Что такое fiber channel
Fibre Channel: жизненная сила подключения к хранилищам в центре обработки данных
Все мы знаем, что объем данных продолжает расти в геометрической прогрессии, и что сами данные являются той новой валютой, на которую рассчитывают предприятия. Способность своевременно реагировать на эти данные может повлиять на конкурентоспособность бизнеса на рынке. Поэтому быстрый и надежный доступ к данным имеет первостепенное значение, а базовая инфраструктура, которая связывает пользователя с системами хранения данных, является более важной, чем когда-либо прежде.
В современном центре обработки данных архитекторы могут выбирать из множества различных вариантов подключения, но Fibre Channel был и останется источником жизненной силы для подключения к общим хранилищам. Это связано с тем, что Fibre Channel является наиболее безопасным, надежным, экономически эффективным и масштабируемым протоколом для соединения серверов и хранилищ, а также единственным протоколом, специально предназначенным для передачи трафика хранилища.
Fibre Channel существует уже несколько десятилетий и по-прежнему является основным выбором для подключения к общему хранилищу в центре обработки данных. С помощью Fibre Channel создается выделенная сеть хранения, а команды хранения SCSI направляются между сервером и устройствами хранения с пропускной способностью до 28,05 Гбит / с (32GFC) и с IOPS, превышающим один миллион. Поскольку Fibre Channel изначально был разработан для трафика хранилищ, он работает очень надежно и обеспечивает высокопроизводительную связь. Адаптеры HPE StoreFabric 16GFC и 32GFC и инфраструктура коммутации обеспечивают пропускную способность, количество операций ввода-вывода в секунду и низкую задержку, необходимые в центрах обработки данных сегодня и на годы вперед.
Достижения в технологии Fibre Channel держат его на опережение, когда дело доходит до подключения.
Другой популярный вариант подключения к хранилищу – iSCSI. С iSCSI, команды хранения в стандартной сети TCP / IP, и это отлично подходит для систем низкого и среднего уровня, где производительность и безопасность не являются основными требованиями. Распространенное заблуждение о Fibre Channel заключается в том, что, поскольку он использует выделенную сеть хранения данных, он дороже, чем iSCSI. Хотя iSCSI может работать в той же сети Ethernet, что и весь обычный сетевой трафик, для обеспечения производительности, необходимой большинству клиентов от своих систем хранения, iSCSI должен работать в сегментированной или выделенной сети Ethernet, изолированной от обычного сетевого трафика. Это означает сложные конфигурации VLAN и политики безопасности или полностью выделенную сеть Ethernet. Так же, как Fibre Channel.
Единственная реальная разница в стоимости между FC и iSCSI – это когда DAC — кабели используются в реализациях iSCSI. Но с ограничением расстояния 5 метров, используя DAC — кабели.
Это может нормально работать для клиентов малого и среднего бизнеса, имеющих только один массив хранения, но DAC — кабели плохо работают в крупномасштабном центре обработки данных.
Когда вы смотрите на топологию сети хранения данных, лучшие практики идентичны для iSCSI и Fibre Channel. Для обеспечения отказоустойчивости и устранения простоев в проекте сети хранения данных (SAN) предусмотрено два идентичных сетевых пути между серверами и хранилищем.
Однако одно существенное отличие заключается в том, что сети Fibre Channel не так подвержены нарушениям безопасности, как Ethernet. Когда вы в последний раз слышали о взломе сети Fibre Channel? Никогда? Как насчет сети Ethernet?
Безопасность является одной из главных причин того, что Fibre Channel будет оставаться опорой в центре обработки данных в течение многих лет.
Современная инфраструктура HPE StoreFabric 16GFC и 32GFC, которая поддерживает команды SCSI, также может запускать команды NVMe в сети SAN или в структуре, как она называется. При использовании Ethernet клиентам потребуется внедрить RDMA с низкой задержкой по сравнению с конвергентным Ethernet или RoCE, чтобы в полной мере использовать преимущества NVMe. Однако этот подход требует сложной реализации Ethernet без потерь с использованием мостов центров обработки данных (DCB) и управления приоритетными потоками (PFC). Сложность сети для NVMe через Ethernet будет огромным барьером для большинства клиентов, особенно когда развернутая сегодня FC SAN прекрасно работает с хранилищем NVMe завтрашнего дня.
Суть в том, что Fibre Channel останется источником жизненной силы для связи между серверами и общим хранилищем.
Первое знакомство
Сетевое соединение vs. шина ввода/вывода
Сначала был компьютер. Первый, он же и единственный. Боже, как это было просто. Все данные хранились где-то глубоко в его недрах, и если их там не было,
то их не было вообще. Потом появились сети, призванные объединить такие компьютеры для совместной работы. На этом эпоха централизованного хранения завершилась, потому что для повышения производительности гораздо удобнее оказалось приблизить ресурсы поближе к рабочим группам. Таким образом, в попытке минимизировать сетевую нагрузку накопители информации были были равномерно разделены между множеством серверов и настольных компьютеров.
В итоге, сейчас мы имеем то, что имеем, и какой бы простой не являлась сеть, в ней одновременно существуют два канала передачи данных. На виду всегда сетевой канал, т. е. собственно сеть, по которой идет обмен между клиентами и серверами. Вместе с тем существует и второй канал, по которому происходит обмен данными между системной шиной компьютера и собственно устройством хранения. Это может быть канал между контроллером и жестким диском, если говорить в терминах ПК, или между RAID-контроллером и внешним дисковым массивом, как в случае сколь-нибудь серьезного сервера.
Такое разделение каналов во многом объясняется различными требованиями к пересылке данных. В сети на первое место встает доставка нужной информации одному клиенту из множества возможных, для чего необходимо создать определенные и весьма сложные механизмы адресации и некий «сетевой этикет» при одновременной работе всех клиентов. В итоге, перед каждой пересылкой по сети приходится выполнять ряд неизбежных процедур в соответствии с объявленными правилами и сознательно мириться с возникающими при этом задержками и снижением пропускной способности сетевого канала. Кроме того, сетевой канал предполагает значительные расстояния, поэтому здесь предпочтительна передача данных по последовательному соединению.
А вот канал хранения выполняет крайне простую задачу, предоставляя возможность обмена с заранее известным накопителем данных. Единственное, что от него требуется — делать это максимально быстро. Расстояния здесь, как правило, небольшие, поэтому производители могут использовать более дорогой кабель для параллельной передачи данных.
Если звезды зажигаются…
В последнее время в воздухе снова витает идея централизации. Или же, если угодно, то ее можно назвать концепцией истинно разделяемых ресурсов, где накопители не принадлежат никому конкретно, а могут напрямую использоваться любым другим ресурсом сети. Актуальность централизации во многом определяется осознанием все увеличивающейся роли хранения данных в современной вычислительной среде. Разве не заманчиво иметь возможность двигать устройства хранения в сети, как шахматные фигуры, и не привязывать их жестко к шинам ввода-вывода отдельных компьютеров?
Предполагается, что такая схема улучшит производительность и масштабируемость вычислительной среды вместе с более легким администрированием, а также повысит доступность данных. В итоге, мы вправе ожидать существенного снижения стоимости владения данным ресурсом, что справедливо ставится во главу угла финансовыми службами.
Очевидно, что всего этого можно добиться, если интегрировать накопители в сеть наряду с серверами, клиентскими машинами и прочими принтерами, т. е. использовать для этого существующий сетевой канал. К сожалению, после такого шага сеть просто впадет в кому, подавая лишь слабые признаки жизни. Конечно, если бы мы до сих пор использовали MS-DOS или все разом перешли на Linux, то с ними сетевой канал еще бы справлялся, но ведь по совершенно необъяснимым причинам пользователи предпочитают монстров типа Windows NT, да еще и пытаются передавать по этому же каналу потоковое видео.
В то же время существующему каналу хранения такие нагрузки по зубам, но вряд-ли в нынешнем виде он подходит для реализации истинно разделяемых ресурсов. Если обратиться к физической реализации такого канала, то самым сильным игроком здесь был и остается старый добрый параллельный SCSI, но при всей нашей любви к нему необходимо признать существенные ограничения на допустимую длину физической линии. Дело в том, что волновые характеристики отдельных проводников слегка отличаются, поэтому при передаче на большие расстояния возникает дифференциальная задержка в виде неодновременного прихода импульсов по разным сигнальным парам. В итоге получаем не более 25 метров даже при использовании дифференциального интерфейса HVD. Кроме того, передача по параллельному кабелю влечет за собой дополнительные расходы вследствие большей сложности монтажных работ, а также высокой стоимости используемых кабелей и коннекторов.
Fibre channel — хорошо забытое старое
Исходя из присущих параллельному соединению ограничений, сама идея использовать последовательную линию для канала хранения выглядит не такой уж и безумной, как это могло показаться с первого раза. Совершенно не зря говорят, что технический прогресс развивается по спирали. Если заглянуть в мир mainframe, то там практически с самого начала живет разработанный IBM стандарт последовательной передачи под названием ESCON (Enterprise Systems Connection) с использованием запатентованной IBM кодировки 8b/10b.
Когда в 1988 году ANSI (Американский Национальный Институт по Стандартизации) зарегистрировал рабочую группу по разработке «практичного, недорогого и вместе с тем расширяемого метода для высокоскоростного обмена данными между ЭВМ, суперкомпьютерами, рабочими станциями, персональными компьютерами, накопителями и устройствами отображения», мало кто из сторонних наблюдателей верил в успех, слишком уж глобальна и вызывающе звучала постановка задачи. Возможно, именно из-за такой недооценки потенциального соперника IBM с легкостью выдала лицензию на кодировку 8b/10b без отчислений владельцу (royalty-free license).
К тому времени парадигма Network (сетевое соединение) — Channel (шина ввода/вывода) была уже столь очевидна, что новый метод было решено назвать Fiber Channel. Через некоторое время разработчики спохватились, что английское слово Fiber слишком уж сильно ассоциируется с оптоволоконными линиями, поэтому оно было заменено на французскую (или британскую) транскрипцию Fibre. Учитывая, что основной топологией этого метода была избрана петля с арбитражным доступом (Arbitrated Loop), то его полное название составило Fibre Channel Arbitrated Loop или FC-AL.
Самое смешное, что после некоторых раздумий корпорация IBM тоже бросилась вдогонку, разработав свой собственный метод последовательной передачи под названием SSA (Serial Storage Architecture). Видимо, хотели сделать собственный закрытый стандарт, но получилось, как с микроканальной шиной MCA — основная масса разработчиков и производителей предпочла открытую архитектуру.
При всем богатстве выбора…
Ultra2 | FC-AL | SSA | HiPPI-Pp2 | ESCON |
---|---|---|---|---|
полудуплекс | полный дуплекс | полный дуплекс | полудуплекс | полудуплекс |
параллельный (34 пары) | последовательный | последовательный | параллельный (100 пар) | последовательный |
80 MBytes/s | 200 MBytes/s | 80 MBytes/s | 80 MBytes/s | 17 Mbytes/s |
SCSI CAM | SCSI CAM, IP, VI, HiPPI-FP, ESCON, IPI, ATM, Ethernet, FDDI, Token Ring | SCSI CAM | HiPPI-FP, IPI | ESCON |
25 метров | 10 километров | 20 метров | 25 метров | 400 метров |
Как видно из приведенной таблицы, по сумме вышеперечисленных характеристик FC-AL выглядит явным фаворитом. Правда, справедливости ради стоит отметить новый HiPPI-800, который, несмотря на свое название High Performance Parallel Interface, также использует последовательную передачу данных и имеет во многом сходные характеристики канала (до 10 км, полудуплекс при эффективной полосе пропускания 80 Mbytes/s).
Мы совершенно сознательно не считаем разработанную IBM технологию SSA сколь-нибудь серьезным соперником технологии FC-AL. Не станем пока вдаваться в технические детали, о которых вдоволь поговорим позже, а сфокусируемся лишь на маркетинговых вопросах. В свое время инициатива IBM была поддержана очень небольшим количеством независимых производителей, и только несколько из них сумели продвинуться дальше стадии разработки. А потом начались потери. Компания Conner, выпустившая на рынок жесткие диски SSA, была приобретена компанией Seagate, являвшейся уже к тому времени членом FCLC (Fiber Channel Loop Community). В итоге — ни Коннера, ни дисков.
На данный момент жесткие диски SSA можно приобрести только у IBM и Xyratex, которая сама базируется на бывшем заводе IBM. Долгое время из IBM исходили слухи о скором выпуске RAID-контроллера SSA, макет которого возили по компьютерным выставкам и демонстрировали всем желающим. А потом возить перестали, объявив о продаже прав на продукт компании Adaptec. Через некоторое время Adaptec перешел под знамена FCLC и блистательно похоронил наши надежды. Поэтому сейчас нам в очередной раз искренне жаль всех пользователей SSA, которые остались сиротами после объявления IBM о начале разработки нового стандарта FC-EL (Fiber Channel Enhanced Loop). Интересно, а сколько раз нужно наступить на грабли, чтобы выработать устойчивый рефлекс, как у собаки Павлова?
Первое знакомство
На момент выхода данной статьи Fibre Channel может быть описан как технология интерфейса передачи данных с гарантированной скоростью 1.0625 Gbit/s, поддерживающая такие распространенные способы обмена, как SCSI или IP. Благодаря такой универсальности, FC-AL может использоваться как в высокоскоростных шинах ввода/вывода (канал хранения), так и в LAN (сетевой канал) с максимальной длиной физической линии до 10 километров при использовании оптоволокна. К другим очевидным достоинствам Fibre Channel можно отнести поддержку различных топологий (точка-точка, петля с арбитражным доступом и коммутируемая звезда).
В основу технологии положена методика простого перемещения данных из буфера передатчика в буфер приемника с полным контролем этой и только этой операции. Благодаря такому «разграничению прав и обязанностей» для FC-AL совершенно неважно, как обрабатываются данные индивидуальными протоколами до и после помещения в буфер, вследствие чего тип передаваемых данных (команды, пакеты или кадры) не играет никакой роли.
И чтобы совсем приблизиться к идеалу, собственный размер кадра в FC-AL увеличен до 2148 байт для эффективной работы с большими массивами. В то же время, для уменьшения накладных расходов при передаче коротких сообщений размер кадра может пропорционально уменьшаться вплоть до 36 байт.
Таким образом, технология Fibre Channel может смело претендовать на роль универсальной Магистрали, пропускающей потоки данных как существующих шин ввода/вывода, так и LAN соединений.
Во избежание возможных недоразумений сразу оговоримся, что мы не предлагаем всем дружно отказаться от IDE, SCSI, Ethernet или FDDI. Совсем нет, это было бы так же глупо, как и призывы некоторых производителей тянуть ATM к каждому рабочему месту.
Совершенно очевидно, что технологическое превосходство того или иного стандарта само по себе не может служить достаточным основанием для отказа от уже используемых решений. Иначе кто бы сейчас в здравом уме покупал IDE диски, когда есть существенно более продвинутые SCSI? Но зачем платить лишние деньги за конвейерную обработку, если на компьютере не установлена многозадачная и многопотоковая ОС? И даже если установлена, то так ли часто большинству из нас приходится пользоваться этими возможностями? С другой стороны, нам неизвестны примеры успешного использования IDE дисков для аппаратного обеспечения посещаемых Интернет-ресурсов.
Примерно то же самое можно сказать и применительно к технологии Fibre Channel. Вряд ли на сегодняшний день есть большой смысл в ее применении на домашнем ПК или даже на рабочем месте в офисе. А вот объединить ресурсы серверов и накопителей в единый пул для центра обработки информации с помощью Fibre Channel можно гораздо эффективнее, чем при использовании стандартного набора Gigabit Ethernet + Ultra2 SCSI.
И при этом даже останется немного денег, чтобы после праведных трудов отдохнуть, ни в чем себе не отказывая 🙂
Что такое fiber channel
Дмитрий Ганьжа
ответственный редактор LAN
Если говорить кратко, Fibre Channel представляет собой сверхвысокоскоростную (до 1 Гбит/с и выше) схему полнодуплексной передачи данных с малой задержкой (10-30 мкс) на расстояния до 10 км. Она в равной мере может использоваться и как технология ввода/вывода, и как технология локальной сети.
В названии технологии (‘волоконный канал’, как можно было бы перевести Fibre Channel на русский язык) оба слова не вполне соответствуют действительности. Физической средой передачи может быть не только оптическое волокно, но и коаксиал, и витая пара, а архитектура представляет собой смесь канальной и сетевой топологии!
УРОВНЕВАЯ МОДЕЛЬ
Уровень FC-0 описывает физические характеристики и возможные типы интерфейсов и среды передачи, в том числе кабели, соединители, излучатели, передатчики и приемники. FC-1 определяет схему кодирования и декодирования сигнала 8B/10B. FC-2 выполняет основные функции Fibre Channel, в том числе сигнализацию, т. е. установление соединения между отправителем и получателем; сегментацию, сборку и упорядочивание передаваемых кадров; контроль потоков с помощью схемы скользящего окна, обнаружение и исправление ошибок; реализацию сервисных классов. Все вместе эти три уровня образуют так называемый физический уровень Fibre Channel (Fibre Channel Physical, FC-PH).
FC-3 описывает общие процедуры (хотя, наверно, их было бы правильнее назвать специальными) для таких особых ситуаций, как запись данных с чередованием на дисковый массив или многоадресная рассылка через видеосервер. FC-4 обеспечивает преобразование различных сетевых протоколов и приложений для их реализации поверх Fibre Channel. Как можно видеть из Рисунка 1, Fibre Channel способен поддерживать самые разные по своей природе сетевые протоколы, интерфейсы ввода/вывода и приложения.
ТОПОЛОГИЯ
Риcунок 2. Топология Fibre Channel. |
Наиболее распространенной и вместе с тем наиболее сложной топологией является арбитражная петля. Она позволяет подключить по кольцу до 127 портов без использования коммутатора. Однако, в отличие от двух других топологий, пропускная способность является разделяемой, т. е. в один конкретный момент времени только два устройства могут взаимодействовать друг с другом. В случае конкуренции за доступ к среде передачи между несколькими устройствами арбитраж выигрывает устройство с наименьшим адресом. Все устройства в петле должны функционировать на одной скорости. Петля может подключаться к порту коммутатора, но только к одному.
За неимением лучшего русскоязычного термина мы будем называть топологию Fabric коммутирующей структурой. Коммутируемая топология предусматривает использование коммутатора(-ов), но позволяет за счет этого подключить свыше 16 млн устройств. К коммутатору могут подключаться устройства с разными скоростями передачи и по разным физическим средам.
ТИПЫ ПОРТОВ
В зависимости от типа устройства, своего назначения и поддерживаемой топологии порты делятся на несколько типов. Порт Fibre Channel на конечном устройстве (сервере, дисковом массиве, принтере и т. п.) называется ‘узловой порт’ (Node Port, N_Port). Порт на коммутаторе, к которому подключается узловой порт, называется ‘коммутирующий порт’ (Fabric Port, F_Port). Если же эти порты могут подключаться к арбитражной петле, то они маркируются дополнительно буквой L от английского loop, т. е. ‘петля’. Таким образом, соответствующие порты на узле и коммутаторе будут обозначаться как NL_Port и FL_Port.
Помимо F_Port коммутатор может иметь еще и порт расширения (Expansion Port, E_Port). Этот порт предназначен для подключения одного коммутатора к другому. Если к порту расширения может быть подключен не только другой коммутатор, но и узел, то такой порт именуется универсальным портом (Generic Port, G_Port). При условии, что он поддерживает арбитражную петлю, универсальный порт может маркироваться как GL_Port.
РАЗНОВИДНОСТИ ОБОРУДОВАНИЯ
Помимо разделения пропускной способности арбитражная петля имеет и другие недостатки. В частности, при отказе адаптера на каком-либо устройстве или разрыве в соединяющем кабеле петля оказывается полностью неработоспособной. Кроме того, при добавлении нового устройства вся петля должна быть инициализирована заново (чтобы подключенное устройство могло получить адрес), причем эта процедура может занимать достаточно много времени.
Эти проблемы можно решить за счет использования концентраторов Fibre Channel. Кроме того, физическая топология ‘звезда’ (хотя логически это по-прежнему кольцо), как правило, гораздо удобнее с точки зрения подключения узлов, чем кольцо. Обычно концентраторы имеют не более 10 портов. Однако это ограничение легко преодолеть за счет каскадного подключения концентраторов. Правда, как показывает практика, оптимально арбитражная петля функционирует, когда число узлов не превышает 30.
Отказоустойчивость концентраторов к разрывам петли достигается за счет применения схемы обхода портов (Port Bypass Circuit, PBC). PBC позволяет автоматически обнаружить наличие узла и включить его в петлю. Аналогично PBC обнаруживает отказ узла и исключает его из петли (PBC также может быть реализована на уровне внутренней шины дискового массива). Наиболее продвинутые концентраторы поддерживают удаленное управление и другие развитые функции.
Как и в случае других сетевых технологий, коммутаторы Fibre Channel являются существенно более дорогими устройствами, чем концентраторы Fibre Channel. В отличие от концентраторов, они позволяют предоставить узлу выделенную пропускную способность и, как уже упоминалось, создавать топологии с несравнимо большим числом узлов (224). Кроме того, коммутаторы могут иметь порты с поддержкой разных скоростей и сред передачи.
Однако для организации взаимодействия между устройствами в нескольких петлях дешевле использовать не коммутатор, а коммутирующий (или гибридный) концентратор. Наиболее редко встречающимся устройством является маршрутизатор Fibre Channel (хотя, возможно, более правильно было бы называть его мостом). Он позволяет подключить сеть Fibre Channel к другой среде передачи, например к SCSI или Ethernet.
До сих пор мы говорили о, так сказать, структурообразующих устройствах Fibre Channel. Однако самыми распространенными устройствами являются, естественно, адаптеры Fibre Channel. Без них никакой узел не смог бы взаимодействовать с коммутирующей структурой Fibre Channel. Одни и те же адаптеры могут служить для соединения как с локальной сетью (другими узлами), так и с периферией. Это позволяет, в частности, сократить число необходимых слотов ввода/вывода. Большинство адаптеров выпускается для шины PCI. Часто вместе с адаптерами используются ‘гигабитные переходники’ (GigaBit Interface Converter). Они служат для преобразования оптических сигналов в электрические и обратно.
КЛАССЫ СЕРВИСА
Коммутаторы и узлы могут поддерживать один или более видов сервиса. Никакой ручной настройки не требуется, так как общие поддерживаемые коммутаторами и узлами сервисы определяются во время процедуры регистрации. Благодаря сервисам Fibre Channel может поддерживать множество различных приложений. Сервисы делятся на классы. Основными являются Классы 1, 2 и 3. Всего же Fibre Channel имеет 6 или 7 разных видов сервиса (такая неопределенность связана с тем, что Класс 5, видимо, так и не будет определен, а Класс Intermix не имеет собственного номера и часто не рассматривается как отдельный вид сервиса).
Класс 1 соответствует сервису с установлением соединения и гарантированной доставкой. Соединение через коммутирующую структуру (совокупность коммутаторов) устанавливается за несколько микросекунд. Соединение является выделенным, так что никакое иное устройство не может связаться с портами получателя и отправителя, пока соединение не будет закрыто. Гарантированная доставка обеспечивается за счет подтверждения получения. Наилучшим образом этот класс сервиса подходит для обмена большими объемами данных, в частности для резервного копирования, графических приложений и взаимодействия между суперкомпьютерами.
Класс 2 представляет сервис без установления соединения, но с гарантированной доставкой (как и в предыдущем случае, с помощью подтверждений). Каждый поступающий кадр коммутируется независимо от остальных, а конечные порты могут передавать или получать кадры от нескольких других узлов. По сути, коммутатор мультиплексирует трафик от узловых портов, поэтому этот класс сервиса иногда называют мультиплексным. Кадры могут доставляться не в том порядке, в каком они были отправлены. Наилучшим образом этот класс сервиса подходит для передачи нерегулярного (пакетного) или интерактивного трафика по типу трафика локальных сетей.
Класс 3 аналогичен Классу 2, за исключением того, что он не гарантирует доставку кадров (подтверждения получения). Он позволяет добиться несколько большей реальной пропускной способности за счет отсутствия подтверждений. По сути, он является аналогом передачи дейтаграмм. Наилучшим образом этот класс сервиса подходит для многоадресной и широковещательной рассылки.
Остальные классы часто не выделяются в самостоятельные, а считаются подвидами перечисленных. Класс Intermix представляет собой комбинацию Класса 1 и Класса 2 (3). Он позволяет передавать кадры Класса 2 или 3, когда кадры Класса 1 не передаются, причем кадры Классов 2 или 3 вовсе не обязательно должны быть адресованы тому же получателю, что и кадры Класса 1.
Как и Класс 1, Класс 4 предполагает установление соединения, гарантию доставки, фиксированную задержку, соблюдение исходного порядка кадров. Однако он требует резервирования лишь части пропускной способности, т. е. узловой порт может иметь и другие соединения. Узел может зарезервировать до 256 соединений Класса 4 одновременно, причем каждое из них может иметь свои параметры QoS. Иногда этот класс сервиса называется изохронным. Наилучшим образом он подходит для передачи цифрового видео и аудио.
Как Intermix и Класс 4, Класс 6 представляет собой разновидность Класса 1. Он используется, когда узлу необходимо передать кадры сразу нескольким узлам одновременно, т. е. в случае многоадресной рассылки. Для этого узел устанавливает выделенное соединение с сервером многоадресной рассылки, адрес которого фиксирован (FFFFF5 в шестнадцатеричном формате), а тот уже берет на себя задачу тиражирования и пересылки кадров всем получателям в многоадресной группе.
ХАРАКТЕРИСТИКИ FIBRE CHANNEL
Наибольшие скорости (до 4 Гбит/с) и расстояния (до 10 км) достигаются в случае применения одномодового оптического волокна и низкочастотных лазеров. Многомодовое волокно способно поддерживать такие же скорости, но на гораздо меньших расстояниях, в частности 100 Мбайт/с на расстояниях до 500 м в случае многомодового волокна 50/125 мкм с высокочастотным лазером. Медная среда передачи позволяет поддерживать скорости не выше основной на небольших расстояниях (100 м и менее).