Что такое big data простыми словами
Что такое Big Data простыми словами? Применение и перспективы больших данных
Через 10 лет мир перейдет в новую эпоху — эпоху больших данных. Вместо виджета погоды на экране смартфона, он сам подскажет вам, что лучше одеть. За завтраком телефон покажет дорогу, по которой вы быстрее доберетесь до работы и когда нужно будет выехать.
Под влиянием Big Data изменится все, чего бы не коснулся человек. Разберемся, что это такое, а также рассмотрим реальное применение и перспективы технологии.
Навигация по материалу:
Что такое Big data?
Большие данные — технология обработки информации, которая превосходит сотни терабайт и со временем растет в геометрической прогрессии.
Такие данные настолько велики и сложны, что ни один из традиционных инструментов управления данными не может их хранить или эффективно обрабатывать. Проанализировать этот объем человек не способен. Для этого разработаны специальные алгоритмы, которые после анализа больших данных дают человеку понятные результаты.
В Big Data входят петабайты (1024 терабайта) или эксабайты (1024 петабайта) информации, из которых состоят миллиарды или триллионы записей миллионов людей и все из разных источников (Интернет, продажи, контакт-центр, социальные сети, мобильные устройства). Как правило, информация слабо структурирована и часто неполная и недоступная.
Как работает технология Big-Data?
Пользователи социальной сети Facebook загружают фото, видео и выполняют действия каждый день на сотни терабайт. Сколько бы человек не участвовало в разработке, они не справятся с постоянным потоком информации. Чтобы дальше развивать сервис и делать сайты комфортнее — внедрять умные рекомендации контента, показывать актуальную для пользователя рекламу, сотни тысяч терабайт пропускают через алгоритм и получают структурированную и понятную информацию.
Сравнивая огромный объем информации, в нем находят взаимосвязи. Эти взаимосвязи с определенной вероятностью могут предсказать будущее. Находить и анализировать человеку помогает искусственный интеллект.
Нейросеть сканирует тысячи фотографий, видео, комментариев — те самые сотни терабайт больших данных и выдает результат: сколько довольных покупателей уходит из магазина, будет ли в ближайшие часы пробка на дороге, какие обсуждения популярны в социальной сети и многое другое.
Методы работы с большими данными:
Машинное обучение
Вы просматриваете ленту новостей, лайкаете посты в Instagram, а алгоритм изучает ваш контент и рекомендует похожий. Искусственный интеллект учится без явного программирования и сфокусирован на прогнозировании на основе известных свойств, извлеченных из наборов «обучающих данных».
Машинное обучение помогает :
Анализ настроений
Анализ настроений помогает :
Анализ социальных сетей
Анализ социальных сетей впервые использовали в телекоммуникационной отрасли. Метод применяется социологами для анализа отношений между людьми во многих областях и коммерческой деятельности.
Этот анализ используют чтобы :
Изучение правил ассоциации
Люди, которые не покупают алкоголь, берут соки чаще, чем любители горячительных напитков?
Изучение правил ассоциации — метод обнаружения интересных взаимосвязей между переменными в больших базах данных. Впервые его использовали крупные сети супермаркетов для обнаружения интересных связей между продуктами, используя информацию из систем торговых точек супермаркетов (POS).
С помощью правил ассоциации :
Анализ дерева классификации
Статистическая классификация определяет категории, к которым относится новое наблюдение.
Статистическая классификация используется для :
Генетические алгоритмы
Генетические алгоритмы вдохновлены тем, как работает эволюция, то есть с помощью таких механизмов, как наследование, мутация и естественный отбор.
Генетические алгоритмы используют для :
Регрессионный анализ
Как возраст человека влияет на тип автомобиля, который он покупает?
На базовом уровне регрессионный анализ включает в себя манипулирование некоторой независимой переменной (например, фоновой музыкой) чтобы увидеть, как она влияет на зависимую переменную (время, проведенное в магазине).
Регрессионный анализ используют для определения:
Data Mining — как собирается и обрабатывается Биг Дата
Загрузка больших данных в традиционную реляционную базу для анализа занимает много времени и денег. По этой причине появились специальные подходы для сбора и анализа информации. Для получения и последующего извлечения информацию объединяют и помещают в “озеро данных”. Оттуда программы искусственного интеллекта, используя сложные алгоритмы, ищут повторяющиеся паттерны.
Хранение и обработка происходит следующими инструментами :
Реальное применение Big Data
Самый быстрый рост расходов на технологии больших данных происходит в банковской сфере, здравоохранении, страховании, ценных бумагах и инвестиционных услугах, а также в области телекоммуникаций. Три из этих отраслей относятся к финансовому сектору, который имеет множество полезных вариантов для анализа Big Data: обнаружение мошенничества, управление рисками и оптимизация обслуживания клиентов.
Банки и компании, выпускающие кредитные карты, используют большие данные, чтобы выявлять закономерности, которые указывают на преступную деятельность. Из-за чего некоторые аналитики считают, что большие данные могут принести пользу криптовалюте. Алгоритмы смогут выявить мошенничество и незаконную деятельность в крипто-индустрии.
Благодаря криптовалюте такой как Биткойн и Эфириум блокчейн может фактически поддерживать любой тип оцифрованной информации. Его можно использовать в области Big Data, особенно для повышения безопасности или качества информации.
Например, больница может использовать его для обеспечения безопасности, актуальности данных пациента и полного сохранения их качества. Размещая базы данных о здоровьи в блокчейн, больница обеспечивает всем своим сотрудникам доступ к единому, неизменяемому источнику информации.
Также, как люди связывают криптовалюту с волатильностью, они часто связывают большие данные со способностью просеивать большие объемы информации. Big Data поможет отслеживать тенденции. На цену влияет множество факторов и алгоритмы больших данных учтут это, а затем предоставят решение.
Перспективы использования Биг Дата
Blockchain и Big Data — две развивающиеся и взаимодополняющие друг друга технологии. С 2016 блокчейн часто обсуждается в СМИ. Это криптографически безопасная технология распределенных баз данных для хранения и передачи информации. Защита частной и конфиденциальной информации — актуальная и будущая проблема больших данных, которую способен решить блокчейн.
Аналитика Big Data будет важна для отслеживания транзакций и позволит компаниям, использующим блокчейн, выявлять скрытые схемы и выяснять с кем они взаимодействуют в блокчейне.
Рынок Big data в России
Весь мир и в том числе Россия используют технологию Big Data в банковской сфере, услугах связи и розничной торговле. Эксперты считают, что в будущем технологию будут использовать транспортная отрасль, нефтегазовая и пищевая промышленность, а также энергетика.
Аналитики IDC признали Россию крупнейшим региональным рынком BDA. По расчетам в текущем году выручка приблизится к 1,4 миллиардам долларов и будет составлять 40% общего объема инвестиций в секторе больших данных и приложений бизнес-аналитики.
Где можно получить образование по Big Data (анализу больших данных)?
GeekUniversity совместно с Mail.ru Group открыли первый в России факультет Аналитики Big Data.
Для учебы достаточно школьных знаний. У вас будут все необходимые ресурсы и инструменты + целая программа по высшей математике. Не абстрактная, как в обычных вузах, а построенная на практике. Обучение познакомит вас с технологиями машинного обучения и нейронными сетями, научит решать настоящие бизнес-задачи.
После учебы вы сможете работать по специальностям:
Особенности изучения Big Data в GeekUniversity
Через полтора года практического обучения вы освоите современные технологии Data Science и приобретете компетенции, необходимые для работы в крупной IT-компании. Получите диплом о профессиональной переподготовке и сертификат.
Обучение проводится на основании государственной лицензии № 040485. По результатам успешного завершения обучения выдаем выпускникам диплом о профессиональной переподготовке и электронный сертификат на портале GeekBrains и Mail.ru Group.
Проектно-ориентированное обучение
Обучение происходит на практике, программы разрабатываются совместно со специалистами из компаний-лидеров рынка. Вы решите четыре проектные задачи по работе с данными и примените полученные навыки на практике. Полтора года обучения в GeekUniversity = полтора года реального опыта работы с большими данными для вашего резюме.
Наставник
В течение всего обучения у вас будет личный помощник-куратор. С ним вы сможете быстро разобраться со всеми проблемами, на которые в ином случае ушли бы недели. Работа с наставником удваивает скорость и качество обучения.
Основательная математическая подготовка
Профессионализм в Data Science — это на 50% умение строить математические модели и еще на 50% — работать с данными. GeekUniversity прокачает ваши знания в матанализе, которые обязательно проверят на собеседовании в любой серьезной компании.
GeekUniversity дает полтора года опыта работы для вашего резюме
В результате для вас откроется в 5 раз больше вакансий:
Для тех у кого нет опыта в программировании, предлагается начать с подготовительных курсов. Они позволят получить базовые знания для комфортного обучения по основной программе.
Поделитесь этим материалом в социальных сетях и оставьте свое мнение в комментариях ниже.
Big Data от А до Я. Часть 1: Принципы работы с большими данными, парадигма MapReduce
Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.
Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.
Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.
История вопроса и определение термина
Термин Big Data появился сравнительно недавно. Google Trends показывает начало активного роста употребления словосочетания начиная с 2011 года (ссылка):
При этом уже сейчас термин не использует только ленивый. Особенно часто не по делу термин используют маркетологи. Так что же такое Big Data на самом деле? Раз уж я решил системно изложить и осветить вопрос – необходимо определиться с понятием.
В своей практике я встречался с разными определениями:
· Big Data – это когда данных больше, чем 100Гб (500Гб, 1ТБ, кому что нравится)
· Big Data – это такие данные, которые невозможно обрабатывать в Excel
· Big Data – это такие данные, которые невозможно обработать на одном компьютере
· Вig Data – это вообще любые данные.
· Big Data не существует, ее придумали маркетологи.
В этом цикле статей я буду придерживаться определения с wikipedia:
Большие данные (англ. big data) — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети, сформировавшихся в конце 2000-х годов, альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.
Таким образом под Big Data я буду понимать не какой-то конкретный объём данных и даже не сами данные, а методы их обработки, которые позволяют распредёлено обрабатывать информацию. Эти методы можно применить как к огромным массивам данных (таким как содержание всех страниц в интернете), так и к маленьким (таким как содержимое этой статьи).
Приведу несколько примеров того, что может быть источником данных, для которых необходимы методы работы с большими данными:
· Логи поведения пользователей в интернете
· GPS-сигналы от автомобилей для транспортной компании
· Данные, снимаемые с датчиков в большом адронном коллайдере
· Оцифрованные книги в Российской Государственной Библиотеке
· Информация о транзакциях всех клиентов банка
· Информация о всех покупках в крупной ритейл сети и т.д.
Количество источников данных стремительно растёт, а значит технологии их обработки становятся всё более востребованными.
Принципы работы с большими данными
Исходя из определения Big Data, можно сформулировать основные принципы работы с такими данными:
1. Горизонтальная масштабируемость. Поскольку данных может быть сколь угодно много – любая система, которая подразумевает обработку больших данных, должна быть расширяемой. В 2 раза вырос объём данных – в 2 раза увеличили количество железа в кластере и всё продолжило работать.
2. Отказоустойчивость. Принцип горизонтальной масштабируемости подразумевает, что машин в кластере может быть много. Например, Hadoop-кластер Yahoo имеет более 42000 машин (по этой ссылке можно посмотреть размеры кластера в разных организациях). Это означает, что часть этих машин будет гарантированно выходить из строя. Методы работы с большими данными должны учитывать возможность таких сбоев и переживать их без каких-либо значимых последствий.
3. Локальность данных. В больших распределённых системах данные распределены по большому количеству машин. Если данные физически находятся на одном сервере, а обрабатываются на другом – расходы на передачу данных могут превысить расходы на саму обработку. Поэтому одним из важнейших принципов проектирования BigData-решений является принцип локальности данных – по возможности обрабатываем данные на той же машине, на которой их храним.
Все современные средства работы с большими данными так или иначе следуют этим трём принципам. Для того, чтобы им следовать – необходимо придумывать какие-то методы, способы и парадигмы разработки средств разработки данных. Один из самых классических методов я разберу в сегодняшней статье.
