Что такое aij в матрице
Что такое aij в матрице
Матрицей размерности m×n называется таблица чисел aij, содержащая m строк и n столбцов. Числа aij называются элементами этой матрицы, где i – номер строки, j – номер столбца, на пересечении которых стоит данный элемент. Матрица, содержащая m строк и n столбцов, имеет вид:
Виды матриц:
1) при m=n – квадратная, в данном случае n называют порядком матрицы;
2) квадратная матрица, у которой все недиагональные элементы равны нулю – диагональная;
3) диагональная матрица, у которой все диагональные элементы равны единице – единичная и обозначается E;
4) при n≠m – прямоугольная;
5) при m=1 – матрица-строка (вектор-строка);
6) при n=1 – матрица-столбец (вектор-столбец);
7) при всех aij =0 – нулевая матрица.
Заметим, что основной числовой характеристикой квадратной матрицы является ее определитель. Определитель, соответствующий матрице n-го по-порядка, также имеет n-ый порядок.
Дадим ряд необходимых определений.
Определителем матрицы 2-го порядка называется число
Минором Мij элемента aij матрицы n-го порядка А называется определитель матрицы (n-1)-го порядка, полученной из матрицы А путем вычеркивания i-ой строки и j-го столбца.
1. При транспонировании матрицы ее определитель не меняется.
2. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак.
3. Определитель, имеющий две пропорциональные (равные) строки (столбца), равен нулю.
4. Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя.
5. Если элементы какой-либо строки (столбца) определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.
6. Определитель не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы другой его строки (столбца), предварительно умноженные на любое число.
7. Определитель матрицы равен сумме произведений элементов любой его строки (столбца) на алгебраические дополнения этих элементов.
Поясним данное свойство на примере определителя 3-го порядка. В данном случае свойство 7 означает, что
Свойство 7 представляет собой теорему о разложении определителя, сформулированную Лапласом.
8. Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов другой его строки (столбца) равна нулю.
Последнее свойство часто называют псевдоразложением определителя.
Как вычислить определитель (детерминант) матрицы? Минор и алгебраическое дополнение
Без преобразования матрицы, определитель легко посчитать только для матриц размером 2×2 и 3×3. Это делается по формулам:
(можно посчитать по любой строке, выше приводиться формула расчёта определителя по первой строке).
Расчёты для матриц размером 4×4 и выше затруднительны, поэтому их нужно преобразовывать в соответствии со свойствами определителя. Нужно стремиться получить матрицу, в которой все значения кроме одного любого столбца или любой строки равны нулю. Пример такой матрицы:
Для неё определитель равен:
Обратите внимание, что
это вычисление детерминанта матрицы, полученой вычетом строки и столбца, на пересечении которых находиться единственное не нулевое числов строки/столбца, по которому мы разлагаем матрицу:
Если привести матрицу к треугольному виду, то её определитель вычисляется как произведение цифр по диагонали. Например, для матрицы
Аналогично следует поступать с матрицами 5×5, 6×6 и другими больших размерностей.
Преобразования матриц нужно выполнять в соответствии со свойствами определителя. Но прежде чем перейти к практике по вычислению определителя для матриц 4×4, давайте вернёмся к матрицам 3×3 и подробно рассмотрим, как вычисляется определитель для них.
Минор
Определитель матрицы не очень прост для понимания, поскольку в его понятии присутствует рекурсия: определитель матрицы состоит из нескольких элементов, в том числе из определителя (других) матриц.
Чтобы не застрять на этом, давайте прямо сейчас (временно) примем, что определитель матрицы
Ещё разберёмся в условных обозначения и в таких понятиях как минор и алгебраическое дополнение.
Буквой i мы обозначаем порядковый номер стоки, буквой j – порядковый номер столбца.
aij означает элемент матрицы (цифру) на пересечении строки i и столбца j.
