Что такое dwdm технология
Технология DWDM простыми словами: Зачем она нужна, если есть CWDM?
DWDM является логическим продолжением грубого уплотнения – принцип работы тот же самый: в канале присутствует одновременно до нескольких десятков лазерных сигналов, каждый из которых имеет свою, отличную от других длину волны. Большая плотность каналов диктует увеличение точности модулей плотного оптического уплотнения – «шаг» несущих длин волн в этой технологии составляет уже всего 0,79-0,80 нанометров (1528.77, 1529.55, 1530.33 … 1563.05, 1563.86). Допуски же составляют всего 0,1 нанометра – это приводит к еще большему усложнению технологии изготовления и более строгого подхода к проверке, а, следовательно, и увеличению стоимости приёмопередатчиков плотного спектрального уплотнения.
Но, несмотря на более высокую стоимость, системы спектрального уплотнения DWDM имеют два неоспоримых преимущества:
1. DWDM позволяет организовывать до 24 дуплексных каналов (а некоторые изготавливаемые на заказ системы уплотнения и до 80 каналов) в одном оптическом волокне. По сравнению с 9 каналами CWDM – это существенное преимущество.
MlaxLink выпускает несколько видов мультиплексоров DWDM:
ML-V2-MUX-D-4/1 (Мультиплексор MlaxLink одноволоконный DWDM, 4-канальный, каналы 46-53, корпусной)
ML-V2-MUX-D-8/1 (Мультиплексор MlaxLink одноволоконный DWDM, 8-канальный, каналы 46-61, корпусной)
ML-V2-MUX-D-8/2 (Мультиплексор MlaxLink двухволоконный DWDM, 8-канальный, каналы 46-53 x2, корпусной)
ML-V2-MUX-D-16/1 (Мультиплексор MlaxLink одноволоконный DWDM, 16-канальный, каналы 30-61, корпус 19”, 1U)
ML-V2-MUX-D-16/2 (Мультиплексор MlaxLink двухволоконный DWDM, 16-канальный, каналы 46-61 x2, корпус 19”, 1U)
ML-V2-MUX-D-24/1 (Мультиплексор MlaxLink одноволоконный DWDM, 24-канальный, корпус 19”, 1U)
А также бескорпусные их разновидности:
ML-MUX-Lite-D-4/1 (Мультиплексор MlaxLink одноволоконный DWDM, 4-канальный, каналы 46-53, бескорпусной)
ML-MUX-Lite-D-8/1 (Мультиплексор MlaxLink одноволоконный DWDM, 8-канальный, каналы 46-61, бескорпусной)
ML-MUX-Lite-D-8/2 (Мультиплексор MlaxLink двухволоконный DWDM, 8-канальный, каналы 46-53 x2, бескорпусной)
Ассортимент трансиверов состоит из:
ML-DWDM-CHxx-28 (Модуль MlaxLink двухволоконный SFP DWDM, 1,25Гбит/с, 15xx.xxнм, канал xx, 28dB, 2xLC, DDM)
ML-DWDM-CHxx-32 (Модуль MlaxLink двухволоконный SFP DWDM, 1,25Гбит/с, 15xx.xxнм, канал xx, 32dB, 2xLC, DDM)
ML-DWDM-CHxx-40 (Модуль MlaxLink двухволоконный SFP DWDM, 1,25Гбит/с, 15xx.xxнм, канал xx, 40dB, 2xLC, DDM)
ML-PDWDM-CHxx-15 (Модуль MlaxLink двухволоконный SFP+ DWDM, 10Гбит/с, 15xx.xxнм, канал xx, 15dB, 2xLC, DDM)
ML-PDWDM-CHxx-23 (Модуль MlaxLink двухволоконный SFP+ DWDM, 10Гбит/с, 15xx.xxнм, канал xx, 23dB, 2xLC, DDM)
ML-PDWDM-CHxx-25 (Модуль MlaxLink двухволоконный SFP+ DWDM, 10Гбит/с, 15xx.xxнм, канал xx, 25dB, 2xLC, DDM)
ML-XDWDM-CHxx-15 (Модуль MlaxLink двухволоконный XFP DWDM, 10Гбит/с, 15xx.xxнм, канал xx, 15dB, 2xLC, DDM)
| |
Оборудование Mlaxlink может применяться и при создании систем активного уплотнения DWDM, с использованием EDFA-усилителей, пунктов регенерации, компенсаторов дисперсии и т.п. решений, для решения задач по прокладке линий оптического уплотнения на сверхдальние расстояния, или для линий с низким качеством оптоволокна.
DWDM Технология
Технология уплотненного волнового мультиплексирования (Dense Wave Division Multiplexing, DWDM ) предназначена для создания оптических магистралей нового поколения, работающих на мультигигабитных и терабитных скоростях. Информация в волоконно-оптических линиях связи передаётся одновременно большим количеством световых волн. Сети DWDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный канал и несет собственную информацию.
Возможности DWDM
Количество каналов в одном волокне – 64 световых пучков в окне прозрачности 1550 нм. Каждая световая волна переносит информацию на скорости до 40 Гбит/с. Также ведутся разработки оборудования со скоростями передачи данных на скоростях до 100 Гбит/с и у компании Cisco уже имеются успехи в разработки подобной техники.
Частотные планы
На сегодня рекомендацией G.692 сектора ITU-T определены два частотных плана (то есть набора частот, отстоящих друг от друга на некоторую постоянную величину):
Главное проблемой при построении сверхплотных систем DWDM является то, что с уменьшением шага частот происходит перекрытие спектров соседних каналов и происходит размытие светового пучка. Что ведёт к увеличению числа ошибок и невозможности передачи информации по систем
В настоящее время используются следующие частотные планы для различных разновидностей систем DWDM, CWDM, HDWDM, WDM.
Волоконно-оптические усилители
Практический успех технологии DWDM во многом определил появление волоконно-оптических усилителей. Оптические устройства непосредственно усиливают световые сигналы в диапазоне 1550 нм, исключая необходимость промежуточного преобразования их в электрическую форму, как это делают регенераторы, применяемые в сетях SDH. Недостаток систем электрической регенерации сигналов в том, что они должны воспринимать определенный вид кодирования, что делает их весьма дорогими. Оптические усилители, «прозрачно» передающие информацию, позволяют наращивать скорость магистрали без необходимости модернизировать усилительные блоки. Протяженность участка между оптическими усилителями может достигать 150 км и более, что обеспечивает экономичность создаваемых магистралей DWDM, в которых длина мультиплексной секции составляет на сегодня 600-3000 км при применении от 1 до 7 промежуточных оптических усилителей.
В рекомендации ITU-T G.692 определено три типа усилительных участков, то есть участков между двумя соседними мультиплексорами DWDM:
Ограничения на количество пассивных участков и их длину связаны с деградацией оптического сигнала при оптическом усилении. Хотя оптический усилитель восстанавливает мощность сигнала, он не полностью компенсирует эффект хроматической дисперсии (то есть распространения волн разной длины с разной скоростью, из-за чего сигнал на приемном конце волокна «размазывается»), а также другие нелинейные эффекты. Поэтому для построения более протяженных магистралей необходимо между усилительными участками устанавливать мультиплексоры DWDM, выполняющие регенерацию сигнала путем его преобразования в электрическую форму и обратно. Для уменьшения нелинейных эффектов в системах DWDM применяется также ограничение мощности сигнала.
Типовые топологии
Сверхдальняя двухточечная связь на основе терминальных мультиплексоров DWDM
Цепь DWDM с вводом-выводом в промежуточных узлах
Кольцевая топология
Кольцевая топология обеспечивает живучесть сети DWDM за счет резервных путей. Методы защиты трафика, применяемые в DWDM, аналогичны методам в SDH. Для того чтобы какое-либо соединение было защищено, между его конечными точками устанавливаются два пути: основной и резервный. Мультиплексор конечной точки сравнивает два сигнала и выбирает сигнал лучшего качества.
Ячеистая топология
По мере развития сетей DWDM в них все чаще будет применяться ячеистая топология, которая обеспечивает лучшие показатели в плане гибкости, производительности и отказоустойчивости, чем остальные топологии. Однако для реализации ячеистой топологии необходимо наличие оптических кросс-коннекторов (Optical Cross-Connector, ОХС), которые не только добавляют волны в общий транзитный сигнал и выводят их оттуда, как это делают мультиплексоры ввода-вывода, но и поддерживают произвольную коммутацию между оптическими сигналами, передаваемыми волнами разной длины.
Оптические мультиплексоры ввода-вывода
В сетях DWDM используются пассивные (без электропитания и активного преобразования) и активные мультиплексоры-демультиплескоры.
Пассивные мультиплексоры | Активные мультиплексоры |
Число выводимых световых волн невелико | Число световых волн ограничено применяемым частотным планом и набором световых волн |
Позволяет выводить и вводить сигнал одной световой волны без изменения спектра общего светового пучка | Не вносит дополнительного затухания, поскольку производит полное демультиплексирование всех каналов и преобразование в электрическую форму |
Вносят дополнительное затухание | Обладает высокой стоимость |
Обладает бюджетной стоимостью |
Оптические кросс-коннекторы
В сетях с ячеистой топологией необходимо обеспечить гибкие возможности для изменения маршрута следования волновых соединений между абонентами сети. Такие возможности предоставляют оптические кросс-коннекторы, позволяющие направить любую из волн входного сигнала каждого порта в любой из выходных портов (конечно, при условии, что никакой другой сигнал этого порта не использует эту волну, иначе необходимо выполнить трансляцию длины волны).
Существуют оптические кросс-коннекторы двух типов:
Факторы, учитываемые при построении систем DWDM
Рекомендуем хостинг TIMEWEB
Рекомендуемые статьи по этой тематике
Что такое dwdm технология
(автор Игорь Никишин инженер копании IC-Line)
В последнее время современным магистралам (современным с большой буквы С) перестало хватать стандартных возможностей систем уплотнения как по дальности работы и количеству одновременно используемых каналов, так и по общей пропускной способности системы и возможностям расширения систем уплотнения. В Украине на сетевую арену активно стала выходить технология DWDM, при том как в качестве магистральной системы, так и в качестве локальной системы уплотнения.
Не так давно одному нашему украинскому провайдеру (пальцем просили не показывать, иначе нас сильно ругать будут) потребовалось прокинуть несколько десятков «ЖЭ» на 162 километра (по одному волокну) с желанием в будущем добавить в эту систему еще несколько тех же десятков «ЖЭ». Понятное дело, что «грэйдить» вширь и не бояться того, что лямбды внезапно закончатся, можно только имея DWDM (ну, или очень толстый и очень чёрный, а еще очень длинный и очень многожильный кабель). А если учесть расстояние, на которое нужно доставить гигантское количество пакетов одним пролётом (без регенерации «в поле»), то выбор DWDM является единственно верным и правильным решением.
Чтобы пробить такое серьезное расстояние одним пролётом, было принято решение спроектировать линию, которая включает в себя помимо стандартных мультиплексоров/трансиверов/коммутаторов еще и усилители мощности, компенсаторы дисперсии и красно-синие делители.
Расчеты, произведенные при проектировании системы:
— чувствительность трансиверов к дисперсии (A-Gear SFP+ DWDM 80LC и A-Gear XFP DWDM 80LC) – 1600пс/нм;
— трасса на волокне G.652D, дисперсия в волокне 17пс/(нм*км);
— суммарный показатель дисперсии на трассе 162км: 17пс/(нм*км) * 162км == 2754пс/нм;
— бюджет потерь в линии: (162км + 12,3км) * 0,3дБм/км == 52,29дБм;
— оптический бюджет трансиверов (A-Gear SFP+ DWDM 80LC и A-Gear XFP DWDM 80LC) – 26дБм;
— превышение нормы затухания: 52,29дБм – 26дБм == 26,29дБм – принято решение поставить EDFA усилитель A-Gear BA4123 (чувствительность (-10)дБм, максимальная выходная мощность 23дБм) и предусилитель A-Gear PA4325 (чувствительность (-30)дБм, максимальная выходная мощность (-5)дБм).
Итогом стала реально работающая система, стабильная, как сам мир, дальнобойная – не всякая птица долетит, расширяемая, и вообще, самая лучшая. Фото этой системы представлена ниже, а еще ниже мы решили написать небольшой обзор существующих на сегодня DWDM комплектующих, методы их включения, терминологию – постарались охватить всё, что есть по DWDM.
На фото видно (сверху-вниз): коммутатор с трансиверами, два усилителя мощности (бустер и предусилитель), DWDM мультиплексор, снова коммутатор с трансивером и в самом низу (серое, почти не видно) – компенсатор дисперсии. Такой набор оборудования стоит в точке А и в точке Б (точки тоже просили не называть, грозя в телефон толстым кожаным армейским ремнём). Имея такой относительно небольшой и недорогой набор оборудования, легко и просто прострелить 162 километра, что и было достигнуто.
На этой оптимистической ноте вводная часть подходит к концу, а мы начинаем методичный разбор технологии, ставшей «магистральным флагманом» современного мира сетестроения.
1. Что такое DWDM, отличия DWDM от CWDM.
DWDM (англ. Dense Wavelength Division Multiplexing – плотное волновое мультиплексирование) – технология уплотнения информационных потоков, при которой каждый первичный информационный поток переносится посредством световых пучков на разных длинах волн, а в оптической линии связи находится суммарный групповой сигнал, сформированный мультиплексором из нескольких информационных потоков.
Заумно. Попробуем разобраться. По аналогии с CWDM (для тех кто в курсе), DWDM – такая же система уплотнения, физически состоящая из устройств, генерирующих информационный поток (медиаконвертеры, маршрутизаторы… ну, Вы сами в курсе) трансиверов (приемо-передатчиков, создающих информационный поток на разных длинах волн невидимого для глаза ИК-излучения), мультиплексоров (устройств, создающих/разделяющих групповой световой сигнал) и оптического волновода (оптоволоконный кабель). Кроме того, в состав DWDM входит группа компонент, предназначенных для усиления/восстановления группового светового сигнала, но, дабы все шло последовательно, об этом будет глубоко ниже.
Сразу определимся со словами, которыми будем оперировать. Каналом в данной статье будем называть информационный поток в одну сторону (одна сторона «говорит» информационный поток, другая этот самый поток «слушает»). Канал располагается на единственной для него несущей, имеющей конкретно определенную длину волны (или частоту). Но, как известно, полноценную Связь невозможно выстроить между парой абонентов, один из которых глухой, а второй – немой. Поэтому для создания одной полноценной линии связи необходимо использовать два физических канала, и эту связку будем именовать « полноценный дуплексный канал ».
Итак, DWDM и CWDM занимаются одним и тем же – уплотнением. В чем же различие? А различие в частотной сетке (или в длинах волн несущих, кому как удобнее) несущих первичных информационных потоков (каналов). И в диапазонах работы самого группового сигнала.
Диапазон работы и частотная (волновая) сетка. Очередные малопонятные слова, в значениях которых попробуем разобраться. Что такое длина волны? Представим себе синусоиду. Так вот, длина волны – это расстояние между двумя соседними пиками синусоиды. Обычно длина волны обозначается греческой буквой λ (лямбда). Наглядно показано на рисунке ниже:
Рисунок 1.1 – Длина волны.
Теперь рассмотрим эту же ситуацию со стороны частотного плана, для начала уяснив, что такое частота. Частота – это количество полных колебаний (от пика до пика) электромагнитной волны за секунду (обозначается в Герцах, или Гц). Для простейших расчетов можно рассматривать частоту как скорость света, делённую на длину волны. Рассмотрим информационных поток на несущей 1550нм, его частота примерно равна 300000000/0,00000155 == 193548387096774 Гц, или 193548 ГГц (Гигагерц!). а расстояние между соседними несущими будет 300000000/0,00000020 == 1500000000000000 Гц, или 1500000 ГГц. Совсем неудобно – много цифр и непонятно.
На сегодняшний день CWDM системы работают в диапазоне 1270нм-1610нм, представляя в нем 18 отдельных каналов (1270нм, 1290нм, 1310нм … 1590нм, 1610нм). Но в DWDM все обстоит немного по-другому.
DWDM системы работают в двух диапазонах, нарезанных для CWDM систем, в именно: диапазон С (C-Band) и диапазон L (L-Band). Диапазон C находится в пределах от 1528.77нм (канал С61) до 1577.03нм (канал C01), а диапазон L находится в пределах от 1577.86нм (канал L100) до 1622.25нм (канал L48). Цифры уже пугают, а если еще учесть тот факт, что волновая сетка неравномерна (то есть, расстояние между двумя соседними каналами не всегда одинаковое – от 0.5нм до 0.8нм), то проще запутаться, чем разобраться. Именно поэтому в DWDM системах используется наименование диапазона и нумерация канала в этом диапазоне (например, C35 или L91). Наглядно все обычные каналы DWDM системы представлены на рисунке 1.2, данные по частотам и длинам волн представлены в таблице 1.1:
Рисунок 1.2 – C и L диапазоны DWDM системы в общем диапазоне CWDM-систем.
Таблица 1.1 – обычная 100-гигагерцовая DWDM сетка.
Тут сразу следует сделать несколько оговорок.
Во-вторых, L-диапазон только начинает использоваться, и не все производители могут позволить себе сделать оборудование для L-диапазона (таблица 1.1, помечено синим, в таблице отсутствуют каналы L48-L65).
Кроме обычной 100-гигагерцовой сетки используют 200-гигагерцовую сетку ( нечетные каналы С-диапазона ). Это связано с тем, что некоторое количество производителей DWDM оборудования не способно производить мультиплексоры для 100-гигагерцовой сетки, т.к. комплектующие для нее достаточно дорогие и должны быть более высокого качества относительно 200ГГц систем. В данной схеме уплотнения присутствует 31 однонаправленный канал связи или 15 полноценных дуплексных каналов.
Очень редко (ну ооооочень редко) используются DWDM системы уплотнения с 50-гигагерцовой сеткой. Это значит, что между двумя соседними основными каналами обычной 100-гигагерцовой сетки расположен дополнительный подканал. Такие каналы именуются Q и H : Q – подканалы в диапазоне L (например, Q80 – частота 188050ГГц, длина волны 1594.22нм), H – подканалы в диапазоне C (например, H23 – частота 19230ГГц, длина волны 1558.58нм). В таких системах уплотнения в диапазоне C находится 61 основной канал и 61 дополнительный, всего – 122 канала. В диапазоне L – 53 основных и 53 подканала, всего – 106 каналов. Суммарная мощность == 122+106 == 228 однонаправленных каналов, или 114 полноценных дуплексных канала связи! Это много. Очень много. Но очень и очень дорого, и автор не встречал упоминаний о проектах с полной загрузкой DWDM системы с 50-ГГЦ сеткой.
— «облегченный вариант» DWDM системы имеет 200-гигагерцовую сетку и способен обеспечить 15 полноценных дуплексных канала в диапазоне C, оставив при этом место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);
— стандартная DWDM система имеет 100-гигагерцовую сетку и способна обеспечить 30 полноценных дуплексных канала в диапазоне C и 26 полноценных дуплексных канала в диапазоне L, при этом также оставив место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);
— полная DWDM система имеет 50-гигагерцовую сетку и способна обеспечить 60 полноценных дуплексных канала в диапазоне C и 52 полноценных дуплексных канала в диапазоне L, опять же оставив место еще и для 15 CWDM каналов (1270нм-1510нм, 1590нм, 1610нм);
Опыт построения сети DWDM
Как известно, работа большинства инженеров-связистов/ сетевиков/ IT-шников остается в тени до момента, когда что-то пойдет не так. Неосведомленные люди и не понимают, чего все эти инженеры сидят и с умным видом смотрят в компьютер, читают и пишут какую-то абракадабру на непонятных языках. А вот когда, что-то пошло не так, все (и особенно руководство) сразу начинают вспоминать названия всех краснокнижных животных.
Итак, вот чем занимаются все эти инженеры и какие задачи им приходится решать, на примере реализации одного из довольно непростых проектов – развертывание DWDM сети.
Постановка задачи
Одна крупная финансовая организация, устав от частых сетевых сбоев на арендованных каналах связи, и исходя из собственных планов на дальнейшее перспективное развитие, инициировала проект и обратилась в компанию BCC за содействием в построении собственной высоконадежной, отказоустойчивой сети DWDM.
Связисты знают, что такое – волновое уплотнение каналов, т.е. когда несколько каналов передаются внутри одного волокна путем разнесения частот/длин волн (кому как нравится). Кто не знаком, можно подчитать тут.
Dense Wavelength Division Multiplexing (DWDM)
К слову сказать, DWDM не часто встретишь у корпоративных клиентов, разве что у очень крупных. В основном DWDM встречается на операторских сетях.
Сбор исходных данных
Все этапы проекта важны, а о важности этого этапа даже и не стоит говорить, это очевидно!
При выборе остановились на решении Huawei OptiX OSN 8800.
Проектирование
Стоит сказать, что рассчитать серьезную систему DWDM без специальных знаний нельзя, очень много нюансов, это не какая-то коробка, которую можно просто принести и включить (см. рис., как примерно выглядит типовой узел DWDM)! Лазеры, транспондеры, окна прозрачности, мультиплексоры/демультиплексоры, дисперия, поляризация… Does that all make sense?
Пример типового узла DWDM
Здесь стоит отметить, что в вопросе проектирования Huawei оказывал неоценимую помощь в подборе оптимального решения, используя свои специализированные программные средства, в результате чего проводится расчет всех оптических участков, и получается оптимальная спецификация, вплоть до последнего аттенюатора (см. рис.).
Пример расчета узлов DWDM
Один участок оптической трассы вызывал особое беспокойство – его длина составляла более 150 км. Оставалось понять, удастся ли «прострелить» этот участок или потребуется устанавливать «в полях» дополнительный узел. Решено было обойтись без установки доп. узла, и чтобы «вытянуть» этот участок пришлось задействовать одно интересное решение – ##, но об этом позже.
Реализация
Поставка оборудования DWDM – дело штучное, под заказ, по сути, оборудование со всей начинкой производится под конкретный проект. Здесь тоже оказалось все в порядке – Huawei произвел и поставил оборудование в срок!
Подготовка ЦОДов к установке оборудования опускаем. Уверяю, на этапе реализации возникнет не один вопрос (установка системы управления, регулировка уровней сигналов, пр., пр., пр.). Тут тоже стоит отдать должное вендору, Huawei оперативно консультировал по всем вопросам. Видно было, что здесь не подход «продал и забыл», а что Huawei отвечает за общее решение и готов оказывать максимально возможные консультации.
И вот, случился сложный момент – та самая оптическая трасса с рамановскими усилителями. Если кратко, на дилетантском уровне, рамановский усилитель «светит» навстречу принимаемому сигналу, чтобы его «вытянуть»! Участок с рамановскими усилителями требует наличия оптики практически сверхидеального качества, не только без стыков через оптические кроссы, но и с минимальными потерями и отражениями при сварке оптического кабеля (см. требования ниже).
Требования к оптической трассе для работы рамановских усилителей
Если рядом с рамановским усилителем случится отражение сигнала,- приемник может просто сгореть!
А где вы видели 150+ км. оптического кабеля без стыков и сварок? И вот тут начались игры с доведением оптического кабеля до нужных характеристик. Практически по всей длине 150+ километровой трассы были заменены оптические разъемы UPC на APС (про разъем E2000 кто-нибудь слышал? – а они есть…), потребовалось даже заменить небольшой оптический участок на последней миле.
После каждой из активностей на оптическом кабеле – совместный с вендором анализ рефлектограмм на предмет затуханий и отражений, планирование дальнейших действий.
Приемосдаточные испытания
И вот DWDM сеть построена, оборудование моргает и жужжит, задача – определить слабые места и «завалить» сеть, проверить работу в любых условиях, при любых неисправностях: обрыве оптических каналов, односторонней передаче, при возникновении неисправностей между элементами DWDM. И, как говорится, было бы желание, а докопаться можно до всего!
Так, самую большую опасность представлял сценарий с обрывом только Rx или Тх, и несмотря на наличие специализированных протоколов (LPT, ALS) для автоматического восстановления сервиса, время схождения превышало 150мс, что означало, что на это время наблюдалась частичная потеря трафика и потребовалось срочно найти дополнительные механизмы, чтобы оперативно «дать понять» сетевому оборудованию, стоящему за DWDM, о необходимости использования альтернативного пути.
Миграция
Ну, и напоследок – миграция всех существующих сервисов работающей крупной финансовой организации на новую DWDM сеть.
Понятно, что это большая подготовительная работа, бессонные ночи, командная работа и колоссальная ответственность! И все удалось, страна спала спокойно!
Сухой остаток
Я намеренно не стал здесь приводить какие-то сложные аббревиатуры, конфигурации и прочие вещи. Для профессионала, который в теме, все равно всего не опишешь, а для человека, который не в теме, это будет утомительно.
Справедливости ради хотел бы отметить, что в течение всего этого проекта была поддержка со стороны вендора! За время проекта мы открыли порядка десяти, а может и поболее кейсов и всегда получали ответы на интересующие вопросы!
Многие ругают TAC’и вендоров. Опыт работы с TAC Huawei на этом конкретном проекте сугубо положительный! В подавляющем большинстве кейсов мы получали оперативные, грамотные ответы, может не всегда после первой итерации, но получали. Бывало, требовалось подключение R&D из Китая, но результат был всегда! ( Ну, или может дело в том, что вместе с оборудованием и поддержка была закуплена?).
Поэтому благодарности не только команде BCC, но и команде Huawei!