MapReduce
Про MapReduce на хабре уже писали (раз, два, три), но раз уж цикл статей претендует на системное изложение вопросов Big Data – без MapReduce в первой статье не обойтись J
MapReduce – это модель распределенной обработки данных, предложенная компанией Google для обработки больших объёмов данных на компьютерных кластерах. MapReduce неплохо иллюстрируется следующей картинкой (взято по ссылке):
MapReduce предполагает, что данные организованы в виде некоторых записей. Обработка данных происходит в 3 стадии:
1. Стадия Map. На этой стадии данные предобрабатываются при помощи функции map(), которую определяет пользователь. Работа этой стадии заключается в предобработке и фильтрации данных. Работа очень похожа на операцию map в функциональных языках программирования – пользовательская функция применяется к каждой входной записи.
Функция map() примененная к одной входной записи и выдаёт множество пар ключ-значение. Множество – т.е. может выдать только одну запись, может не выдать ничего, а может выдать несколько пар ключ-значение. Что будет находится в ключе и в значении – решать пользователю, но ключ – очень важная вещь, так как данные с одним ключом в будущем попадут в один экземпляр функции reduce.
2. Стадия Shuffle. Проходит незаметно для пользователя. В этой стадии вывод функции map «разбирается по корзинам» – каждая корзина соответствует одному ключу вывода стадии map. В дальнейшем эти корзины послужат входом для reduce.
3. Стадия Reduce. Каждая «корзина» со значениями, сформированная на стадии shuffle, попадает на вход функции reduce().
Функция reduce задаётся пользователем и вычисляет финальный результат для отдельной «корзины». Множество всех значений, возвращённых функцией reduce(), является финальным результатом MapReduce-задачи.
Несколько дополнительных фактов про MapReduce:
1) Все запуски функции map работают независимо и могут работать параллельно, в том числе на разных машинах кластера.
2) Все запуски функции reduce работают независимо и могут работать параллельно, в том числе на разных машинах кластера.
3) Shuffle внутри себя представляет параллельную сортировку, поэтому также может работать на разных машинах кластера. Пункты 1-3 позволяют выполнить принцип горизонтальной масштабируемости.
4) Функция map, как правило, применяется на той же машине, на которой хранятся данные – это позволяет снизить передачу данных по сети (принцип локальности данных).
5) MapReduce – это всегда полное сканирование данных, никаких индексов нет. Это означает, что MapReduce плохо применим, когда ответ требуется очень быстро.
Примеры задач, эффективно решаемых при помощи MapReduce
Word Count
Начнём с классической задачи – Word Count. Задача формулируется следующим образом: имеется большой корпус документов. Задача – для каждого слова, хотя бы один раз встречающегося в корпусе, посчитать суммарное количество раз, которое оно встретилось в корпусе.
Раз имеем большой корпус документов – пусть один документ будет одной входной записью для MapRreduce–задачи. В MapReduce мы можем только задавать пользовательские функции, что мы и сделаем (будем использовать python-like псевдокод):
Функция map превращает входной документ в набор пар (слово, 1), shuffle прозрачно для нас превращает это в пары (слово, [1,1,1,1,1,1]), reduce суммирует эти единички, возвращая финальный ответ для слова.
Обработка логов рекламной системы
Второй пример взят из реальной практики Data-Centric Alliance.
Задача: имеется csv-лог рекламной системы вида:
Необходимо рассчитать среднюю стоимость показа рекламы по городам России.
Функция map проверяет, нужна ли нам данная запись – и если нужна, оставляет только нужную информацию (город и размер платежа). Функция reduce вычисляет финальный ответ по городу, имея список всех платежей в этом городе.
Резюме
В статье мы рассмотрели несколько вводных моментов про большие данные:
· Что такое Big Data и откуда берётся;
· Каким основным принципам следуют все средства и парадигмы работы с большими данными;
· Рассмотрели парадигму MapReduce и разобрали несколько задач, в которой она может быть применена.
Первая статья была больше теоретической, во второй статье мы перейдем к практике, рассмотрим Hadoop – одну из самых известных технологий для работы с большими данными и покажем, как запускать MapReduce-задачи на Hadoop.
В последующих статьях цикла мы рассмотрим более сложные задачи, решаемые при помощи MapReduce, расскажем об ограничениях MapReduce и о том, какими инструментами и техниками можно обходить эти ограничения.
Спасибо за внимание, готовы ответить на ваши вопросы.
Что такое big data: зачем нужны большие данные, как их собирают и обрабатывают
Все вокруг говорят о больших данных: что с их помощью можно анализировать бизнес-процессы, предсказывать поведение клиентов, управлять производством и даже разрабатывать искусственный интеллект. Разберемся, что это, для чего они нужны и как работают.
Что такое большие данные
Если обобщить, то биг дата — это большой объем информации, который компания собирает и хранит для последующего использования. Еще когда говорят, что компания использует большие данные, часто имеют в виду не сами данные, а технологии для их обработки.
Какие данные можно считать большими
Чтобы отделить большие данные от обычных, нужно ответить на вопрос: «big data — это сколько?». Таблица в Экселе на 500 000 строк — это большие данные? А если строк миллиард? Текстовый файл на тысячи слов, который весит 2 мегабайта, — это много? А распечатки графиков температуры всех метеостанций Архангельской области — много или еще недостаточно?
Тут многие скажут, что эти примеры представляют собой довольно внушительное количество информации. Действительно, с такой точки зрения, все перечисленное — большие данные. Но что вы скажете про таблицу в Экселе на миллиард строк? Это тоже большие данные — и куда побольше тех!
На интуитивном уровне специалисты, далекие от big data, привыкли называть большими данными любой объем информации, который сложно удержать в голове и/или который занимает много места. И такое интуитивное определение, конечно же, неправильно.
Однозначно отделить формат больших данных от обычных помогут три критерия.
Данные должны быть цифровыми. Книги в национальной библиотеке или стопки документов в архиве компании — это данные, и часто их много. Но термин big data означает только цифровые данные, которые хранятся на серверах.
Данные должны поступать в объективно больших объемах и быстро накапливаться. Например, база заказов интернет-магазина по продаже колясок может быть большой: 10 миллионов заказов за 20 лет, но пополняется она со скоростью 100 заказов в сутки — это не большие данные. Фильм в высоком качестве может занимать десятки гигов, но со временем его размер не растет — это тоже не big data.
А вот записи показателей пары сенсоров в двигателе Боинга, поступающие в количестве несколько гигабайт в час и загружаемые на диагностический сервер производителя авиатехники — это уже big data.
Данные должны быть разнородными и слабо структурированными. Заказы в онлайн-магазине упорядочены, из них легко извлечь дополнительные статистические параметры, например, средний чек или самые популярные товары. Поэтому эти данные не относят к big data.
Показания датчиков температуры с корпуса самолета, записанные за последние 6 месяцев, — информация, в которой есть польза, но не очень понятно, как ее извлечь. Можно, конечно, рассчитать средние значения температуры за бортом самолета за полгода, но какой в этом смысл? А если погрузиться в анализ этих данных глубоко — можно вытащить много неочевидной информации. Например, о длительности перелетов, скорости набора высоты, климатических условиях за бортом и так далее. Информация интересная и полезная, но трудноизвлекаемая, значит, это большие данные.
Этот критерий не всегда обязательный. Иногда большие объемы структурированных данных, которые постоянно пополняются, относят к формату big data, особенно если их используют для машинного обучения или выявления неочевидных закономерностей. То есть если к структурированным данным применяют методы анализа big data, можно сказать, что это они и есть.
Итак, большие данные — это трудноанализируемая цифровая информация, накапливаемая со временем и поступающая к вам солидными порциями
Зачем нужна big data
Когда в любом IT-проекте начинают работать с данными, в первую очередь анализируют наиболее очевидные, значимые и понятные показатели. Так, если речь идет об онлайн-торговле, сначала смотрят на средние чеки заказов, топ продаж и объемы складских запасов. Когда речь идет о самолетах — смотрят скорость, высоту, расход топлива.
Сбор и анализ очевидных метрик позволяет вносить в систему простые и понятные корректировки. Такие улучшения практически сразу дают ощутимый результат. Это называется «сбор фруктов с нижних веток дерева».
По мере эволюции системы инженеры прорабатывают все видимые узкие места в проекте. После этого начинается стагнация продукта: для поиска новых путей развития нужно лезть выше, чтобы собрать плоды с более высоких веток. Инженеры и аналитики начинают собирать и анализировать косвенные данные, напрямую не связанные с основными метриками проектов.
Например, в онлайн-торговле можно собирать со страниц магазина данные о перемещении курсора (или пальца) по экрану. Или собирать данные с большого числа сенсоров самолета, например: число оборотов двигателя, состав топливно-воздушной смеси, забортную температуру и температуру выхлопа. Или анализировать слова в комментариях клиентов в соцсетях для оценки их лояльности.
Такие данные напрямую не связаны с основными метриками IT-системы и бизнеса, но при правильном анализе могут рассказать много интересного о возможных точках оптимизации в проекте. Работа с такими данными — как поиск нефти. Нужно пробовать разные места, применять различные стратегии поиска и извлечения скрытых ресурсов, спрятанных в данных. Далеко не все попытки будут успешны, но в итоге находки могут принести массу выгоды.
Большие данные в основном помогают решать четыре задачи:
Анализировать текущее положение дел и оптимизировать бизнес-процессы. С помощью больших данных можно понять, какие товары предпочитают покупатели, оптимально ли работают станки на производстве, нет ли проблем с поставками товаров. Обычно для этого ищут закономерности в данных, строят графики и диаграммы, формируют отчеты.
Делать прогнозы. Данные о прошлом помогают сделать выводы о будущем. Например, примерно прикинуть продажи в новом году или предсказать поломку оборудования до того, как оно действительно сломается. Чем больше данных, тем точнее предсказания.
Строить модели. На основе больших данных можно собрать компьютерную модель магазина, оборудования или нефтяной скважины. Потом с этой моделью можно экспериментировать: что-то в ней изменять, отслеживать разные показатели, ускорять или замедлять разные процессы для их анализа.
Автоматизировать рутину. На больших данных учатся автоматические программы, которые умеют выполнять определенные задачи, например, сортировать документы или общаться в чатах. Это могут быть как примитивные алгоритмы, так и искусственный интеллект: голосовые помощники или нейросети.
Больше интересных кейсов использования big data читайте в статье «Зачем вам большие данные: примеры использования big data в 8 отраслях».
Технологии работы с большими данными
Мы разобрались, что такое большие данные и какую пользу они могут принести. Теперь посмотрим, как в общих чертах работают системы анализа больших данных и какие инструменты нужны для их работы.
Упрощенно работа с big data происходит по следующей схеме: информацию собирают из разных источников → данные помещают на хранение в базы и хранилища → данные обрабатывают и анализируют → обработанные данные выводят с помощью средств визуализации или используют для машинного обучения.
Для технологий, которые работают с большими данными, базовым принципом считают горизонтальную масштабируемость, то есть возможность обрабатывать данные сразу на множестве узлов (серверов, компьютеров). Если обрабатывать такой массив информации на одном узле, это займет слишком много времени.
Итак, к основным технологиям для работы с большими данными относят:
McKinsey также включает в этот список технологии Business Intelligence и реляционные системы управления базами данных с поддержкой языка SQL
Рынок big data в мире и в России
По данным отчетов, в 2020 году мировой рынок big data составляет 138,9 млрд долларов, к 2025 году он вырастет до 229,4 млрд долларов — будет расти по 10,6% в год. Вплоть до 2025 года лидерство на рынке будет удерживать Северная Америка, в частности США.
В основном такой рост вызван повышением интереса к IoT — сейчас к интернету вещей подключено 30,73 млрд устройств, а к 2025 году их будет 75,44 млрд. Кроме того, уже сейчас без больших данных компании не выдерживают конкуренцию с теми, кто использует big data, так как не могут обеспечивать достаточный уровень клиентского сервиса.
По российскому рынку данных за 2020 год пока нет. В 2018 году отечественному рынку прогнозировали рост до 1,4 млрд долларов. По оценкам 2019 года, за счет больших данных ВВП России вырастет на 1,94 трлн рублей, а к 2024 эта сумма увеличится до 4,2 трлн. Особенно большой выигрыш от больших данных в России получат отрасли добычи полезных ископаемых, торговли, ремонта и строительства.