Что такое абсолютная плотность
Плотность абсолютная
Смотреть что такое «Плотность абсолютная» в других словарях:
плотность абсолютная — Масса на единицу объема твердого материала, выраженная в г/см3, кг/м3 или в фунтах/фут3. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN density absolute … Справочник технического переводчика
Абсолютная влажность воздуха — Размерность L−3M Единицы измерения СИ г/м³ СГС г/см³ … Википедия
Плотность энергии — Плотность энергии количество энергии на единицу объёма. Содержание 1 Плотность энергии в классической физике 1.1 … Википедия
Плотность воздуха — масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Величина плотности воздуха является функцией от высоты производимых измерений, от его температуры и влажности. Обычно стандартной величиной… … Википедия
абсолютная плотность — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN zero leakage isolation … Справочник технического переводчика
абсолютная плотность топлива — (масса топлива в кг/м3) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN absolute fuel density … Справочник технического переводчика
абсолютная шкала — Шкала отношений (пропорциональная или аддитивная) безразмерной величины. Примечания 1. Отличительные признаки абсолютных шкал: наличие естественных (не зависящих от принятой системы) единиц нуля и безразмерной единицы измерений, допустимость… … Справочник технического переводчика
Плотность населения — У этого термина существуют и другие значения, см. Плотность (значения). Плотность населения Земли (1994 год) … Википедия
Абсолютная влажность — Влажность показатель содержания воды в физических телах или средах. Для измерения влажности используются различные единицы, часто внесистемные. Содержание 1 Общие сведения 2 Единицы измерения и особенности определ … Википедия
Плотность
Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму. Более строгое определение плотности требует уточнение формулировки:
Содержание
Виды плотности и единицы измерения
Исходя из определения плотности, её размерность кг/м³ в системе СИ и в г/см³ в системе СГС.
Для сыпучих и пористых тел различают:
Истинную плотность из кажущейся получают с помощью величины коэффициента пористости — доли объёма пустот в занимаемом объёме.
Формула нахождения плотности
Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:
где m — масса тела, V — его объём; формула является просто математической записью определения термина «плотность», данного выше.
Плотность тела в точке записывается как тогда масса неоднородного тела (тела с плотностью, зависящей от места) рассчитывается как
Зависимость плотности от температуры
Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого числа.
При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.
Диапазон плотностей в природе
Для различных природных объектов плотность меняется в очень широком диапазоне.
Плотности астрономических объектов
Средние плотности планет Солнечной системы и Солнца:
Плотности некоторых газов
Азот | 1,250 | Кислород | 1,429 |
Аммиак | 0,771 | Криптон | 3,743 |
Аргон | 1,784 | Ксенон | 5,851 |
Водород | 0,090 | Метан | 0,717 |
Водяной пар (100 °C) | 0,598 | Неон | 0,900 |
Воздух | 1,293 | Углекислый газ | 1,977 |
Хлор | 3,164 | Гелий | 0,178 |
Этилен | 1,260 |
Плотности некоторых жидкостей
Бензин | 0,74 | Молоко | 1,04 |
Вода (4 °C) | 1,00 | Ртуть (0 °C) | 13,60 |
Керосин | 0,82 | Эфир | 0,72 |
Глицерин | 1,26 | Спирт | 0,80 |
Морская вода | 1,03 | Скипидар | 0,86 |
Масло оливковое | 0,92 | Ацетон | 0,792 |
Масло машинное | 0,91 | Серная кислота | 1,84 |
Нефть | 0,81—0,85 | Жидкий водород (−253 °C) | 0,07 |
Плотность некоторых пород древесины
Бальса | 0,15 | Пихта сибирская | 0,39 |
Секвойя вечнозелёная | 0,41 | Ель | 0,45 |
Ива | 0,46 | Ольха | 0,49 |
Осина | 0,51 | Сосна | 0,52 |
Липа | 0,53 | Конский каштан | 0,56 |
Каштан съедобный | 0,59 | Кипарис | 0,60 |
Черёмуха | 0,61 | Лещина | 0,63 |
Грецкий орех | 0,64 | Берёза | 0,65 |
Вишня | 0,66 | Вяз гладкий | 0,66 |
Лиственница | 0,66 | Клён полевой | 0,67 |
Тиковое дерево | 0,67 | Бук | 0,68 |
Груша | 0,69 | Дуб | 0,69 |
Свитения (Махагони) | 0,70 | Платан | 0,70 |
Жостер (крушина) | 0,71 | Тис | 0,75 |
Ясень | 0,75 | Слива | 0,80 |
Сирень | 0,80 | Боярышник | 0,80 |
Пекан (кария) | 0,83 | Сандаловое дерево | 0,90 |
Самшит | 0,96 | Эбеновое дерево | 1,08 |
Квебрахо | 1,21 | Бакаут | 1,28 |
Пробка | 0,48 |
Измерение плотности
Для измерения плотности используются:
См. также
Примечания
Ссылки
Источники
Полезное
Смотреть что такое «Плотность» в других словарях:
ПЛОТНОСТЬ — ПЛОТНОСТЬ, плотности, жен. 1. только ед. отвлеч. сущ. к плотный. Плотность населения. Плотность ткани. Плотность воздуха. Плотность огня (воен.). 2. Масса какого нибудь тела, заключенная в единице его объема (физ.). За единицу плотности… … Толковый словарь Ушакова
ПЛОТНОСТЬ — (r), масса единицы объема вещества. В СИ единица плотности 1 кг/м3. Отношение плотностей двух веществ называется относительной плотностью (обычно плотность веществ определяют относительно плотности дистиллированной воды). Малой плотностью… … Современная энциклопедия
ПЛОТНОСТЬ — (обозначение r) отношение массы к объему для данного вещества, обычно выражаемое в единицах СИ как килограммы на кубический метр (кг/м 1). Эта величина является показателем концентрации частиц в материале. Плотность твердого или жидкого вещества… … Научно-технический энциклопедический словарь
плотность — густота, концентрация; массивность, тесность, коренастость, тучность, насыщенность, кряжистость, компактность, уплотненность, кучность Словарь русских синонимов. плотность компактность Словарь синонимов русского языка. Практический справочник. М … Словарь синонимов
плотность — (density) – это отношение массы тела к его объему. Выражается в кг/дм3 или в кг/м3. Объем зависит от температуры (в большой степени) и давления (в небольшой степени), следовательно, вязкость тоже зависит от этих параметров. С ростом температуры и … Автомобильный словарь
Плотность — (r), масса единицы объема вещества. В СИ единица плотности 1 кг/м3. Отношение плотностей двух веществ называется относительной плотностью (обычно плотность веществ определяют относительно плотности дистиллированной воды). Малой плотностью… … Иллюстрированный энциклопедический словарь
Плотность — – характеристика вещества, определяемая отношением массы вещества, заключенной в некотором объеме, к величине этого объема. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург 2002] Плотность – масса единичного объема … Энциклопедия терминов, определений и пояснений строительных материалов
ПЛОТНОСТЬ — (1) вещества (объёмная) одна из основных физ. характеристик вещества, в нормальных условиях численно равная отношению массы т однородного тела к его объёму V, обозначается р. В СИ выражается в кг/м3. П. вещества растёт с увеличением давления и,… … Большая политехническая энциклопедия
ПЛОТНОСТЬ — (?) масса единичного объема вещества. Величина, обратная удельному объему. Отношение плотности двух веществ называют относительной плотностью (обычно плотность веществ определяют относительно плотности дистиллированной воды) … Большой Энциклопедический словарь
ПЛОТНОСТЬ — (r), величина, определяемая для однородного в ва его массой в единице объёма. П. неоднородного в ва в определённой точке предел отношения массы т тела к его объёму V, когда объём стягивается к этой точке. Средняя П. неоднородного тела также есть… … Физическая энциклопедия
ПЛОТНОСТЬ — (Density) масса данного тела, заключенная в единице объема. За единицу плотности принимается плотность воды при 4° Цельсия. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
Плотность газа: абсолютная и относительная.
Плотность газа: абсолютная и относительная.
Говоря о плотности газа, обычно имеют в виду его плотность при нормальных условиях (т. е. при температуре и давлении
). Кроме того, часто пользуются относительной плотностью газа, под которой подразумевают отношение плотности данного газа к плотности воздуха при тех же условиях.
Абсолютная плотность газа — это масса 1 л газа при нормальных условиях. Обычно для газов её измеряют в г/л.
Если взять 1 моль газа, то тогда:
а молярную массу газа можно найти, умножая плотность на молярный объём.
Относительная плотность D — это величина, которая показывает, во сколько раз газ Х тяжелее газа У. Её рассчитывают как отношение молярных масс газов Х и У:
Часто для расчетов используют относительные плотности газов по водороду и по воздуху.
Относительная плотность газа Х по водороду:
Dпо H2 = M(газа Х) / M(H2) = M(газа Х) / 2
Динамическая и кинематическая вязкость газа.
Вязкость – это динамическое свойство жидкости или газа сопротивляться перемещению одних частиц относительно других, в системе СИ измеряется в Па∙с. Количественно вязкость характеризуется коэффициентом динамической вязкости μ, который зависит от температуры, давления и состава газа.
Различают динамическую (или абсолютную) вязкость и кинематическую вязкость.
Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии. В системе СИ динамическая вязкость выражается в Па*с (Паскаль-секунда), внесистемная единица – (П) Пуаз. Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ.
где v- кинематическая вязкость, м 2 /с
μ – динамическая вязкость,
ρ – плотность жидкости
В системе СИ кинематическая вязкость выражается в м2/с (квадратный метр в секунду), внесистемная единица Ст (стокс).
Критической называется такая температура, выше которой, при любом давлении, газ не может быть переведен в жидкое состояние. Давление, необходимое для сжижения газа при критической температуре, называется критическим. Приведенные параметры газа. Приведенными параметрами называют безразмерные величины, показывающие, во сколько раз действительные параметры состояния газа (давление, температура, плотность, удельный объем) больше или меньше критических:
;
При известном составе газа, в котором содержание метана более 95 % критические параметры газовой смеси можно определить по правилу аддитивности:
где у1, y2, …, уn – молярные (объемные) доли компонентов, %;
Определение коэффициента сверхсжимаемости газа.
Коэф. сверхсжимаемости z реальных газов показывает отношение объемов равного числа молей реального Vp и идеального Vи газов при одинаковых давлении и температуре: z= Vp / Уи. Коэф-т z определяет величину, отношения объемов реального газа при пластовых Vпл и стандартных Vст условиях. При этом он непосредственно зависит от величины пластового давления Рпл, Па и температуры Т, К. Коэф. сжимаемости точно находят экспериментальным путем по пластовым пробам газа. При отсутствии таких исследований (как это чаще всего бывает на практике) прибегают к расчетному методу оценки Z по графику Г. Брауна. Для пользования графиком необходимо знать так называемые приведенные псевдокритическое давление и псевдокритическую температуру. Коэффициент сверхсжимаемости Z обязательно используется при подсчете запасов газа для правильного определения изменения объема газа при переходе от пластовых условий к поверхностным, при прогнозировании изменения давления в газовой залежи и при решении других задач.
Образование гидратов природных газов. Состав и свойства гидратов.
Газовые гидраты (также гидраты природных газов или клатраты) — кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Основным условие для образования гидратов являются снижение температуры и повышение давления и наличие влаги. На их образование влияет состав газа. Сероводород и углекислый газ способствует образованию гидратов особенно сероводород, даже при незначительном содержании сероводорода повышается температура гидратообразования. Азот, углеводороды тяжелее бутана, а также минерализированная пластовая вода ухудшают условия образования гидратов.
Природные газы в определенных термодинамических условиях вступают в соединение с водой, образуя гидраты, которые, скапливаясь в промысловых и магистральных газопроводах, существенно увеличивают их гидравлическое сопротивление и, следовательно, снижают пропускную способность. Низкие пластовые температуры и суровые климатические условия этих районов создают благоприятные условия для образования гидратов в скважинах и газопроводах.
Гидраты представляют собой соединения молекулярного типа, возникающие за счет действия ван-дер-ваальсовых сил притяжения. Молекулы воды при образовании гидратов как бы раздвигаются молекулами газа. Образующиеся при этом полости между молекулами воды полностью или частично заполняются молекулами газа. Гидраты природных газов представляют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду. По внешнему виду — это белая кристаллическая масса, похожая на снег или лед. Если природные газы содержат кислые примеси, то процесс гидратообразования ускоряется.
Процесс гидратообразования обычно происходит на границе газ — вода при условии полного насыщения природного газа водой. Для прогнозирования места образования и интенсивности накопления гидратов в системах газоснабжения необходимо знать изменение влажности газа в различных термодинамических условиях.
7. Методы предупреждения гидратообразования в скважинах и трубопроводах.
Гидраты и борьба с ними. Природный газ газовых месторождений насыщен парами воды, которые конденсируются и скапливаются в скважинах и газопроводах при снижении температуры и давления газа. При определенных термобарических условиях (Р и Т) компоненты природного газа, взаимодействуя с водой образуют кристаллические вещества – гидраты. Это ведет к закупорке скважин, газопроводов, сепараторов, нарушению работы измерительной и регулирующей аппаратуры.
Зная состав, влажность транспортируемого газа, изменение температуры и давления в газопроводе, можно заранее определить возможные зоны образования гидратов и заменить мероприятия по их предотвращению.
1. Поддержание температуры газа выше температуры гидратообразования путем предварительного подогрева газа.
2. Снижение давления газа в газопроводе ниже равновесного давления образования гидратов. Применение этого способа экономически невыгодно, так как при этом снижается расход в газопроводе. Если на каком-либо участке газопровода образовалась гидратная пробка, то ее можно разложить снижением давления. Для этого участок отключают путем перекрытия линейных запорных кранов, освобождают от газа, перекачивая его в соседний газопровод или выпуская в атмосферу через свечи с обеих сторон до определенного давления. Контроль за снижением давления осуществляют по манометрам, установленным на обводных линиях кранов.
СБОР И ПОДГОТОВКА СКВАЖИННОЙ ПРОДУКЦИИ
2.СБОР И ПОДГОТОВКА СКВАЖИННОЙ ПРОДУКЦИИ 1
1. Состав газа и конденсата, способы его выражения. 2
2. Абсорбционная осушка газа. 4
3. Характеристика абсорбентов и их регенерация. 5
4. Многофункциональный абсорбер. 6
5. Адсорбционная осушка газа. 7
6. Характеристики адсорбентов и их регенерация. 8
7. Низкотемпературная сепарация газа. 10
8. Методы стабилизации конденсата. 11
9. Требования отраслевого стандарта к качеству транспортируемого газа. 13
10. Дожимная компрессорная станция. Назначение и технологическая схема. 13
Абсорбционная осушка газа.
Чем выше концентрация подаваемого гликоля, тем глубже степень осушки. Концентрация гликоля зависит от эффективности его регенерации. При атмосферном давлении ДЭГ можно регенерировать до 96,7%, а ТЭГ-до 98,1%. Гликоли в чистом виде не вызывают коррозии углеродистых сталей.
Процесс абсорбции осуществляется в вертикальном цилиндрическом сосуде-абсорбере. Газ и абсорбент контактируют на тарелках, смонтированных внутри аппарата, перемещаясь противотоком: газ поднимается снизу вверх, а абсорбент стекает сверху вниз. Абсорбент по мере своего движения насыщается поглощаемыми им компонентами или влагой и через низ колонны подается на регенерацию. С верха колонны уходит осушенный газ. Эффективность абсорбции зависит от температуры и давления, числа тарелок в абсорбере, количества и качества абсорбента. Увеличение числа тарелок (а их устанавливают в абсорбере 14-18 шт.) оказывает такое же влияние, как и увеличение количества циркулирующего абсорбента. Верхний и нижний температурные пределы процесса определяются соответственно потерями гликоля от испарения и возрастанием его вязкости и равны 35-10рС.
Газ от кустов скважин по газосборным коллекторам-шлейфам подается на пункт переключающей арматуры. В пункте переключающей арматуры сырой газ распределяется по шестнадцати входным ниткам в восемь блоков узла входа шлейфов (УВШ) объединенных попарно. Дальше газ поступает в сепаратор для отделения мех примесей от газа. Дальше идет в абсорбер где осушается газ. Осушенный газ, перед тем как попасть в МГ проходит сначала АВО с целью исключения растепления многолетнемерзлых присадочных грунтов и повышения надежности работы промыслового подземного газопровода. Потом поступает в узел замера газа.
Адсорбционная осушка газа.
Адсорбционная осушка газа применяется для получения низкой «точки росы» (-20-30°С), которая необходима при транспорте газа в северных районах страны. Одним из важных преимуществ адсорбции является то, что не требуется предварительной осушки газа, так как твердые адсорбенты, наряду с жидкими углеводородами, хорошо адсорбируют и влагу. В качестве адсорбента используют твердые пористые вещества, обладающие большой удельной поверхностью.
Адсорбционный – используются твёрдые поглотители, например силикагель, активированный окиси алюминия (боксита) и цеолиты. Эти вещества гранулированы и имеют сильно развитую внутреннюю поверхность сообщающихся между собой пор. Влага адсорбируется в порах при низкой температуре и испаряется при подогреве.
Цех состоит из двух адсорберов, один из которых находится в регенерации, в качестве адсорбента силикагеля.
Требования отраслевого стандарта к качеству транспортируемого газа.
Показатели качества товарного газа основаны на следующих требованиях:
1.Газ при транспортировке не должен вызывать коррозию трубопровода, арматуры, приборов и т.д.;
2.Качество газа должно обеспечить его транспортировку в однофазном состоянии, т.е. не должно произойти образование и выпадение в газопроводе углеводородной жидкости, водяного конденсата и газовых гидратов;
3.Товарный газ не должен вызывать осложнений у потребителя при его использовании.
Для того, чтобы газ отвечал указанным требованиям, необходимо определять точку росы по воде, содержание углеводорода, содержания в газе сернистых соединений, механических примесей и кислорода.
Отраслевой стандарт не устанавливает конкретное содержание отдельных углеводородов в товарном газе. Это связано с разнообразием составов сырьевого газа (табл. 2.9).
Нормы ГОСТ 51.40-93 на природный газ, транспортируемый по магистральным газопроводам
В ГОСТ 51.40-93 введен новый показатель, ограничивающий содержание меркаптановой серы в товарном газе, не более 36 мг/м3.
В газе могут содержаться также сероокись углерода (COS), сероуглерод (CS2) и др. В ГОСТе содержание этих компонентов не указано. Следовало бы установить общее количество всех сернистых соединений в газе
РАЗРАБОТКА
1. Газовые, газоконденсатные, нефтегазоконденсатные и газогидратные залежи. 2
2. Особенности поведения углеводородных систем при разработке залежей. 4
3. Классификация углеводородных жидкостей и газов по компонентному составу. 6
4. Режимы разработки газовых и газоконденсатных залежей. 7
5. Уравнение материального баланса газовой залежи. 10
6. Характерные особенности проявления и установление режима разработки газовой залежи. 11
7. Определение запасов газа объемным методом и методом падения пластового давления в залежи. 13
8. Особенности приток газа к забою скважин, уравнение притока газа. 14
9. Технология исследования скважин и обработки результатов для получения уравнения притока газа. 16
10. Характерные периоды разработки газовых и газоконденсатных месторождений 17
12. Факторы ограничивающие производительность скважин. 21
13. Технологический режим эксплуатации скважин и его установление. 22
15. Выделение объектов разработки на многопластовых месторождениях. 24
16. Способы разработки газоконденсатных залежей. 25
17. Основные положения проекта разработки месторождения 28
ТЕСТОВЫЕ ВОПРОСЫ
1. Что такое коэффициент продуктивности нефтяных скважин?это ее дебит нефти, поделенный на разность пластового и забойного давлений, то есть на величину депрессии, производимой по разрабатываемым нефтяным пластам
2. Что такое скин-фактор? гидродинамический параметр, характеризующий дополнительное фильтрационное сопротивление течению флюидов в околоскважинной зоне пласта, приводящее к снижению добычи (дебита) по сравнению с совершенной (идеальной) скважиной. Причинами скин-фактора являются гидродинамическоенесовершенство вскрытия пласта, загрязнение околоскважинной зоны, прочие нелинейные эффекты (турбулентное течение, разгазирование, сжатие скелета горной породы и т. д.).
4. Что такое фазовая проницаемость? проницаемость породы для отдельно взятого флюида при наличии в ней многофазных систем
5. Что такое относительная фазовая проницаемость? отношение эффективной проницаемостик некоторой базовой проницаемости (чаще всего к абсолютной)
6. Условия проведения кислотные ванны?? Кислотные обработки (КО) скважин применяют для интенсификации дебитов скважин в карбонатных коллекторах, а так же в песчаных породах с содержанием карбонатов более 20% или с цементирующим материалом, состоящим из карбонатов кальция или магния
7. Для чего применяют кислотные ванны?Кислотные ванны предпочтительно применять для очистки необсаженных фильтров скважин
8. В чем заключается технология ГРП? Технология ГРП включает следующие операции: промывку скважины; спуск в скважину высокопрочных НКТ с пакером и якорем на нижнем конце; обвязку и опрессовку на определение приемистости скважины закачкой жидкости; закачку по НКТ в пласт жидкости-разрыва, жидкости-песконосителя и продавочной жидкости; демонтаж оборудования и пуск скважины в работу
9. Какими свойствами должна обладать жидкость разрыва используемая при ГРП? Жидкость разрыва должна быть слабофильтрующейся и обладать высокой удерживающей способностью в отношении взвешенного в ней песка, что предупреждает возможность оседания его в цилиндрах насоса, элементах обвязки, трубах и на забое скважины
10. Что понимается под термином расклинивающие агенты? Проппанд предназначен для предотвращения смыкания трещины после окончания закачивания. Проппанд добавляется к жидкости глушения и закачивается вместе с ней.
12. Положительный скин-фактор означает …Если ПЗП загрязнена, то приведенный радиус скважины будет меньше радиуса по долоту, скин-фактор положителен, фактическая продуктивность меньше потенциальной
13. Нулевой скин-фактор означает …Проницаемость прискваженной зоны пласта не изменена или изменена незначительно (в пределах погрешности определения скин-фактора)
14. Отрицательный скин-фактор означает …Повышенная проницаемость ПЗП, что на практике встречается редко (например, после гидроразрыва). Обычно сильно отрицательные значения скин-фактора, определенные по КВД, свидетельствуют о недовосстановленности КВД и, следовательно, о недостоверности результатов расчетов. Возможно, для интерпретации выбран слишком ранний участок КВД
15. Какие исследования позволяют оценить величину скин-фактора? В зависимости от величины притока применялись разные виды исследований. При устойчивом фонтанировании использовался метод «установившихся» отборов, регистрировалась индикаторная диаграмма (ИД). После последнего максимального режима работы скважины снималась кривая восстановления давления (КВД).
Если приток из пласта не позволял получить устойчивого фонтанирования, то регистрировалась кривая восстановления уровня (КВУ). Изменение давления на забое регистрировалось глубинными автономными манометрами. Манометр обычно устанавливался выше кровли испытываемого объекта.
16. Что такое проппант? гранулообразный материал для расклинивания, который используется в нефтедобывающей промышленности для повышения эффективности отдачи скважин с применением технологии гидроразрыва пласта (ГРП)
17. В каком направлении будет происходить развитие направления трещины ГРП? По мере заполнения скважины жидкостью и создания на поверхности давления, давление жидкости в порах породы возрастает и действует равномерно во всех направлениях. При повышении давления жидкости до момента, когда разрывающая сила жидкости, действующая на породу, превысит силы сцепления этой породы, скала расколется и произойдет разрыв. Трещины могут быть горизонтальными, вертикальными и наклонными. Пространственная ориентация трещины определяется напряженным состоянием горных пород в зоне скважины и изменениями обусловленными распределением напряжений. Напряжения формируются главным образом под действием гравитационных сил.
Принято считать, что на глубине свыше 300 м вертикальное напряжение гораздо выше двух других составляющих. Поэтому трещина всегда должна быть вертикальной, в силу того, что образование трещины происходит в направлении перпендикулярном наименьшей из нагрузок.
18. Коэффициент извлечения нефти, газа, конденсата. Исходя из физических условий содержания УВ в пустотном пространстве коллекторов (их физико-химических свойств, определяющих поверхностные взаимодействия флюидов и породы, молекулярных, капиллярных и др.), из технологических и технических возможностей (достигаемой степени полноты охвата объема пласта процессом вытеснения при реализуемой системе разработки) и из экономических ограничений плотности сетки скважин, предельного дебита и обводненности продукции и других параметров, ясно, что на поверхность из продуктивных пластов можно извлечь только какую-то часть содержащихся в них запасов углеводородов.
Количественно доля запасов (нефти, газа, конденсата),которая может быть извлечена (при применении наиболее эффективных в данных геолого-физических условиях технологий и технических средств, при выполнении оптимальных экономических показателей и соблюдении требований охраны недр и окружающей среды) определяется: для нефти коэффициентом извлечения нефти (КИН). для газа и конденсата (КИК) соответственно коэффициентами извлечения газа и конденсата.
Исходя из физических особенностей этих УВ, наиболее сложным является определение коэффициента извлечения нефти (КИН). По каждому нефтяному эксплуатационному объекту, вводящемуся в разработку, расчет выполняется специализированной научной организацией и после согласования с заинтересованными сторонами утверждается ГКЗ Российской Федерации (ГКЗ РФ). Коэффициент извлечения газа по отдельным газовым объектам не рассчитывают, а принимают, исходя из имеющегося опыта в целом по газовой отрасли, равным 0,8. Методы ОЦЕНКИ КИН:метод аналогии, многофакторного статистического моделирования, эмпирического (покоэффициентного) моделирования, экстраполяционные методы (характеристики вытеснения), гидродинамические методы.
Остановимся подробнее на физической сущностикоэффициента извлечения нефти (КИН) и методах его расчета.
Коэффициент извлечения за все время разработки залежи называется конечным, за некоторый промежуток времени с начала разработки – текущим
19. Что такое эксплуатационный объект. это пласт или группа продуктивных пластов, которые объединяются в силу геологических и экономических условий для разбуривания и эксплуатации единой сеткой скважин
20. Что понимается под объектом разработки. это искусственно выделенное в пределах разрабатываемого месторождения геологическое образование (пласт, массив, структура, совокупность пластов), содержащее промышленные запасы углеводородов, извлечение которых из недр осуществляется при помощи определенной группы скважин
Плотность газа: абсолютная и относительная.
Говоря о плотности газа, обычно имеют в виду его плотность при нормальных условиях (т. е. при температуре и давлении
). Кроме того, часто пользуются относительной плотностью газа, под которой подразумевают отношение плотности данного газа к плотности воздуха при тех же условиях.
Абсолютная плотность газа — это масса 1 л газа при нормальных условиях. Обычно для газов её измеряют в г/л.
Если взять 1 моль газа, то тогда:
а молярную массу газа можно найти, умножая плотность на молярный объём.
Относительная плотность D — это величина, которая показывает, во сколько раз газ Х тяжелее газа У. Её рассчитывают как отношение молярных масс газов Х и У:
Часто для расчетов используют относительные плотности газов по водороду и по воздуху.
Относительная плотность газа Х по водороду:
Dпо H2 = M(газа Х) / M(H2) = M(газа Х) / 2
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.