Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ‚Π°Ρ‚ΡŒΡ находится Π½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅ Ρƒ мСтодистов Skysmart.
Если Π²Ρ‹ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ, сообщитС ΠΎΠ± этом Π² ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‡Π°Ρ‚
(Π² ΠΏΡ€Π°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡƒΠ³Π»Ρƒ экрана).

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ѐункция β€” это Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ y ΠΎΡ‚ x, Π³Π΄Π΅ x являСтся ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° y β€” зависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΠΎ значСниям нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π΅ значСния. Π’ΠΎΡ‚, ΠΊΠ°ΠΊΠΈΠΌΠΈ способами Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ:

ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния β€” мноТСство Ρ…, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ выраТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ записано Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

НапримСр, для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния выглядит Ρ‚Π°ΠΊ

ΠžΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ β€” мноТСство Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ это значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ функция.

НапримСр, СстСствСнная ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = xΒ² β€” это всС числа большС Π»ΠΈΠ±ΠΎ Ρ€Π°Π²Π½Ρ‹Π΅ Π½ΡƒΠ»ΡŽ. МоТно Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π²ΠΎΡ‚ Ρ‚Π°ΠΊ: Π• (Ρƒ): Ρƒ β‰₯ 0.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) называСтся мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ (x; y), ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… связаны ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ равСнство y = f(x) называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ (x; y), Π³Π΄Π΅ x β€” это Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚, Π° y β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ соотвСтствуСт Π΄Π°Π½Π½ΠΎΠΌΡƒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ.

ΠŸΡ€ΠΎΡ‰Π΅ говоря, Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ мноТСство всСх Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ, просто подставив Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π»ΡŽΠ±Ρ‹Π΅ числа вмСсто x.

Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π²ΠΎΠ·ΡŒΠΌΡ‘ΠΌ ΡΠ°ΠΌΡƒΡŽ ΠΏΡ€ΠΎΡΡ‚ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ y = x.

Π’ этом случаС Π½Π°ΠΌ Π½Π΅ придётся Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ Ρ€Π°Π²Π½Ρ‹, поэтому Ρƒ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ нашСго Π³Ρ€Π°Ρ„ΠΈΠΊΠ° абсцисса Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если ΠΌΡ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‚ наимСньшСго значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΊ Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ соСдиним ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ‚ΠΎ Ρƒ нас получится прямая линия. Π—Π½Π°Ρ‡ΠΈΡ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x являСтся прямая. На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ это выглядит Ρ‚Π°ΠΊ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Надпись Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ y = x β€” это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. Π‘Ρ‚Π°Π²ΠΈΡ‚ΡŒ надпись с ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ ΡƒΠ΄ΠΎΠ±Π½ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ Π·Π°ΠΏΡƒΡ‚Π°Ρ‚ΡŒΡΡ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡.

Π’Π°ΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ прямая линия бСсконСчна Π² ΠΎΠ±Π΅ стороны. Π₯ΠΎΡ‚ΡŒ ΠΌΡ‹ ΠΈ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌ Ρ‡Π°ΡΡ‚ΡŒ прямой Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π° самом Π΄Π΅Π»Π΅ Π½Π° Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ малая Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°.

ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x):

Π‘Ρ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ β€” Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

ΠšΡ€ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ β€” Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ Π»ΠΈΠ±ΠΎ Π½Π΅ сущСствуСт. Π‘Ρ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ подмноТСством мноТСства критичСских Ρ‚ΠΎΡ‡Π΅ΠΊ.

ЭкстрСмум Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ β€” максимальноС ΠΈΠ»ΠΈ минимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ мноТСствС. Π’ΠΎΡ‡ΠΊΠ°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ достигаСтся экстрСмум, называСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ экстрСмума. БоотвСтствСнно, Ссли достигаСтся ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ β€” Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума называСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, Π° Ссли максимум β€” Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума.

Нули Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Асимптота β€” прямая, которая ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΠΌ свойством, Ρ‡Ρ‚ΠΎ расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΄ΠΎ этой прямой стрСмится ΠΊ Π½ΡƒΠ»ΡŽ ΠΏΡ€ΠΈ Π½Π΅ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΌ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. По способам ΠΈΡ… отыскания Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ‚Ρ€ΠΈ Π²ΠΈΠ΄Π° асимптот: Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅, Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½Ρ‹Π΅.

Ѐункция Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ k, Ссли ΠΏΡ€Π΅Π΄Π΅Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если функция f(x) Π½Π΅ являСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x = a, Ρ‚ΠΎ говорят, Ρ‡Ρ‚ΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·Ρ€Ρ‹Π² Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°Ρ€Π°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ схСму исслСдования свойств Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Она ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ прСдставлСниС ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΈ ΠΏΡ€ΠΈΡΡ‚ΡƒΠΏΠΈΡ‚ΡŒ ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

Π‘Ρ…Π΅ΠΌΠ° построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π£ нас Π΅ΡΡ‚ΡŒ ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Π΅ курсы ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ для ΡƒΡ‡Π΅Π½ΠΈΠΊΠΎΠ² с 1 ΠΏΠΎ 11 классы!

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, потрСнируСмся Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ….

Π—Π°Π΄Π°Ρ‡Π° 1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Упростим Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π—Π°Π΄Π°Ρ‡Π° 2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ†Π΅Π»ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π°, сдвинутая Π½Π° 3 Π²ΠΏΡ€Π°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅Ρ€Ρ… ΠΏΠΎ y ΠΈ растянутая Π² 10 Ρ€Π°Π· ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†Π΅Π»ΠΎΠΉ части β€” ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ΅ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ примСняСтся Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ нСравСнств, построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Ρ†Π΅Π»Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½.

Π—Π°Π΄Π°Ρ‡Π° 3. По Π²ΠΈΠ΄Ρƒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°ΠΊΠΈ коэффициСнтов ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = ax2 + bx + c.

Вспомним, ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ a, b ΠΈ c ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π’Π΅Ρ‚Π²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, a 0.

Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния с осью Oy β€” c = 0.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚.ΠΊ. нСизвСстноС число ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, Ρ‚ΠΎ это число ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, b > 0.

Π’Π΅Ρ‚Π²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, a 0.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚.ΠΊ. нСизвСстноС число ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ‚ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, Ρ‚ΠΎ это число ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, b

xy
0-1
12

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

xy
02
11

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

xy
00
12

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

k = 2 > 0 β€” ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ оси Ox острый, B = 0 β€” Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°Π΄Π°Ρ‡Π° 5. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π­Ρ‚ΠΎ Π΄Ρ€ΠΎΠ±Π½ΠΎ-Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ функция. ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ D(y): x β‰  4; x β‰  0.

Нули Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: 3, 2, 6.

ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ знакопостоянства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ².

Π’Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ асимптоты: x = 0, x = 4.

Если x стрСмится ΠΊ бСсконСчности, Ρ‚ΠΎ Ρƒ стрСмится ΠΊ 1. Π—Π½Π°Ρ‡ΠΈΡ‚, y = 1 β€” Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ асимптота.

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ выглядит Π³Ρ€Π°Ρ„ΠΈΠΊ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°Π΄Π°Ρ‡Π° 6. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π±) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π³) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Когда слоТная функция ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° ΠΈΠ· ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠ΅ΠΉ Ρ‡Π΅Ρ€Π΅Π· нСсколько ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, Ρ‚ΠΎ прСобразования Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π² порядкС арифмСтичСских дСйствий с Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ.

Π°) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ дСйствиС Ρ‚ΠΈΠΏΠ° f(x) + a.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²Π²Π΅Ρ€Ρ… Π½Π° 1:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π±)Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° 1:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° 1:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²Π²Π΅Ρ€Ρ… Π½Π° 2:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π³) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ дСйствиС Ρ‚ΠΈΠΏΠ° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РастягиваСм Π³Ρ€Π°Ρ„ΠΈΠΊ Π² 2 Ρ€Π°Π·Π° ΠΎΡ‚ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ вдоль оси абсцисс:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ прСобразования, посмотрим Π½Π° порядок дСйствий: сначала ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°Ρ‚Π΅ΠΌ складываСм, Π° ΡƒΠΆΠ΅ ΠΏΠΎΡ‚ΠΎΠΌ мСняСм Π·Π½Π°ΠΊ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ всСму Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ модуля Π² Ρ†Π΅Π»ΠΎΠΌ, вынСсСм Π΄Π²ΠΎΠΉΠΊΡƒ Π·Π° скобки Π² ΠΌΠΎΠ΄ΡƒΠ»Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π² Π΄Π²Π° Ρ€Π°Π·Π° вдоль оси абсцисс:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 вдоль оси абсцисс:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΡ‚Ρ€Π°ΠΆΠ°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси абсцисс:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Задания Π½Π° свойства ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ°, ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Π΅ затруднСния. Π­Ρ‚ΠΎ довольно странно, ΠΈΠ±ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ проходят Π² 8 классС, Π° ΠΏΠΎΡ‚ΠΎΠΌ всю ΠΏΠ΅Ρ€Π²ΡƒΡŽ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒ 9-Π³ΠΎ класса «Π²Ρ‹ΠΌΡƒΡ‡ΠΈΠ²Π°ΡŽΡ‚» свойства ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈ строят Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

Π­Ρ‚ΠΎ связано с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ заставляя учащихся ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, практичСски Π½Π΅ ΡƒΠ΄Π΅Π»ΡΡŽΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π° «Ρ‡Ρ‚Π΅Π½ΠΈΠ΅» Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒΡŽΡ‚ осмыслСниС ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ с ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ. Π’ΠΈΠ΄ΠΈΠΌΠΎ, прСдполагаСтся, Ρ‡Ρ‚ΠΎ, построив дСсятка Π΄Π²Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΡΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ школьник сам ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΈ сформулируСт связь коэффициСнтов Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΈ внСшний Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Ρ‚Π°ΠΊ Π½Π΅ получаСтся. Для ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ обобщСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹ΠΉ ΠΎΠΏΡ‹Ρ‚ матСматичСских ΠΌΠΈΠ½ΠΈ исслСдований, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ дСвятиклассников, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚. А ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅ΠΌ, Π² Π“Π˜Π ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽΡ‚ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π·Π½Π°ΠΊΠΈ коэффициСнтов.

НС Π±ΡƒΠ΄Π΅ΠΌ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚ школьников Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΈ просто ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, ΠΊΠ°ΠΊ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° внСшний Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π·Π½Π°ΠΊΠΈ Π΅Π΅ коэффициСнтов.

Бамая простая Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ для коэффициСнта Π°. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ школьников ΡƒΠ²Π΅Ρ€Π΅Π½Π½ΠΎ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚: » Ссли Π° > 0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π° Ссли Π° 0.

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС Π° = 0,5

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ для Π° 2 + b 0 + c = c. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Ρƒ = с. Π’ΠΎ Π΅ΡΡ‚ΡŒ с – это ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρƒ. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, эту Ρ‚ΠΎΡ‡ΠΊΡƒ Π»Π΅Π³ΠΊΠΎ Π½Π°ΠΉΡ‚ΠΈ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅. И ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π²Ρ‹ΡˆΠ΅ нуля ΠΎΠ½Π° Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ»ΠΈ Π½ΠΈΠΆΠ΅. Π’ΠΎ Π΅ΡΡ‚ΡŒ с > 0 ΠΈΠ»ΠΈ с 0:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

БоотвСтствСнно, Ссли с = 0, Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π·Π½Π°Ρ‡ΠΈΡ‚ Π° > 0, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось Ρƒ Π½ΠΈΠΆΠ΅ нуля, Π·Π½Π°Ρ‡ΠΈΡ‚ с 0. ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅ΠΌ: Π° > 0, b > 0, с 0)

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρ‚Π΅Π». ΠΌΠΎΠ±. (495) 642 42 50. Π—Π²ΠΎΠ½ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 23:00.

Ρ‚Π΅Π». ΠΌΠΎΠ±. 8 (499) 723 68 84. Π—Π²ΠΎΠ½ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 23:00.

Ρ‚Π΅Π». Π΄ΠΎΠΌ. 8 (925) 642 42 50. Π—Π²ΠΎΠ½ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 23:00.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция. ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π°

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ Ρ€Π°Π·Π±ΠΎΡ€Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅ΠΌ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

Если Π²Ρ‹ ΠΏΡ€ΠΎΡ‡Π½ΠΎ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚Π΅ ΠΎΠ±Ρ‰ΠΈΠ΅ знания ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (способы задания, понятиС Π³Ρ€Π°Ρ„ΠΈΠΊΠ°) дальнСйшСС ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π²ΠΈΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π°Π²Π°Ρ‚ΡŒΡΡ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π»Π΅Π³Ρ‡Π΅.

Π§Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция β€” это функция Π²ΠΈΠ΄Π°

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΡ‚Π°Ρ€ΡˆΠ°Ρ (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ самая большая) ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ стоит Β« x Β» β€” это Β« 2 Β», Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Π΄ Π½Π°ΠΌΠΈ квадратичная функция.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Ρ‡Π΅ΠΌΡƒ Π² Π½ΠΈΡ… Ρ€Π°Π²Π½Ρ‹ коэффициСнты Β« a Β», Β« b Β» ΠΈ Β« с Β».

Как ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° выглядит ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€Π½ΡƒΡ‚ΠΎΠΉ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

БущСствуСт Ρ‡Π΅Ρ‚ΠΊΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ дСйствий ΠΏΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅ΠΌ ΠΏΡ€ΠΈ построСнии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ всСгда ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ этому порядку дСйствий, Ρ‚ΠΎΠ³Π΄Π° Π²Ρ‹ смоТСтС ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ошибок ΠΏΡ€ΠΈ построСнии.

Π§Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΡ‰Π΅ ΠΏΠΎΠ½ΡΡ‚ΡŒ этот Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, сразу Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ Π΅Π³ΠΎ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = x 2 βˆ’7x + 10 Β».

Если Β« a > 0 Β», Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если Β« a Β», Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ нашСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« a = 1 Β», это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Β« x0 Β» (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΎ оси Β« Ox Β») Π½ΡƒΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

НайдСм Β« x0 Β» для нашСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = x 2 βˆ’7x + 10 Β».

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Β« y0 Β» (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠΎ оси Β« Oy Β»). Для этого Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« x0 Β» Π² ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π’ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π² ΡƒΡ€ΠΎΠΊΠ΅ «Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽΒ» Π² ΠΏΠΎΠ΄Ρ€Π°Π·Π΄Π΅Π»Π΅ «Как ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ».

Π’Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

(Β·) A (3,5; βˆ’2,25) β€” Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ось симмСтрии, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° β€” это симмСтричный Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Β« Oy Β».

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Для Π½Π°Ρ‡Π°Π»Π° Π΄Π°Π²Π°ΠΉΡ‚Π΅ разбСрСмся, Ρ‡Ρ‚ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ нулями Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Нули Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с осью Β« Ox Β» (осью абсцисс).

Наглядно Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ выглядят Ρ‚Π°ΠΊ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π²ΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΠΈΠ·-Π·Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ этих Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Oy Β» Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Π°Π²Π°ΠΉΡ‚Π΅ разбСрСмся, ΠΊΠ°ΠΊ Π΄ΠΎ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½ΡƒΠΆΠ½ΠΎ Π² ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ вмСсто Β« y = 0 Β».

0 = x 2 βˆ’7x + 10
x 2 βˆ’7x + 10 = 0
x1;2 =

7 Β± √ 49 βˆ’ 4 Β· 1 Β· 10
2 Β· 1

x1;2 =

7 ± √ 9
2

x1;2 =

7 Β± 3
2

x1 =

7 + 3
2
x2 =

7 βˆ’ 3
2
x1 =

10
2
x2 =

4
2
x1 = 5x2 = 2

ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π΄Π²Π° корня Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ, Π·Π½Π°Ρ‡ΠΈΡ‚, Ρƒ нас Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью Β« Ox Β». НазовСм эти Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π²Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ (Β«Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ») Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ числовыС значСния для Β« x Β». ЦСлСсообразно Π±Ρ€Π°Ρ‚ΡŒ Ρ†Π΅Π»Ρ‹Π΅ числовыС значСния Π½Π° оси Β« Ox Β», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ оси симмСтрии. Числа запишСм Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π² порядкС возрастания.

Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ значСния Β« x Β» рассчитаСм Β« y Β».

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

x1346
y4βˆ’2βˆ’24

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (Π·Π΅Π»Π΅Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ Π³ΠΎΡ‚ΠΎΠ²Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ. На Π·Π°Π±ΡƒΠ΄ΡŒΡ‚Π΅ послС построСния ΠΏΠΎΠ΄ΠΏΠΈΡΠ°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ построСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Рассмотрим Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Волько Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ запишСм Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎ Π±Π΅Π· подробностСй.

ΠŸΡƒΡΡ‚ΡŒ трСбуСтся ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’3x 2 βˆ’ 6x βˆ’ 4 Β».

x0 =

βˆ’b
2a

x0 =

βˆ’(βˆ’6)
2 Β· (βˆ’3)

=

6
βˆ’6

= βˆ’1

y0(βˆ’1) = (βˆ’3) Β· (βˆ’1) 2 βˆ’ 6 Β· (βˆ’1) βˆ’ 4 = βˆ’3 Β· 1 + 6 βˆ’ 4 = βˆ’1

(Β·) A (βˆ’1; βˆ’1) β€” Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью Β« Ox Β» ( y = 0 ).

x1;2 =

βˆ’6 Β± √ 6 2 βˆ’ 4 Β· 3 Β· 4
2 Β· 1

x1;2 =

βˆ’6 Β± √ 36 βˆ’ 48
2

x1;2 =

βˆ’6 Β± √ βˆ’12
2

ΠžΡ‚Π²Π΅Ρ‚: Π½Π΅Ρ‚ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΡ€Π½Π΅ΠΉ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚, Π·Π½Π°Ρ‡ΠΈΡ‚, Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ пСрСсСкаСт ось Β« Ox Β».

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π΅ΠΌ Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ выходят Π·Π° ΠΌΠ°ΡΡˆΡ‚Π°Π± нашСй систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ Β« (βˆ’2; βˆ’4) Β» ΠΈ Β« (0; βˆ’4) Β». ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ ΠΈ подпишСм Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ a, b ΠΈ c ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π²Π°ΠΌ попался Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(y=ax^2+bx+c\) ΠΈ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎ этому Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ коэффициСнты \(a\), \(b\) ΠΈ \(c\). Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ я расскаТу 3 простых способа ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ это.

1 способ – ΠΈΡ‰Π΅ΠΌ коэффициСнты Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅

Π”Π°Π½Π½Ρ‹ΠΉ способ Ρ…ΠΎΡ€ΠΎΡˆ, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью \(y\) – Ρ†Π΅Π»Ρ‹Π΅ числа. Если это Π½Π΅ Ρ‚Π°ΠΊ, ΡΠΎΠ²Π΅Ρ‚ΡƒΡŽ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ способ 2.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ \(a\) ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΠ²:

— Если \(a>0\), Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π²Π²Π΅Ρ€Ρ…, Ссли \(a 1\), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ вытянут Π²Π²Π΅Ρ€Ρ… Π² \(a\) Ρ€Π°Π· ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Β«Π±Π°Π·ΠΎΠ²Ρ‹ΠΌΒ» Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ (Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ \(a=1\)). Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈ этом остаСтся Π½Π° мСстС. Π­Ρ‚ΠΎ наглядно Π²ΠΈΠ΄Π½ΠΎ ΠΏΠΎ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Ρ‰Π΅ΠΌ 3 Ρ‚ΠΎΡ‡ΠΊΠΈ с Ρ†Π΅Π»Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅.
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ВыписываСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ подставляСм Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: \(y=ax^2+bx+c\). ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡΡ систСма с трСмя уравнСниями.

РСшаСм систСму.
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π’Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ \(9a\) вмСсто \(b\):

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ уравнСния совпали (это Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ для Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прямой проходящСй Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ – ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΠΈ \(A\) ΠΈ \(B\) Π² нашСм случаС), Π½ΠΎ нас это Π½Π΅ остановит – ΠΌΡ‹ Π²Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π² ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ \(a\):

ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ квадратичная функция: \(y=-x^2-9x-15\).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ€Π°Π·Ρƒ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ сразу ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ \(c=4\). Π­Ρ‚ΠΎ сильно ΠΎΠ±Π»Π΅Π³Ρ‡ΠΈΡ‚ Π½Π°ΡˆΡƒ систСму – Π½Π°ΠΌ Ρ…Π²Π°Ρ‚ΠΈΡ‚ 2 Ρ‚ΠΎΡ‡Π΅ΠΊ. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΈΡ… Π½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅: \(C(-1;8)\), \(D(1;2)\) (Π½Π° самом Π΄Π΅Π»Π΅, Ссли ΠΏΡ€ΠΈΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒΡΡ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΆΠΈΡ€Π½ΠΎ Π½Π° ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅ – это Π²Π°ΠΌ подсказка ΠΎΡ‚ Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² Π·Π°Π΄Π°Ρ‡ΠΈ).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΈΠΌΠ΅Π΅ΠΌ систСму:

Π‘Π»ΠΎΠΆΠΈΠΌ 2 уравнСния:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния:

3 способ – ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π­Ρ‚ΠΎΡ‚ способ быстрСС ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ, Π² частности ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ пригодится ΠΈ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π‘Π°ΠΌ способ базируСтся Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… идСях:

Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=-x^2\) симмСтричСн ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси \(x\) Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ \(y=x^2\).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

– Если \(a>1\) Π³Ρ€Π°Ρ„ΠΈΠΊ \(y=ax^2\) получаСтся растяТСниСм Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=x^2\) вдоль оси \(y\) Π² \(a\) Ρ€Π°Π·.
– Если \(a∈(0;1)\) Π³Ρ€Π°Ρ„ΠΈΠΊ \(y=ax^2\) получаСтся сТатиСм Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=x^2\) вдоль оси \(y\) Π² \(a\) Ρ€Π°Π·.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

– Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x+d)^2\) получаСтся сдвигом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=ax^2\) Π²Π»Π΅Π²ΠΎ Π½Π° \(d\) Π΅Π΄ΠΈΠ½ΠΈΡ†.
— Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x-d)^2\) получаСтся сдвигом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=ax^2\) Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° \(d\) Π΅Π΄ΠΈΠ½ΠΈΡ†.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x+d)^2+e\) получаСтся пСрСносом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=a(x+d)^2\) Π½Π° \(e\) Π΅Π΄ΠΈΠ½ΠΈΡ† Π²Π²Π΅Ρ€Ρ….
Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x+d)^2-e\) получаСтся пСрСносом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=a(x+d)^2\) Π½Π° \(e\) Π΅Π΄ΠΈΠ½ΠΈΡ† Π²Π½ΠΈΠ·.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π½Π°Ρ‡Π°Π»Π° смотрим Π½Π° Π΅Ρ‘ Ρ„ΠΎΡ€ΠΌΡƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΅Ρ‘ Π²Π΅Ρ‚Π²Π΅ΠΉ. Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠ° стандартная, базовая ΠΈ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, поэтому \(a=1\). Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° пСрСмСщСниями Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π±Π°Π·ΠΎΠ²ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ \(y=x^2\).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А ΠΊΠ°ΠΊ Π½Π°Π΄ΠΎ Π±Ρ‹Π»ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒ Π·Π΅Π»Π΅Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ‡Ρ‚ΠΎΠ± ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ€Π°Π½ΠΆΠ΅Π²Ρ‹ΠΉ? Надо ΡΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒΡΡ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° ΠΏΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ† ΠΈ Π²Π½ΠΈΠ· Π½Π° \(4\).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎ Π΅ΡΡ‚ΡŒ наша функция выглядит Ρ‚Π°ΠΊ: \(y=(x-5)^2-4\).
ПослС раскрытия скобок ΠΈ привСдСния ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΈΡΠΊΠΎΠΌΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ \(f(6)\), Π½Π°Π΄ΠΎ сначала ΡƒΠ·Π½Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(f(x)\). НайдСм Π΅Ρ‘:

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° растянута Π½Π° \(2\) ΠΈ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·, поэтому \(a=-2\). Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Π΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ являСтся функция \(y=-2x^2\).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ абс Π² Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° смСщСна Π½Π° 2 ΠΊΠ»Π΅Ρ‚ΠΎΡ‡ΠΊΠΈ Π²ΠΏΡ€Π°Π²ΠΎ, поэтому \(y=-2(x-2)^2\).

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° поднята Π½Π° 4 ΠΊΠ»Π΅Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Π²Π΅Ρ€Ρ…, поэтому \(y=-2(x-2)^2+4\).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *