Что такое ceil в питоне
Округление в Python — round, int, модуль math
П ри выполнении ряда арифметических операций пользователю нужно следовать правилам округления. Преобразовывать нужно в большую или меньшую сторону, до целого значения или до сотых.
Встроенные функции
Для операции округления в Python есть встроенные функции — round() и int()
round
round(number[, ndigits]) — округляет число (number) до ndigits знаков после запятой. Это стандартная функция, которая для выполнения не требует подключения модуля math.
По умолчанию операция проводится до нуля знаков — до ближайшего целого числа. Например:
round(3.5) > 4 round(3.75, 1) > 3.8
Синтаксически функция вызывается двумя способами.
int — встроенная функция, не требующая подключения дополнительных модулей. Её функция — преобразование действительных значений к целому путем округления в сторону нуля. Например:
import math math.floor(3.999) > 3 math.ceil(3.999) > 4
💡 Чтобы число по int преобразовать по математическим правилам, нужно выполнить следующие действия.
Синтаксически преобразование оформляется так:
Функции из библиотеки Math
Модуль необходим в Python. Он предоставляет пользователю широкий функционал работы с числами. Для обработки алгоритмов сначала проводят импорт модуля.
math.ceil
Функция получила название от английского слова » ceiling » — » потолок «
Функция преобразовывает значение в большую сторону (вверх). Этот термин применяется и в математике. Он означает число, которое равно или больше заданного.
Любая дробь находится между двумя целыми числами. Например, 2.3 лежит между 2 и 3. Функция ceil() определяет большую сторону и возводит к нему результат преобразования. Например:
import math math.ceil(3.25) > 4
Алгоритм определяет большую границу интервала с учетом знака:
math.floor
Функция получила название от английского слова » floor » — » пол «
math.floor() действует противоположно math.ceil() — округляет дробное значение до ближайшего целого, которое меньше или равно исходному. Округление происходит в меньшую сторону (вниз):
При округлении учитывается знак перед данными.
math.trunc
Функция получила название от английского слова » truncate » — » урезать «
Функция характеризуется отбрасыванием дробной части. После преобразования получается целое значение без учета дроби. Такой алгоритм не является округлением в арифметическом смысле. В Пайтон просто игнорируется дробь независимо от ее значения:
💡 Избавиться от дроби можно без подключения модуля. Для этого есть стандартная функция int Она преобразовывает дробные числа в целые путем игнорирования дроби.
Различие округления в Python 2 и Python 3
В Python 2 и Python 3 реализованы разные принципы округления.
В Python 2 используется арифметическое округление. В нем наблюдается большое количество погрешностей, что приводит к неточностям в процессе вычислений.
Во втором Python есть только 4 цифры, которые ведут к преобразованию к меньшему значению — 1, 2, 3 и 4. Также 5 цифр, которые приводят к большему значению — 5, 6, 7, 8, 9. Такое неравное распределение ведет к тому, что погрешность постоянно нарастает.
Python 2 по правилам арифметического округления преобразует число 5,685 в 5,68 до второго знака. Такая погрешность связана с тем, что десятичные цифры float в двоичном коде невозможно корректно представить.
В Python 3 используются принципы банковского округления. Это означает, что преобразование производится к ближайшему четному. В таком случае также не удается полностью избежать возникающих ошибок, но программисты добиваются точности в подсчетах.
2,5 по правилам банковского преобразования будет равно 2, а 3,5 = 4 (значения возводятся к близкому четному). Минимизировать погрешности можно благодаря практически равной вероятности, что перед пятеркой будет четное или нечетное число.
Модуль Math в Python
P ython библиотека math содержит наиболее применяемые математические функции и константы. Все вычисления происходят на множестве вещественных чисел.
Синтаксис и подключение
Чтобы подключить модуль, необходимо в начале программы прописать следующую инструкцию:
Теперь с помощью точечной нотации можно обращаться к константам и вызывать функции этой библиотеки. Например, так:
Константы модуля Math
math.pi Представление математической константы π = 3.141592…. «Пи» — это отношение длины окружности к её диаметру.
math.tau Число τ — это отношение длины окружности к её радиусу. Т.е
math.inf Положительная бесконечность.
math.nan NaN означает — «не число».
Список функций
Теоретико-числовые функции и функции представления
math.ceil() Функция округляет аргумент до большего целого числа.
Решим задачу : На столе лежат шесть рубинов. Сколько существует способов выбрать два из них?
💭 Можете подставить числа в формулу, и самостоятельно проверить правильность решения.
math.copysign() Функция принимает два аргумента. Возвращает первый аргумент, но со знаком второго.
print(math.copysign(-6, 2)) > 6.0
math.fabs() Функция возвращает абсолютное значение аргумента:
math.factorial() Вычисление факториала. Входящее значение должно быть целочисленным и неотрицательным.
print(math.fmod(75, 4)) > 3.0
math.frexp(num) Возвращает кортеж из мантиссы и экспоненты аргумента. Формула:
, где M — мантисса, E — экспонента.
print(math.frexp(10)) > (0.625, 4) # проверим print(pow(2, 4) * 0.625) > 10.0
math.fsum() Вычисляет сумму элементов итерируемого объекта. Например, вот так она работает для списка:
summable_list = [1, 2, 3, 4, 5] print(math.fsum(summable_list)) > 15.0
a = 5 b = 15 print(math.gcd(a, b)) > 5
norm = 3 inf = float(‘inf’) print(math.isfinite(norm)) > True print(math.isfinite(inf)) > False
not_inf = 42 inf = math.inf print(math.isinf(not_inf)) > False print(math.isinf(inf)) > True
not_nan = 0 nan = math.nan print(math.isnan(not_nan)) > False print(math.isnan(nan)) > True
math.isqrt() Возвращает целочисленный квадратный корень аргумента, округлённый вниз.
math.ldexp(x, i) Функция возвращает значение по формуле:
возвращаемое значение = x * (2 ** i) print(math.ldexp(3, 2)) > 12.0
math.modf() Результат работы modf() — это кортеж из двух значений:
Задача : Посчитать количество вариантов распределения трёх билетов на концерт Стаса Михайлова для пяти фанатов.
print(math.perm(5, 3)) > 60
Целых 60 способов! Главное — не запутаться в них, и не пропустить концерт любимого исполнителя!
math.prod() Принимает итерируемый объект. Возвращает произведение элементов.
multiple_list = [2, 3, 4] print(math.prod(multiple_list)) > 24
math.remainder(m, n) Возвращает результат по формуле:
Результат = m – x * n,
где x — ближайшее целое к выражению m/n число.
math.trunc() trunc() вернёт вам целую часть переданного в неё аргумента.
Степенные и логарифмические функции
1 аргумент: вернёт значение натурального логарифма (основание e ):
2 аргумента: вернёт значение логарифма по основанию, заданному во втором аргументе:
print(math.log(16, 4)) > 2.0
math.log1p() Это натуральный логарифм от аргумента (1 + x) :
print(math.log(5) == math.log1p(4)) > True
math.pow(a, b) Функция выполняет возведение числа a в степень b и возвращает затем вещественный результат.
math.sqrt() Возврат квадратного корня из аргумента
Тригонометрические функции
math.acos() Функция возвращает арккосинус в радианах:
math.asin() Возврат арксинуса (угол в радианах):
# π/2 print(math.asin(1)) > 1.5707963267948966
# π/4 print(math.atan(1)) > 0.7853981633974483
math.cos() Косинус угла, который следует указывать в радианах:
print(math.hypot(3, 4)) > 5.0
math.sin() Функция вернёт синус угла. Угол следует задавать в радианах:
math.tan() Тангенс угла. Аргумент указываем в радианах.
Угловые преобразования
math.degrees() Функция переводит радианное значение угла в градусы.
math.radians() Наоборот: из градусов — в радианы.
# функция отрабатывает прямо, как по табличке синусов =) print(math.radians(30)) > 0.5235987755982988 print(math.pi / 6) > 0.5235987755982988
Гиперболические функции
Гиперболические функции являются аналогами тригонометрических и тесно с ними связаны. Но тригонометрические функции основаны на окружностях, а гиперболические, соответственно, на гиперболах.
Для Python все они принимают один аргумент — точку, в которой вычисляется значение функции.
Math — математические функции в Python
Что такое модуль?
В C и C++ есть заголовочные файлы, в которых хранятся функции, переменные классов и так далее. При включении заголовочных файлов в код появляется возможность не писать лишние строки и не использовать одинаковые функции по несколько раз. Аналогично в Python для этого есть модули, которые включают функции, классы, переменные и скомпилированный код. Модуль содержит группу связанных функций, классов и переменных.
Функции представления чисел
ceil() и floor() — целая часть числа
Сeil() и floor() — функции общего назначения. Функция ceil округляет число до ближайшего целого в большую сторону. Функция floor убирает цифры десятичных знаков. Обе принимают десятичное число в качестве аргумента и возвращают целое число.
Пример:
Функция fabs() — абсолютное значение
Пример:
factorial() — функция факториала
Эта функция принимает положительное целое число и выводит его факториал.
Пример:
Примечание: при попытке использовать отрицательное число, возвращается ошибка значения ( Value Error ).
Пример:
Функция fmod() — остаток от деления
Пример:
Функция frexp()
Пример:
Функция fsum() — точная сумма float
Вычисляет точную сумму значений с плавающей точкой в итерируемом объекте и сумму списка или диапазона данных.
Пример:
Функции возведения в степень и логарифма
Функция exp()
Пример:
Функция expm1()
Пример:
Функция log() — логарифм числа
Функция log(x[,base]) находит логарифм числа x по основанию e (по умолчанию). base — параметр опциональный. Если нужно вычислить логарифм с определенным основанием, его нужно указать.
Пример:
Функция log1p()
Пример:
Функция log10()
Вычисляет логарифм по основанию 10.
Пример:
Функция pow() — степень числа
Пример:
Функция sqrt() — квадратный корень числа
Эта функция используется для нахождения квадратного корня числа. Она принимает число в качестве аргумента и находит его квадратный корень.
Пример:
Тригонометрические функции
В Python есть следующие тригонометрические функции.
Функция | Значение |
---|---|
sin | принимает радиан и возвращает его синус |
cos | принимает радиан и возвращает его косинус |
tan | принимает радиан и возвращает его тангенс |
asin | принимает один параметр и возвращает арксинус (обратный синус) |
acos | принимает один параметр и возвращает арккосинус (обратный косинус) |
atan | принимает один параметр и возвращает арктангенс (обратный тангенс) |
sinh | принимает один параметр и возвращает гиперболический синус |
cosh | принимает один параметр и возвращает гиперболический косинус |
tanh | принимает один параметр и возвращает гиперболический тангенс |
asinh | принимает один параметр и возвращает обратный гиперболический синус |
acosh | принимает один параметр и возвращает обратный гиперболический косинус |
atanh | принимает один параметр и возвращает обратный гиперболический тангенс |
Пример:
Функция преобразования углов
Эти функции преобразуют угол. В математике углы можно записывать двумя способами: угол и радиан. Есть две функции в Python, которые конвертируют градусы в радиан и обратно.
Пример:
Математические константы
Модуль Math в Python
Модуль Math в Python обеспечивает доступ к математическим функциям, определенным стандартом C. Итак, мы можем выполнять множество сложных математических операций с помощью функций Math. Учебник разработан с использованием некоторых основных функций и примеров математического модуля.
Математические функции – floor(), ceil(), fabs(x)
Математический модуль является частью установки в Python, поэтому мы можем просто импортировать его в нашу программу и использовать.
Функция floor() используется для приведения значения floor к заданному числу. Аналогичным образом функция ceil() используется для получения максимального значения заданного числа. Таким образом, эти две функции используются для округления значения, либо минимального, либо максимального значения.
Функция fabs() используется для получения абсолютного значения заданного числа. Смотрите пример кода ниже.
Функции exp(), expm1() и log()
Функция log() используется для получения значения журнала. Смотрите пример кода.
И вы получите такой результат:
Математические тригонометрические функции
Все тригонометрические функции доступны в математическом модуле python, поэтому вы можете легко вычислить их, используя функции sin(), cos(), tan(), acos(), asin(), atan() и т.д.
Также вы можете конвертировать углы из градуса в радиан и радиан в градус. Смотрите пример кода.
Итак, на выходе вы получите:
sqrt(x)
Мы можем использовать функцию sqrt(x), чтобы получить квадратный корень из x. Ниже приведен простой пример функции math sqrt.
Результатом приведенного выше математического примера sqrt является:
Модуль PI
В математическом модуле Python «PI» является константой, которую можно использовать в математических вычислениях, например, в области круга.
Приведенный выше пример программы на Python выдаст следующий результат.
10 удивительно полезных базовых функций Python
Те, кто работает с Python, знают, что этот язык хорош благодаря своей обширной экосистеме. Можно даже сказать, что язык программирования не выделялся бы ничем особенным, если бы не его замечательные пакеты, которые добавляют новые функции к основным.
В качестве примера можно привести NumPy. Инструменты работы с матрицами хороши и в базовом Python, но использование NumPy улучшает все во много раз. Кроме того, у этого языка есть несколько крутых возможностей, которые делают его еще более функциональным. Используя эти возможности, вы можете уменьшить количество зависимостей, освободить время и упростить сам процесс разработки. Давайте посмотрим, что это за возможности.
Кстати, свои советы по некоторым функциям добавил Алексей Некрасов — лидер направления Python в МТС, программный директор направления Python в Skillbox. Чтобы было понятно, где перевод, а где — комментарии, последние мы выделим текстом.
№1 lambda
Я как-то написал целую статью о том, почему lambda делает Python оптимальным языком программирования для статистических вычислений. Благодаря этой функции математические операции можно применить практически к любому типу данных, используя не целые функции, а оценку выражений.
Она позволяет вводить определения в глобальном масштабе, а также использовать functional-like синтаксис и методологию, причем на языке, у которого все еще есть структура классов.
Все это позволяет сэкономить время в ходе написания программы, сохранить ресурсы и сделать код более лаконичным. Более того, lambda дает возможность использовать такие методы, как apply() для быстрого применения выражений ко всем подмножествам данных. Для дата-сайентиста, да и не только для представителей этой профессии, подобные возможности крайне полезны.
Синтаксис выглядит следующим образом. Начинаем со значения, равного возвращению lambda-выражения, затем следует переменная, которую мы хотели бы предоставить в качестве позиционного аргумента. После этого выполняем операцию, используя этот аргумент в качестве переменной:
Теперь мы можем осуществить вызов, как и в случае с любым другим методом в Python:
Будьте аккуратнее с lambda, чтобы не ухудшить читаемость кода. Вот пара советов:
Из PEP8. Всегда используйте оператор def вместо оператора присваивания, который связывает лямбда-выражение напрямую с идентификатором:
Если длина lambda выражения больше 40 символов, то скорее всего вы засунули в одну строчку кода слишком много логики и она стала нечитабельна. Так делать не стоит, лучше вынести в отдельную функцию.
№2: Shutil
Модуль Shutil — один из наиболее недооцененных инструментов в арсенале Python. Он включен в стандартную библиотеку, и может быть импортирован так же, как и любой другой модуль в языке:
Что же делает shutil? На самом деле, это интерфейс высокого уровня для языка программирования Python, в отношении файловой системы вашей ОС. Эти вызовы часто выполняются с использованием модуля os, об shutil не стоит забывать. Вероятно, вам приходилось перемещать файл из каталога в каталог при помощи скрипта, проделав для этого массу утомительной работы, верно?
Shutil решает эти классические проблемы с файлами и таблицами размещения (allocation tables) при помощи высокоуровневого решения. Это — ключ для экономии времени и ускорению операций с файлами. Вот несколько примеров высокоуровневых вызовов, которые предоставляет shutil.
№3: glob
Возможно, glob и не такой классный, как shutil, плюс он и рядом не стоял с lambda в плане полезности. Но он незаменим в некоторых случаях. Этот модуль используется для поиска директорий для wildcards. Это означает, что его можно использовать для агрегирования данных о файлах на вашем ПК и их расширениях. Импортируется модуль без проблем:
Я не уверен, есть ли у этого модуля еще функции, но glob() — то, что нужно для выполнения поиска файлов. В ходе поиска используется синтаксис Unix, т.е. т.е. *, / и т. д.
Эта строка возвращает все имена файлов соответствующих указанному запросу. Использовать функцию можно как для агрегирования данных, так и просто для работы с файлами.
№4: argparse
Этот модуль предоставляет надежный и глубокий метод анализа аргументов командной строки. Многие инструменты разработки используют эту концепцию, работать со всем этим можно при помощи командной строки Unix. Отличный пример — Python Gunicorn, обрабатывающий переданные аргументы командной строки. Для начала работы с модулем его нужно импортировать.
Затем, чтобы получить возможность работать с ним, строим новый тип, это будет парсер аргументов:
Ну а теперь мы добавляем новые аргументы в наш парсер. В этом случае создаем аргумент, который можно передать для определения количества строк, которые мы хотим вывести для каждого файла:
Здесь добавлено несколько аргументов ключевого слова, один из которых предоставит тип данных, который передается для этого аргумента, а другой — значение по умолчанию, когда файл вызывается без этого аргумента. Теперь мы можем получить аргументы, вызвав функцию parse_args () для нашего нового типа парсера аргументов:
Теперь мы можем вызвать этот файл Python для компиляции, а также легко предоставить необходимые параметры из Bash.
Излишне говорить, что это определенно может пригодиться. Я часто использовал этот модуль при работе с Crontab. Он может запускать скрипты с определенными временными метками Unix. Кроме того, этот сценарий также можно использовать для супервизоров, которые запускают команды Bash без участия пользователя в качестве worker.
№5: import re
Еще один крайне недооцененный модуль. Модуль re используется для синтаксического анализа строк с помощью регулярных выражений и предоставляет больше возможностей для работы со строками в Python. Сколько раз вы сталкивались с принятием алгоритмических решений на основе функций, которые есть в строковом классе, например str.split ()? Но хватит это терпеть! Ведь регулярные выражения намного проще и их намного проще использовать!
Модуль re, в отличие от некоторых других в этом списке, предоставляет не одну, а множество крайне полезных функций. Они особенно актуальны для работы с большими объемами данных, что важно для дата-саентистов. Вот два примера, с которых стоит начать, — это функции sub () и findall ().
При написании любых regex в коде придерживаться следующих правил:
№6: Math
Это не величайший модуль в истории, но часто он полезен. Математический модуль дает доступ ко всему, от sin и cos до логарифмов. Все это крайне важно при работе с алгоритмами.
Модуль, безусловно, может сэкономить некоторое время, сделав математические операции доступными без зависимостей. В этом примере я продемонстрирую функцию log (), но если вы углубитесь в модуль, то вам откроется целый мир.
№7: Statistics
Еще один модуль, который крайне полезен для статистических подсчетов. Он дает доступ к базовой статистике — не такой глубокой, как в случае SCiPy, но и ее может быть достаточно для анализа данных. Alias этого модуля — st, в некоторых случаях — stc или sts. Но, внимание — не scs, это уже alias для Scipy.stats.
Этот модуль предоставляет множество полезных функций, на которые стоит обратить внимание! Самое замечательное в этом пакете то, здесь нет никаких зависимостей. Давайте оценим некоторые основные статистические операции общего назначения:
№8: urllib
Если многие другие модули из этого списка не очень известны, то urlib — исключение. Давайте импортируем его!
Вместо него можно использовать Flask, поскольку он более функционален. Но для большинства базовых функций хватает и возможностей стандартной библиотеки, которая дает возможность не беспокоиться о зависимостях. Конечно, если нужны дополнительные возможности — то в этом случае стоит обратить внимание уже на что-то другое. Но если речь об HTTP-запросе, то urlib сделает то, что нужно.
Модуль urlib — то, что я крайне рекомендую изучить дополнительно.
№9: datetime
Еще один отличный пример инструмента, который довольно часто встречается в научных вычислениях, — это тип «дата и время». Очень часто у данных есть отметки времени. Иногда они даже являются прогностической функцией, используемой для обучения модели. Этот модуль часто используется с алиасом dt:
Теперь мы можем создавать типы даты и времени и работать с типичным синтаксисом даты и времени со свойствами, включая год, месяц и день. Это невероятно полезно для переформатирования, анализа и работы с отдельными разделами дат в ваших данных. Давайте посмотрим на некоторые основные функции этого пакета:
№10: zlib
Последний участник этого списка — модуль zlib. Это универсальное решение для сжатия данных с использованием языка программирования Python. Модуль крайне полезен при работе с пакетами.
Наиболее важные функции здесь — compress() and decompress().
В качестве вывода скажу, что программирование на Python иногда кажется сложным из-за большого количества зависимостей. И стандартная библиотека языка позволяет частично избавиться от этой проблемы. Кроме того, стандартные инструменты Python позволяют экономить время, уменьшить объем кода и сделать его более читаемым.