоиться о таких проблемах, как уничтожение объектов, поскольку они больше не используются. Однако, даже если в Java этот процесс выполняется автоматически, он ничего не гарантирует. Не зная, как устроен сборщик мусора и память Java, вы можете создать объекты, которые не подходят для сбора мусора, даже если вы их больше не используете.
Для начала давайте посмотрим, как обычно организована память в Java:
Структура памяти
Стек (Stack)
Стековая память отвечает за хранение ссылок на объекты кучи и за хранение типов значений (также известных в Java как примитивные типы), которые содержат само значение, а не ссылку на объект из кучи.
Кроме того, переменные в стеке имеют определенную видимость, также называемую областью видимости. Используются только объекты из активной области. Например, предполагая, что у нас нет никаких глобальных переменных (полей) области видимости, а только локальные переменные, если компилятор выполняет тело метода, он может получить доступ только к объектам из стека, которые находятся внутри тела метода. Он не может получить доступ к другим локальным переменным, так как они не выходят в область видимости. Когда метод завершается и возвращается, верхняя часть стека выталкивается, и активная область видимости изменяется.
Возможно, вы заметили, что на картинке выше отображено несколько стеков памяти. Это связано с тем, что стековая память в Java выделяется для каждого потока. Следовательно, каждый раз, когда поток создается и запускается, он имеет свою собственную стековую память и не может получить доступ к стековой памяти другого потока.
Куча (Heap)
Эта часть памяти хранит в памяти фактические объекты, на которые ссылаются переменные из стека. Например, давайте проанализируем, что происходит в следующей строке кода:
Ключевое слово new несет ответственность за обеспечение того, достаточно ли свободного места на куче, создавая объект типа StringBuilder в памяти и обращаясь к нему через «Builder» ссылки, которая попадает в стек.
Для каждого запущенного процесса JVM существует только одна область памяти в куче. Следовательно, это общая часть памяти независимо от того, сколько потоков выполняется. На самом деле структура кучи немного отличается от того, что показано на картинке выше. Сама куча разделена на несколько частей, что облегчает процесс сборки мусора.
Типы ссылок
Если вы внимательно посмотрите на изображение структуры памяти, вы, вероятно, заметите, что стрелки, представляющие ссылки на объекты из кучи, на самом деле относятся к разным типам. Это потому, что в языке программирования Java используются разные типы ссылок: сильные, слабые, мягкие и фантомные ссылки. Разница между типами ссылок заключается в том, что объекты в куче, на которые они ссылаются, имеют право на сборку мусора по различным критериям. Рассмотрим подробнее каждую из них.
1. Сильная ссылка
Это самые популярные ссылочные типы, к которым мы все привыкли. В приведенном выше примере со StringBuilder мы фактически храним сильную ссылку на объект из кучи. Объект в куче не удаляется сборщиком мусора, пока на него указывает сильная ссылка или если он явно доступен через цепочку сильных ссылок.
2. Слабая ссылка
Попросту говоря, слабая ссылка на объект из кучи, скорее всего, не сохранится после следующего процесса сборки мусора. Слабая ссылка создается следующим образом:
После сбора мусора ключа из WeakHashMap вся запись удаляется из карты.
3. Мягкая ссылка
Подобно слабым ссылкам, мягкая ссылка создается следующим образом:
4. Фантомная ссылка
Ссылки на String
Ссылки на тип String в Java обрабатываются немного по- другому. Строки неизменяемы, что означает, что каждый раз, когда вы делаете что-то со строкой, в куче фактически создается другой объект. Для строк Java управляет пулом строк в памяти. Это означает, что Java сохраняет и повторно использует строки, когда это возможно. В основном это верно для строковых литералов. Например:
При запуске этот код распечатывает следующее:
Следовательно, оказывается, что две ссылки типа String на одинаковые строковые литералы фактически указывают на одни и те же объекты в куче. Однако это не действует для вычисляемых строк. Предположим, что у нас есть следующее изменение в строке // 1 приведенного выше кода.
Strings are different
При добавлении вышеуказанного изменения создается следующий результат:
Процесс сборки мусора
Как обсуждалось ранее, в зависимости от типа ссылки, которую переменная из стека содержит на объект из кучи, в определенный момент времени этот объект становится подходящим для сборщика мусора.
Объекты, подходящие для сборки мусора
Например, все объекты, отмеченные красным цветом, могут быть собраны сборщиком мусора. Вы можете заметить, что в куче есть объект, который имеет строгие ссылки на другие объекты, которые также находятся в куче (например, это может быть список, который имеет ссылки на его элементы, или объект, имеющий два поля типа, на которые есть ссылки). Однако, поскольку ссылка из стека потеряна, к ней больше нельзя получить доступ, так что это тоже мусор.
Чтобы углубиться в детали, давайте сначала упомянем несколько вещей:
Этот процесс запускается автоматически Java, и Java решает, запускать или нет этот процесс.
На самом деле это дорогостоящий процесс. При запуске сборщика мусора все потоки в вашем приложении приостанавливаются (в зависимости от типа GC, который будет обсуждаться позже).
На самом деле это более сложный процесс, чем просто сбор мусора и освобождение памяти.
Несмотря на то, что Java решает, когда запускать сборщик мусора, вы можете явно вызвать System.gc() и ожидать, что сборщик мусора будет запускаться при выполнении этой строки кода, верно?
Это ошибочное предположение.
Вы только как бы просите Java запустить сборщик мусора, но, опять же, Java решать, делать это или нет. В любом случае явно вызывать System.gc() не рекомендуется.
Поскольку это довольно сложный процесс и может повлиять на вашу производительность, он реализован разумно. Для этого используется так называемый процесс «Mark and Sweep». Java анализирует переменные из стека и «отмечает» все объекты, которые необходимо поддерживать в рабочем состоянии. Затем все неиспользуемые объекты очищаются.
Так что на самом деле Java не собирает мусор. Фактически, чем больше мусора и чем меньше объектов помечены как живые, тем быстрее идет процесс. Чтобы сделать это еще более оптимизированным, память кучи на самом деле состоит из нескольких частей. Мы можем визуализировать использование памяти и другие полезные вещи с помощью JVisualVM, инструмента, поставляемого с Java JDK. Единственное, что вам нужно сделать, это установить плагин с именем Visual GC, который позволяет увидеть, как на самом деле структурирована память. Давайте немного увеличим масштаб и разберем общую картину:
Поколения памяти кучи
Когда объект создается, он размещается в пространстве Eden (1). Поскольку пространство Eden не такое уж большое, оно заполняется довольно быстро. Сборщик мусора работает в пространстве Eden и помечает объекты как живые.
Если объект выживает в процессе сборки мусора, он перемещается в так называемое пространство выжившего S0(2). Во второй раз, когда сборщик мусора запускается в пространстве Eden, он перемещает все уцелевшие объекты в пространство S1(3). Кроме того, все, что в настоящее время находится на S0(2), перемещается в пространство S1(3).
Если объект выживает в течение X раундов сборки мусора (X зависит от реализации JVM, в моем случае это 8), скорее всего, он выживет вечно и перемещается в пространство Old(4).
Принимая все сказанное выше, если вы посмотрите на график сборщика мусора (6), каждый раз, когда он запускается, вы можете увидеть, что объекты переключаются на пространство выживших и что пространство Эдема увеличивалось. И так далее. Старое поколение также может быть обработано сборщиком мусора, но, поскольку это большая часть памяти по сравнению с пространством Eden, это происходит не так часто. Метапространство (5) используется для хранения метаданных о ваших загруженных классах в JVM.
Представленное изображение на самом деле является приложением Java 8. До Java 8 структура памяти была немного другой. Метапространство на самом деле называется PermGen область. Например, в Java 6 это пространство также хранит память для пула строк. Поэтому, если в вашем приложении Java 6 слишком много строк, оно может аварийно завершить работу.
Типы сборщиков мусора
Фактически, JVM имеет три типа сборщиков мусора, и программист может выбрать, какой из них следует использовать. По умолчанию Java выбирает используемый тип сборщика мусора в зависимости от базового оборудования.
3. Mostly concurrent GC (В основном параллельный сборщик мусора). Если вы помните, ранее в этой статье упоминалось, что процесс сбора мусора на самом деле довольно дорогостоящий, и когда он выполняется, все потоки приостанавливаются. Однако у нас есть в основном параллельный тип GC, который утверждает, что он работает одновременно с приложением. Однако есть причина, по которой он «в основном» параллелен. Он не работает на 100% одновременно с приложением. Есть период времени, на который цепочки приостанавливаются. Тем не менее, пауза делается как можно короче для достижения наилучшей производительности сборщика мусора. На самом деле существует 2 типа в основном параллельных сборщиков мусора:
Примечание переводчика. Информация про сборщики мусора для различных версий Java приведена в переводе:
Советы и приемы
Чтобы минимизировать объем памяти, максимально ограничьте область видимости переменных. Помните, что каждый раз, когда выскакивает верхняя область видимости из стека, ссылки из этой области теряются, и это может сделать объекты пригодными для сбора мусора.
Явно устанавливайте в null устаревшие ссылки. Это сделает объекты, на которые ссылаются, подходящими для сбора мусора.
Избегайте финализаторов (finalizer). Они замедляют процесс и ничего не гарантируют. Фантомные ссылки предпочтительны для работы по очистке памяти.
JVisualVM также имеет функцию создания дампа кучи в определенный момент, чтобы вы могли анализировать для каждого класса, сколько памяти он занимает.
Настройте JVM в соответствии с требованиями вашего приложения. Явно укажите размер кучи для JVM при запуске приложения. Процесс выделения памяти также является дорогостоящим, поэтому выделите разумный начальный и максимальный объем памяти для кучи. Если вы знаете его, то не имеет смысла начинать с небольшого начального размера кучи с самого начала, JVM расширит это пространство памяти. Указание параметров памяти выполняется с помощью следующих параметров:
Если приложение Java выдает ошибку OutOfMemoryError и вам нужна дополнительная информация для обнаружения утечки, запустите процесс с –XX:HeapDumpOnOutOfMemory параметром, который создаст файл дампа кучи, когда эта ошибка произойдет в следующий раз.