Представим себе матрицу, которая получена из исходной удалением строки i и столбца j. Определитель новой матрицы, которая получена из исходной удалением строки i и столбца j, называется минором Mij элемента aij.
Проиллюстрируем сказанное. Предположим, дана матрица
Тогда для определения минора M11 элемента a11 нам нужно составить новую матрицу, которая получается из исходной удалением первой строки и первого столбца:
И вычислить для неё определитель: 2*1 — (-4)*0 = 2
Для определения минора M22 элемента a22 нам нужно составить новую матрицу, которая получается из исходной удалением второй строки и второго столбца:
Алгебраическое дополнение
Алгебраическим дополнением Аij для элемента aij называется минор Mij этого элемента, взятый со знаком «+», если сумма индексов строки и столбца (i + j), на пересечении которых стоит этот элемент, чётная, и со знаком «-», если сумма индексов нечётная.
Для матрицы из предыдущего примера
Вычисление определителя для матриц
Определителем порядка n, соответствующим матрице А, называется число, обозначаемое det A и вычисляемое по формуле:
В этой формуле нам всё уже знакомо, давайте теперь посчитаем определитель матрицы для
Каков бы ни был номер строки i=1,2,…, n или столбца j = 1, 2,…, n определитель n-го порядка равен сумме произведений элементов этой строки или этого столбца на их алгебраические дополнения, т. е.
Т.е. детерминант можно вычислить по любому столбцу или по любой строке.
Чтобы убедиться в этом, вычислим определитель для матрицы из последнего примера по второму столбцу
Свойства определителя матриц
Для вычисления определителя любого порядка можно применять метод последовательного понижения порядка определителя. Для этого пользуются правилом разложения определителя по элементам строки или столбца. Еще один способ вычисления определителей заключается в том, чтобы с помощью элементарных преобразований со строками (или столбцами), прежде всего в соответствии со свойствами 4 и 7 определителей, привести определитель к виду, когда под главной диагональю определителя (определяемой так же, как и для квадратных матриц) все элементы равны нулю. Тогда определитель равен произведению элементов, расположенных на главной диагонали.
При вычислении определителя последовательным понижением порядка для уменьшения объема вычислительной работы целесообразно с помощью свойства 7 определителей добиться обнуления части элементов какой-либо строки или какого-либо столбца определителя, что уменьшит число вычисляемых алгебраических дополнений.
Приведение матрицы к треугольному виду, преобразование матрицы, облегчающее вычисление определителя
Показанные ниже методы нецелесообразно использовать для матриц 3×3, но я предлагаю рассмотреть суть методов на простом примере. Воспользуемся матрицей, для которой мы уже считали определитель — нам будет проще проверить правильность вычислений:
Используя 7-е свойство определителя, вычтем из второй строки третью, умноженную на 2:
из третьей строки вычтем соответствующие элементы первой строки определителя, умноженные на 3:
Так как элементы определителя, расположенные под его главной диагональю, равны 0, то, следовательно, определитесь равен произведению элементов, расположенных на главной диагонали:
Как видим, ответ совпал с полученными ранее.
Давайте вспомним формулу определителя матрицы:
Детерминант — это сумма алгебраических дополнений, умноженная на члены одной из строк или одного из столбцов.
Если в результате преобразований мы сделаем так, что одна из строк (или столбец) будет состоять полностью из нулей кроме одной позиции, то нам не нужно будет считать все алгебраические дополнения, поскольку они заведомо будут равны нулю. Как и предыдущий метод, этот целесообразно применять для матриц больших размеров.
Покажем пример на той же самой матрице:
Вычислим определитель по второму столбцу. Нам нужно посчитать только одно алгебраическое дополнение, поскольку остальные заведомо сводятся к нулю:
Вычисление определителя для матриц 4×4, 5×5 и больших размерностей
Чтобы избежать слишком больших вычислений для матриц больших размеров следует делать преобразования, описанные выше. Приведём пару примеров.
Вычислить определитесь матрицы
Р е ш е н и е. Используя 7-е свойство определителя, вычтем из второй строки третью, из четвёртой строки — соответствующие элементы первой строки определителя, умноженные соответственно на 3, 4, 5. Эти действия сокращённо будем обозначать так: (2) — (1) * 3; (3) — (1) * 4; (4) — (1) * 5. Получим:
Далее, в соответствии с ведёнными обозначениями, выполним действия: (3) — (2) * 8; (4) — (2) * 9. Получаем
Так как элементы определителя, расположенные под его главной диагональю, равны 0, то, следовательно, определитесь равен произведению элементов, расположенных на главной диагонали:
Вычислить определитель
Разлагая полученный определитесь по второй строке имеем:
(Затем мы вынесли сомножитель 2 первого столбца на основании свойства 4). Далее прибавим к элементам первого и второго столбца элементы определителя. Получим:
Затем мы вынесли множитель в первом столбце, а затем общий множитель (-1) в первой строке. Разлагая теперь получившийся определитесь третьего порядка по элементам второй строки получим:
Здесь определитесь второго порядка вычислен в соответствии с его определением, по формуле
Вычисление определителя (детерминанта) матрицы wxMaxima и Maxima
В wxMaxima и Maxima для вычисления определителя используется функция determinant:
Для приведения матриц к треугольному виду можно воспользоваться функцией triangularize:
Матрицы. Виды матриц
Матрицей называется прямоугольная таблица из чисел с некоторым количеством m строк и с некоторым количеством n столбцов. Числа m и n называются порядками или размерами матрицы.
Матрица порядка m × n записывается в форме:
или (i=1,2. m; j=1,2. n).
Числа aij входящие в состав данной матрицы называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j— номер столбца.
Матрица строка
Матрица размером 1×n, т.е. состоящая из одной строки, называется матрицей-строкой. Например:
Матрица столбец
Матрица размером m×1, т.е. состоящая из одного столбца, называется матрицей-столбцом. Например
Нулевая матрица
Квадратная матрица
Матрица A порядка m×n называется квадратной матрицей, если количество строк и столбцов совпадают: m=n. Число m=n называется порядком квадратной матрицы. Например:
Главная диагональ матрицы
Побочная диагональ матрицы
Диагональная матрица
Квадратная матрица называется диагональной, если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:
Единичная матрица
След матрицы
Сумма главных диагональных элементов матрицы A называется следом матрицы и обозначается Sp A или Tr A. Например:
Верхняя треугольная матрица
Нижняя треугольная матрица
Квадратная матрица порядка n×n называется нижней треугольной матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. aij=0, при всех i T ).
Cтолбцы матрицы A образуют пространство столбцов матрицы и обозначаются через R(A).
Ядро или нуль пространство матрицы
Противоположная матрица
Для любой матрицы A сущеcтвует противоположная матрица -A такая, что A+(-A)=0. Очевидно, что в качестве матрицы -A следует взять матрицу (-1)A, элементы которой отличаются от элементов A знаком.
Кососимметричная (Кососимметрическая) матрица
Кососимметричной называется квадратная матрица, которая отличается от своей транспонированной матрицы множителем −1:
В кососимметричной матрице любые два элемента, расположенные симметрично относительно главной диагонали отличаются друг от друга множителем −1, а диагональные элементы равны нулю.
Пример кососимметрической матрицы:
Разность матриц
Разностью C двух матриц A и B одинакового размера определяется равенством
Для обозначения разности двух матриц используется запись:
Степень матрицы
Пусть квадратная матрица размера n×n. Тогда степень матрицы определяется следующим образом:
где E-единичная матрица.
Из сочетательного свойства умножения следует:
где p,q— произвольные целые неотрицательные числа.
Симметричная (Симметрическая) матрица
Матрица, удовлетворяющая условию A=A T называется симметричной матрицей.
Для симметричных матриц имеет место равенство: