Что такое абсцисса вершины параболы
Квадратичная функция и ее график
В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.
Функция вида , где
0″ title=»a<>0″/>
называется квадратичной функцией.
В уравнении квадратичной функции:
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции
при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции
относительно оси ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение
.
В случае квадратичной функции нужно решить квадратное уравнение
.
В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение
не имеет решений, и, следовательно, квадратичная парабола
не имеет точек пересечения с осью ОХ. Если
0″ title=»a>0″/>
,то график функции выглядит как-то так:
2. Если ,то уравнение
имеет одно решение, и, следовательно, квадратичная парабола
имеет одну точку пересечения с осью ОХ. Если
0″ title=»a>0″/>
,то график функции выглядит примерно так:
,
Если 0″ title=»a>0″/>
,то график функции выглядит примерно так:
Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.
Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль:
.
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.
1. Функция задана формулой .
Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции
1. Направление ветвей параболы.
Так как 0″ title=»a=2>0″/>
,ветви параболы направлены вверх.
2. Найдем дискриминант квадратного трехчлена
0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>
Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.
Для того, чтобы найти их координаты, решим уравнение:
,
3. Координаты вершины параболы:
4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.
Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:
Этот способ можно несколько упростить.
1. Найдем координаты вершины параболы.
2. Найдем координаты точек, стоящих справа и слева от вершины.
Воспользуемся результатами построения графика функции
Кррдинаты вершины параболы
Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2
Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:
Нанесем эти точки на координатную плоскость и соединим плавной линией:
Построим для примера график функции .
Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно
Выделим в уравнении функции полный квадрат:
Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):
Построим для примера график функции y=(x-2)(x+1)
(х-2)(х+1)=0, отсюда
2. Координаты вершины параболы:
3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.
Нанесем эти точки на координатную плоскость и построим график:
График квадратичной функции.
Перед вами график квадратичной функции вида .
Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента
,
— сдвига графика функции вдоль оси
от значения
,
— сдвига графика функции вдоль оси
от значения
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений
и
:
И.В. Фельдман, репетитор по математике.
Вершина параболы
Что такое вершина параболы
Вершина параболы — это точка, в которой наблюдается пересечение параболой оси координат и ее невозможность держать направление выше или ниже в координатной плоскости.
Чтобы найти ВП, необходимо применить формулу:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Исходя из координат, можно узнать расположение вершины параболы и построить ее.
Вывод формулы координат вершины параболы
Рассматриваемую формулу используют для решения квадратных уравнений, которые имеют вид:
Ее график представляет собой параболу, формулу которой мы определили выше. Но не всегда требуется пользоваться данной формулой, так как сначала можно найти значение х, а затем подставить его в уравнение и найти y.
Для того, чтобы вывести формулу ВП, нужно преобразовать квадратную функцию к виду:
Делают это с помощью метода выделения полного квадрата, то есть \(\left(a+b\right)^2\) преобразуют в \(a^2+2ab+b^2.\)
Функции вида \(y\;=\;f(x\;+\;l)\;+\;m\) отличаются от \(y\;=\;f(x)\) сдвигом из графиков по оси абсцисс на –l и по оси ординат на m. l в переписанной квадратичной функции равняется:
Получается, что l и m — это координаты x0 и y0.
Как найти координаты, основные способы
Существует несколько способов нахождения координат ВП:
Примеры решения задач
Найти вершину параболы для уравнения: \(y=x^2-5x+7.\)
Найти ВП для уравнения: y=5(x-1)(x+7).
Решение: Ищем нули функции: 5(x-1)(x+7)=0. Тогда x-1=0 либо x+7=0. Из этого x=1; x=-7.
Квадратичная функция (парабола)
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
После этого по точкам строили график:
Параболу y = ax 2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.
1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a 2 с равными по модулю, но противоположными по знаку значениями a.
2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y ). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).
3. Абсцисса вершины параболы y = ax 2 + bx + c находится по формуле:
Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что
где D = b 2 − 4ac — дискриминант.
4. Точки пересечения параболы y = ax 2 + bx + c с осью X находятся с помощью решения квадратного уравнения ax 2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.
5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).
А теперь покажем, как с помощью графика функции y = ax 2 + bx + c решать квадратные неравенства.
1. Часто на тестировании мы предлагаем решить неравенство
x 2 2 и отметим все значения x, для которых y 2 − 3x − 10 ≥ 0.
Графиком функции y = x 2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x 2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:
Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x 5 значения функции положительны. Следовательно, наше неравенство выполняется при .
Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!
3. Ещё одно неравенство: x 2 + 2x + 4 > 0.
Ветви параболы y = x 2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x 2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.
Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.
Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.
Ответ: .
Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.
4. Завиcимоcть объeма cпроcа q (тыc. руб.) на продукцию предприятия-монополиcта от цены p (тыc. руб.) задаeтcя формулой q = 100 − 10p. Выручка предприятия за меcяц r (в тыc. руб.) вычиcляетcя по формуле r(p) = q · p. Определите наибольшую цену p, при которой меcячная выручка r(p) cоcтавит не менее 240 тыc. руб. Ответ приведите в тыc. руб.
Подставим выражение для q в формулу выручки:
r(p) = qp = (100 − 10p)p = 100p − 10p 2
Выручка должна быть не менее (то есть больше или равна) 240 тысяч рублей. Поскольку цена p уже выражена в тысячах рублей, мы можем записать это условие в виде неравенства:
Переносим всё вправо и делим на 10:
Для схематичного построения параболы находим корни уравнения p 2 − 10p + 24 = 0. Они равны 4 и 6. Остаётся сделать рисунок.
Решением нашего неравенства служит отрезок [4; 6]. Нас просили найти наибольшее p. Оно равно 6.
Итак, требуется, чтобы выполнялось неравенство h(t) ≥ 3. Подставляем сюда выражение для h:
Собираем всё справа:
Корни соответствующего уравнения 5t 2 −8t+1,4 = 0 равны t1 = 0,2 и t2 = 1,4. Как дальше действовать — мы знаем.
Таким образом, через t1 = 0,2 секунды после начала полёта мяч оказался на высоте 3 метра. Мяч продолжал лететь вверх, высота увеличивалась; затем началось снижение, высота уменьшалась, и в момент времени t = 1,4 секунды снова стала равна трём метрам над землей.
Получается, что мяч находился на высоте не менее трёх метров в течение t2 − t1 = 1,2 секунд. В бланк ответов вписываем десятичную дробь 1,2.
Согласно условию, зависимость температуры нагревательного элемента от времени определяется формулой:
T(t) = 1400 + 200t − 10t 2
В нормальном режиме работы прибора должно выполняться неравенство T ≤ 1760, или
1400 + 200t − 10t 2 ≤ 1760
Переносим всё вправо и делим на 10:
Находим t1 = 2, t2 = 18 и делаем рисунок:
Получаем решения нашего неравенства:
Остаётся понять: в какой же момент отключать прибор? Для этого надо представить физическую картину процесса.
Мы включаем прибор в момент времени t = 0. Температура нагревателя повышается и при t = 2 мин достигает 1760 К. Затем повышение температуры продолжается, в результате чего прибор может испортиться. Поэтому ясно, что отключать его надо при t = 2.