Что такое gwp фреона
Природные хладагенты (ОРП и ПГП)
Потенциал глобального потепления (сокр. ПГП, англ. Global warming potential, GWP) — коэффициент, определяющий степень воздействия различных парниковых газов на глобальное потепление. Эффект от выброса оценивается за определённый промежуток времени. В качестве эталонного газа взят диоксид углерода (CO2), чей ПГП равен 1. Коэффициент ПГП был введён в 1997 году в Киотском протоколе.
На данный момент в Евросоюзе введен режим квот на импорт оборудования, использующего хладагенты с высоким ПГП. Под пристальным наблюдением оказалась климатическая техника, в которой для получения и отбора тепловой энергии используются фреоны R507, R404a, R134a, R410a. Это привело к появлению и распространению хладагентов с меньшим показателем потенциала глобального потепления, например R32. Этот газ ранее использовали в cоставе многокомпонентных фреонов, но после инициативы компании Daikin, он стал полноценным заменителем фреона R410a, но с лучшими показателями энергоэффективности, коэффициентом преобразования.
Озоноразрушающий потенциал фреонов ОРП (Ozone depletion potential, ODP) – характеристика, показывающая как хладагент влияет на состояние озонового слоя относительно газа R-11 (CFC-11). По умолчанию ODP хладона R11 принимается за 1.
Потенциал разрушения озона – относительная характеристика хладагента или другого вещества. Его оценивают по структуре молекулы. Чем больше в ней атомов хлора и брома, тем выше показатель ODP. Эти молекулы более активно разрушают озон.
Наличие водорода в составе молекулы снижает озоноразрушающий потенциал хладагента. Атомы водорода начинают реагировать в нижнем слое атмосферы. Фреон не может достичь стратосферы, где находится озоновый слой.
Потенциал разрушения озонового слоя Земли для каждого вещества периодически корректируется. Ученые используют новые климатические модели, сверяют теоретические данные с практическими.
Природные хладагенты это вещества, образующиеся в природе естественным путем, а неприродные или синтетические — искусственные химические вещества, которые в природе не встречаются. Поскольку используемые в качестве хладагентов аммиак, углекислый газ и углеводороды подвергаются процедуре промышленной очистки и переработки, время от времени поднимаются споры о точности термина «природные хладагенты». Тем не менее, сегодня проводится четкое различие между веществами, чьи химические свойства и характеристики безопасности были полностью изучены, и теми хлор и фторсодержащими газами, чьи негативное воздействие на озоновый слой, вклад в глобальное потепление и угроза экологической безопасности в силу химической сложности и сравнительно непродолжительного периода использования этих веществ определены с той или иной степенью достоверности. Как следствие, ведется постоянное обсуждение проблемы использования этих газов.
Среди наиболее распространенных природных хладагентов можно назвать аммиак (NH3, R717), углекислый газ (CO2, R744) и такие углеводороды (HC), как пропан (R290), изобутан (R600a) и пропилен (R1270), известный как пропен.
Кроме того, следует отметить, чтобы была создана смесь аммиака и диметилового эфира (R723) и разнообразные углеводородные смеси, которые отличаются оптимизированными эксплуатационными свойствами и характеристиками безопасности (изобутан и пропан R441 и т.д.). Менее распространены вода и воздух, использующиеся в адсорбционных чиллерах и низкотемпературных системах. Благодаря широкой распространенности, нетоксичности, негорючести и идеальным экологическим параметрам вода и воздух стали объектом пристального внимания исследователей. Два природных хладагента (двуокись серы (SO2) и хлористый метил (CH3Cl) уже вышли из употребления.
Углеводороды (ОРП = 0, ПГП
Углеводороды не образуют побочных продуктов, продуктов распада, имеют нулевой ОРП и очень низкий ПГП. Углеводородные хладагенты можно использовать в системах, разработанных под эти вещества, либо в качестве замены в системах, предназначенных для работы на ГХФУ. Это повышает их конкурентоспособность и делает оптимальным вариантом для развивающихся стран. Перед заправкой углеводородным хладагентом систему, предназначенную для другого хладагента, при необходимости модифицируют. В этой связи необходимо учитывать вопросы совместимости смазочных материалов и воспламеняемости углеводородов. Как бы то ни было, наибольший потенциал имеют новые системы, специально разработанные для работы на углеводородных хладагентах.
Эти хладагенты горючи, но низкотоксичны и, следовательно, по классификации ASHRAE имеют индекс А3. Очень часто в отношении углеводородов применяются более жесткие требования к безопасности, ограничивающие, в частности, количество вещества, разрешенное к применению в системах, обслуживающих зоны пребывания людей.
Углеводородные хладагенты полностью совместимы практически со всеми смазочными веществами, применяемыми в холодильных и климатических системах, за исключением веществ, содержащих силиконы или силикаты (добавки, обычно используемые в качестве антивспенивателей).
Вода (ОРП = 0, ПГП = 0)
Вода (химическая формула H2O, название хладагента R718) это один из самых древних хладагентов, используемых для охлаждения. Вода или водяной пар, также называемые термином «дигидромонооксид», — одно из наиболее распространенных на Земле веществ. Вода находит разное применение: как технологическая среда при дистилляции и сушке, для теплопередачи или накопления энергии в системах центрального отопления, системах охлаждения двигателя и ледниках, как рабочая жидкость в цикле Ренкина. R718 это экологически безопасный хладагент с нулевыми ОРП и ПГП, не имеющий цвета, запаха, нетоксичный, негорючий, невзрывоопасный, легкодоступный и крайне дешевый.
На воде работают самые современные холодильные системы. В качестве хладагента ранее она применялась в основном в компрессионных чиллерах с пароструйными компрессорами, двухконтурных абсорбционных системах с бромистым литием в качестве абсорбента, а также адсорбционных системах с цеолитами в качестве адсорбента. С точки зрения экологичности и термодинамики, вода представляет собой идеальный хладагент для сфер применения с температурой выше 0°С. По сравнению с другими природными хладагентами R718 имеет более высокую скрытую теплоту парообразования: 2 270 кДж/кг. При переходе из жидкого в газообразное состояние без изменения температуры R718 поглощает очень большие количества тепловой энергии.
Применение воды ограничено ее высокой скоростью замерзания при атмосферном давлении. Кроме того, вода приводит к коррозии и окислению многих металлов. В силу высокой, по сравнению с другими хладагентами, способностью воды вступать в химические реакции при разработке систем на R718 необходимо уделять особое внимание выбору пригодных материалов.
Воздух (ОРП = 0, ПГП = 0)
Воздух это экологически безопасный, недорогой, совершенно безопасный и нетоксичный хладагент под названием R729. Проблемы разрушения озонового слоя, глобального потепления и ужесточающегося законодательства вернули интерес к альтернативным хладагентам во всем мире. Однако воздушные холодильные системы это не новое изобретение: они использовались на рефрижераторных судах еще в начале предыдущего столетия.
Воздушное охлаждение основано на обратном цикле Брайтона или Джоуля. При температурах, применяемых в типовых холодильных системах, используемый в качестве хладагента воздух не подвергается фазовому переходу (конденсации или испарению). Из-за низкого веса воздух имеет невысокий СОР, однако воздушные холодильные системы обеспечивают теплоутилизацию при относительно высоких температурах без снижения эффективности, которая наблюдается в паровых компрессионных установках. По сравнению с последними установки с воздушным циклом могут обеспечить большую разность температур между горячей и холодной сторонами. В результате становится возможным охлаждение воздуха до температур, свойственных процессам, протекающим при практически криогенных условиях.
При работе за пределами проектных значений производительность систем с воздушным циклом снижается не столь сильно, как паровых компрессионных установок. В холодильном цикле система с воздушным циклом может вырабатывать тепло.
В течение долгого времени системы с воздушным охлаждением использовались на воздушных судах. Низкий СОР здесь не является большим недостатком, поскольку воздух отвечает множеству особых условий эксплуатации воздушных судов (доступность сжатого воздуха и поддув) и жестких требований (небольшой вес, малый размер, абсолютная безопасность, нулевая токсичность и др.). Кроме того, воздух использовался как хладагент в системах кондиционирования и охлаждения жилых помещений и автомобилей. В ряде холодильных установок воздух служит для быстрого замораживания продуктов питания.
Приглашаем вас пройти обучение по направлениям:
Подробнее вы можете ознакомиться на курсах:
Обучение по ремонту холодильников необходимо для тех, кто хочет научиться производить ремонт не только бытовых холодильников
Данные курсы в первую очередь будут полезны для сотрудников сервисных служб и рабочего персонала, связанного с холодильным оборудованием
Курс предназначен для специалистов с опытом ремонта бытового и полупромышленного холодильного оборудования. По итогу обучения вы получите удостоверение установленного образца, который дает разрешение на обслуживание данных холодильных установок.
R-32: хладагент нового поколения для кондиционеров и тепловых насосов
Поэтапное ограничение оборота гидрофторуглеродов и внедрение R32
Новый Регламент (ЕС) № 517/2014 Европейского парламента и Совета Европейского союза по фторсодержащим парниковым газам подразумевает сокращение их использования к 2030 году на 79 % от среднего уровня 2009–2012 годов (расчет проводится на основе эквивалентного выброса CO2). Очевидно, в ближайшие 13 лет климатическую отрасль ждут большие перемены: выводимым из оборота хладагентам потребуются альтернативы.
Сегодня соответствующими требованиям новой директивы и не вредными для окружающей среды считаются несколько хладагентов нового поколения для кондиционеров, тепловых насосов и холодильного оборудования, в частности R32, некоторые другие гидрофторуглероды (ГФУ), гидрофторолефины (ГФО), CO2 и углеводороды, включая R290 и R600. Ведутся активные дальнейшие исследования и разработки других альтернативных хладагентов.
R32 в климатическом оборудовании используется давно: из него наполовину состоит распространенный хладагент R410A. Потенциал воздействия на глобальное потепление (GWP) R32 равен 675 – это треть от показателя R410A (2088). R32 обладает большей энергоэффективностью, при равной производительности требуется в меньшем количестве для заправки, соответственно, оборудование может стать компактнее. R32 однокомпонентный, поэтому его проще повторно использовать и утилизировать, отсутствует так называемый температурный глайд. В процессе хранения R32 не разделяется на фракции. Но для его заправки нужны некоторые новые инструменты и соблюдение необходимых процедур. К тому же, как и большинство хладагентов с низким GWP, R32 является слабогорючим.
Как любое нововведение, переход на R32 может создать определенные трудности, поэтому задача производителей и дистрибьюторов – обучение монтажных и сервисных компаний методикам работы с новым хладагентом. Не менее важно также информировать проектировщиков, продавцов дилерских компаний и потребителей о новом законодательстве, чтобы новые директивы уже сейчас учитывались при проектировании систем, рассчитанных на ближайшие 10–15 лет.
Отказ от ГФУ с высоким GWP: основные шаги
2014 год
Создана законодательная база для появления новых фреонов с низким потенциалом воздействия на глобальное потепление: стандарт ISO 5149:1993 (ГОСТ 12.2.233–2012 ССБТ «Системы холодильные холодопроизводительностью свыше 3,0 кВт. Требования безопасности»).
Евросоюз пересмотрел законодательство (Регламент № 517/2014) по фторсодержащим хладагентам (ГФУ), утвердив график частичного отказа от них в некоторых классах оборудования.
2016 год
Старт поэтапной ликвидации ГФУ.
2020 год
2022 год
Ограничен показатель GWP для коммерческих холодильников и морозильников на базе герметичных компрессоров: не более 150.
2022–2025 годы
2030 год
В среднем в период между 2016 и 2030 годом использование ГФУ должно сократиться на 79 %. R410A, R134A и R407C не будут полностью запрещены, но их использование будет значительно ограничено.
Значение отказа от гидрофторуглеродов для климатической отрасли
Существует очевидная потребность в альтернативных хладагентах, которые не только были бы менее вредными для окружающей среды не влияющими на климат и соответствовали бы требованиям нового законодательства, но были бы также безопасными и обеспечивали повышение экономичности использования оборудования. Экономия важна как с точки зрения стоимости хладагента, так и с точки зрения переоборудования существующих систем для работы с ним. Использование новых хладагентов, подразумевающих полный пересмотр проектов систем, означает, что часть оборудования, которое будет установлено в ближайшие 5–10 лет, может стать непригодной для использования еще до окончания срока службы. Производители предпочитают действовать прямо сейчас, предлагая новые продукты и способы адаптации старых систем к новым хладагентам, продляя, таким образом, срок их эксплуатации.
При выборе хладагента нового поколения необходимо учесть ряд факторов:
Озоноразрушающий потенциал и потенциал воздействия на глобальное потепление
Согласно Монреальскому протоколу и европейскому законодательству по проблеме истощения озонового слоя озоноразрушающий потенциал хладагентов должен быть нулевым. Ситуация с потенциалом воздействия на глобальное потепление (GWP) чуть сложнее, так как этот показатель рассчитывается с учетом полного жизненного цикла оборудования. Это означает, что энергия, использованная в течение всего срока службы кондиционера или теплового насоса, переводится в эквивалент глобального потепления (косвенная эмиссия), затем добавляется непосредственная эмиссия (в результате утечки по различным причинам) хладагента. Такой метод дает более точную оценку реального воздействия оборудования на глобальное потепление в течение всего его жизненного цикла.
Оценивать только значение GWP некорректно, поскольку оборудование со «средним» значением GWP может в итоге оказывать меньшее воздействие на глобальное потепление, чем кондиционер на хладагенте с «низким» GWP.
Безопасность
На безопасность влияет множество факторов, включая тип оборудования, объем заправленного хладагента, размер помещения и расположение оборудования.
Природные ресурсы
Важно эффективно использовать природные ресурсы: оборудование должно быть энергоэффективным, а производство – соответствовать принципу «производить больше из меньшего количества материала». Для хладагентов в этом контексте актуальна возможность повторного использования, для оборудования – возможность переработки материалов, из которых оно произведено. Если мы повышаем энергоэффективность хладагента, используя большее его количество в более крупной системе, – это еще не энергоэффективность.
Доступность
Согласно прогнозам, 75 % будущей эмиссии ГФУ придется на развивающиеся страны. Новые успешные решения должны быть доступны на глобальном уровне.
Энергоэффективность
Все перечисленные факторы важны, тем не менее ключевой фактор при выборе хладагента – его энергоэффективность. Без максимальной энергоэффективности система все равно будет косвенно «осуществлять» дополнительный выброс углекислого газа за счет сжигания природных ресурсов в процессе генерации электроэнергии, необходимой для работы климатического оборудования.
При оценке энергоэффективности нужно учитывать не только «сезонную эффективность», усредненную за сезон охлаждения или отопления, но и эффективность при пиковых нагрузках (в очень жаркие или очень холодные дни). Первый показатель важен для соответствия целевым показателям энергоэффективности различных европейских директив (Ecodesign, Energy efficiency directive, EPBD, Renewable Energy Source Directive), а эффективность при пиковых нагрузках позволит обходиться без задействования резервных мощностей электростанций.
Хладагенты нового поколения: варианты
Пока до конца не ясно, какой газ займет место хладагента нового поколения. Наиболее вероятные кандидаты – R32, смеси ГФО, CO2 и углеводороды (пропан и бутан). У каждого из них есть свои преимущества и недостатки, и, скорее всего, каждый из хладагентов (или их сочетания) займет собственную нишу. Возможно, для кондиционеров и тепловых насосов будет использоваться R32, для полупромышленного кондиционирования – R410A, CO2 и смеси ГФУ, бутан – для бытовых холодильников и морозильных камер.
Сравним перечисленные выше альтернативы с распространенными в настоящее время ГФУ по таким параметрам, как конструкция системы, стоимость установки, энергоэффективность и безопасность.
R32
GWP ниже, чем у R410A (675 против 2088).
Энергоэффективность немного выше.
Технология и затраты на том же уровне, относительно не дорогостоящие в производстве.
Нетоксичен, но относится к слабогорючим газам с низкой скоростью горения, для работы с ним следует незначительно обновить набор инструмента и строго соблюдать установленную процедуру монтажа.
Смеси гидрофторолефинов (ГФО)
У ГФО, таких как R1234yf или R1234ze(E), очень низкий GWP. Ими можно заменять R134a, поскольку они схожи по характеристикам. Однако их давление и энергоэффективность не подходят для замены R410A в кондиционерах и тепловых насосах. Нетоксичен, относится к слабогорючим газам с низкой скоростью горения.
Углеводороды
У таких углеводородов, как R290 (пропан) и R600 (бутан), низкий GWP, и в некоторых случаях они идеальны, особенно для коммерческих холодильников и морозильников на базе герметичных компрессоров, а также для небольших мобильных кондиционеров. Конструкция компрессора, стоимость и энергоэффективность сравнимы с ГФУ. Горючие и взрывоопасные.
|