Что сужается при нагревании
Исследователи выяснили, почему некоторые вещества сжимаются при нагревании
Когда нагревают твердые материалы, большая часть тепла уходит на колебания атомов. В обычных материалах эти колебания «раздвигают» атомы, в результате чего материал расширяется. Однако некоторые вещества имеют уникальные кристаллические структуры, которые заставляют их сокращаться при нагревании. Это свойство называется отрицательным тепловым расширением. К сожалению, эти кристаллические структуры очень сложны, и ученые до сих пор были не в состоянии увидеть, каким образом колебания атомов приводят к сокращению размеров материала.
Ситуация изменилась благодаря открытию в 2010 году отрицательного теплового расширения у ScF3, порошкообразного вещества с относительно простой кристаллической структурой. Чтобы выяснить, как его атомы вибрируют под воздействием высокой температуры, американские ученые использовали компьютер для моделирования поведения каждого атома. Также свойства материала изучались в нейтронной лаборатории комплекса ORNL в штате Теннеси.
Результаты исследования впервые дали четкую картину того, как сжимается материал. Для того чтобы понять этот процесс, нужно представить атомы скандия и фтора шарами, соединенными друг с другом пружинами. Более легкий атом фтора связан с двумя более тяжелыми атомами скандия. При повышении температуры все атомы начинают раскачиваться в нескольких направлениях, но из-за линейного расположения атома фтора и двух атомов скандия первый больше вибрирует в направлениях, перпендикулярных пружинам. С каждым колебанием фтор притягивает атомы скандия друг к другу. Поскольку это происходит по всему материалу, он сокращается в размерах.
Наибольшее удивление вызвал тот факт, что при сильных колебаниях энергия атома фтора пропорциональна четвертой степени перемещения (колебание четвертой степени или биквадратное колебание). При этом для большинства материалов характерны гармонические (квадратичные) колебания, такие как возвратно-поступательное движение пружин и маятников.
По заявлению авторов открытия, практически чистый квантовый оссцилятор четвертой степени никогда до этого не был зафиксирован в кристаллах. Это означает, что изучение ScF3 в перспективе позволит создать материалы с уникальными тепловыми свойствами.
Тепловое расширение
Подавляющее большинство веществ при нагревании расширяется. Это легко объяснимо с позиции механической теории теплоты, поскольку при нагревании молекулы или атомы вещества начинают двигаться быстрее. В твердых телах атомы начинают с большей амплитудой колебаться вокруг своего среднего положения в кристаллической решетке, и им требуется больше свободного пространства. В результате тело расширяется. Так же и жидкости и газы, по большей части, расширяются с повышением температуры по причине увеличения скорости теплового движения свободных молекул (см. Закон Бойля—Мариотта, Закон Шарля, Уравнение состояния идеального газа).
где α — так называемый коэффициент линейного теплового расширения. Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.
Для инженеров тепловое расширение — жизненно важное явление. Проектируя стальной мост через реку в городе с континентальным климатом, нельзя не учитывать возможного перепада температур в пределах от —40°C до +40°C в течение года. Такие перепады вызовут изменение общей длины моста вплоть до нескольких метров, и, чтобы мост не вздыбливался летом и не испытывал мощных нагрузок на разрыв зимой, проектировщики составляют мост из отдельных секций, соединяя их специальными термическими буферными сочленениями, которые представляют собой входящие в зацепление, но не соединенные жестко ряды зубьев, которые плотно смыкаются в жару и достаточно широко расходятся в стужу. На длинном мосту может насчитываться довольно много таких буферов.
Однако не все материалы, особенно это касается кристаллических твердых тел, расширяются равномерно по всем направлениям. И далеко не все материалы расширяются одинаково при разных температурах. Самый яркий пример последнего рода — вода. При охлаждении вода сначала сжимается, как и большинство веществ. Однако, начиная с +4°C и до точки замерзания 0°C вода начинает расширяться при охлаждении и сжиматься при нагревании (с точки зрения приведенной выше формулы можно сказать, что в интервале температур от 0°C до +4°C коэффициент теплового расширения воды α принимает отрицательное значение). Именно благодаря этому редкому эффекту земные моря и океаны не промерзают до дна даже в самые сильные морозы: вода холоднее +4°C становится менее плотной, чем более теплая, и всплывает к поверхности, вытесняя ко дну воду с температурой выше +4°C.
То, что лед имеет удельную плотность ниже плотности воды, — еще одно (хотя и не связанное с предыдущим) аномальное свойство воды, которому мы обязаны существованием жизни на нашей планете. Если бы не этот эффект, лед шел бы ко дну рек, озер и океанов, и они, опять же, вымерзли бы до дна, убив всё живое.
Сжатие при нагревании: почему такое возможно?
Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут.
Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут себя по-другому. Инженеры Калифорнийского технологического института впервые выяснили, каким образом один из этих любопытных материалов, трифторид скандия (ScF3), сжимается при нагревании.
Когда нагревают твердые материалы, большая часть тепла уходит на колебания атомов. В обычных материалах эти колебания «раздвигают» атомы, в результате чего материал расширяется. Однако некоторые вещества имеют уникальные кристаллические структуры, которые заставляют их сокращаться при нагревании. Это свойство называется отрицательным тепловым расширением. К сожалению, эти кристаллические структуры очень сложны, и ученые до сих пор были не в состоянии увидеть, каким образом колебания атомов приводят к сокращению размеров материала.
Ситуация изменилась благодаря открытию в 2010 году отрицательного теплового расширения у ScF3, порошкообразного вещества с относительно простой кристаллической структурой. Чтобы выяснить, как его атомы вибрируют под воздействием высокой температуры, американские ученые использовали компьютер для моделирования поведения каждого атома. Также свойства материала изучались в нейтронной лаборатории комплекса ORNL в штате Теннеси.
Результаты исследования впервые дали четкую картину того, как сжимается материал. Для того чтобы понять этот процесс, нужно представить атомы скандия и фтора шарами, соединенными друг с другом пружинами. Более легкий атом фтора связан с двумя более тяжелыми атомами скандия. При повышении температуры все атомы начинают раскачиваться в нескольких направлениях, но из-за линейного расположения атома фтора и двух атомов скандия первый больше вибрирует в направлениях, перпендикулярных пружинам. С каждым колебанием фтор притягивает атомы скандия друг к другу. Поскольку это происходит по всему материалу, он сокращается в размерах.
Наибольшее удивление вызвал тот факт, что при сильных колебаниях энергия атома фтора пропорциональна четвертой степени перемещения (колебание четвертой степени или биквадратное колебание). При этом для большинства материалов характерны гармонические (квадратичные) колебания, такие как возвратно-поступательное движение пружин и маятников.
По заявлению авторов открытия, практически чистый квантовый оссцилятор четвертой степени никогда до этого не был зафиксирован в кристаллах. Это означает, что изучение ScF3 в перспективе позволит создать материалы с уникальными тепловыми свойствами.
При нагревании сталь расширяется или сужается
Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра. |
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
– вдоль волокон | 5,5-5,5 |
– поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
– вдоль волокон | 4,9 |
– поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
– вдоль волокон | 5,4 |
– поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Температурный коэффициент обьемного расширения жидкостей
В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).
При нагреве металл расширяется или сужается
В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от температуры.
Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.
Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 106. Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 106, это значение составляет 22,8·10-6 1/град.
Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10-6 при 0°С до 5,8·10-6 1/град при температуре 2100°С.
Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10-6 до 34·10-6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.
Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.
Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
Тепловое расширение металла
Известно, что все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.
Таким образом, длина l0 какой-то детали после нагрева на температуруt° составит:
где а — коэффициент линейного расширения.
При наблюдении за изменением объема детали используют коэффициент объемного расширения, который определяется как утроенный коэффициент линейного расширения.
Материалы, имеющие большой коэффициент расширения, применяются в приборостроении для деталей автоматически действующих механизмов. При определенной температуре такие детали, удлиняясь, могут включать либо размыкать электрическую цепь.
Минимальный коэффициент линейного расширения имеет сплав Fe — Ni, называемый инваром. Его коэффициент расширения в 8 раз меньше железа.
Теплопроводность металлов
Различные детали теплотехнической аппаратуры — радиаторы автомобилей и самолетов, внутренние стенки рабочих камер холодильных установок, стенки котлов и т.д. — должны обладать способностью хорошо проводить тепло.
Детали и инструменты, подвергающиеся в процессе работы местным разогревай, также должны быстро отдавать это тепло, чтобы не (наступало оплавление.
Способность проводить тепло называется теплопроводностью
Лучшей теплопроводностью обладают чистые металлы, такие, как:
Удельное сопротивление
Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:
Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.
Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:
На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.
Удельное сопротивление металлов
Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.
Проводимость и электросопротивление
Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:
Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:
Проводимость жидкостей
Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.
Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.
Электросопротивление проводов
Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.
Тепловые свойства чугуна
Важная категория физических свойств материала – его тепловые свойства. К ним относятся:
Все они зависят от состава, структуры, а значит от марки сплава. Кроме того, эти свойства металла меняются с изменением его температуры (так называемое правило смещения). Характер этой зависимости и основные физические свойства приведены в таблице.
Теплоемкость (с)
Это количество теплоты, которое необходимо подвести к телу, чтобы его температура возросла на один Кельвин (далее все величины переведены в градус Цельсия).
Теплоемкость зависит от состава сплава, а также от температуры (Т). Чем выше Т, тем больше теплоемкость. Если температура выше Т фазовых превращений, но ниже Т плавления, то
при Т, превышающей температуру плавления:
Объемная теплоемкость (отношение теплоемкости к объему вещества) для приблизительных расчетов принята:
Теплопроводность (λ)
Это количественная характеристика способности тела проводить тепло. Для теплопроводности не действует правило смещения. Температура материала повышается – λ понижается. Она зависит от состава сплава, а в большей степени от его структуры. Вещества, увеличивающие степень графитизации, повышают теплопроводность, а вещества, препятствующие образованию графита, понижают.
Кстати, теплопроводность расплавленного чугуна намного меньше, чем твердого. Но из-за конвекции она больше, чем λ твердого металла.
Теплопроводность для разных марок лежит в пределах:
λ =0,08…0,13 кал/ (см·сек оС)
Теплопроводность и другие теплофизические свойства в зависимости от температуры сплава приведены в конце раздела.
Температуропроводность (α)
Это физическая величина, показывающая, насколько быстро меняется температура тела. Равна отношению теплопроводности к объёмной теплоёмкости.
Для приблизительных расчетов можно принять:
α=λ для твердого металла (равна его теплопроводности);
α=0,03 см2/сек для жидкого.
Температура плавления
У этого сплава хорошие литейные свойства. Лучше, чем у стали. Жидкотекучесть высокая, а усадка мала (около 1%). Его можно расплавить при температуре на 300-400 градусов ниже чем у стали. Температура плавления чугуна:
Какой он бывает
Структура чугуна – это железная основа с графитовыми (углеродными) вкраплениями. Этот материал различают не по составу, а по форме углерода в нем:
В итоге главное отличие его (кроме белого) от стали — наличие структуре графита. А разная форма графита определяет свойства разных марок.
Условно графитные зерна – это пустоты, трещины, а чугун – это сталь, испещренная микроскопическими трещинами.
Соответственно, чем больше пустот, тем хуже качество металла. Имеет значение также форма и взаиморасположение включений.
Однако нельзя принимать графитные зерна как исключительно вредные. Из-за присутствия графита данный материал легче обрабатывать резанием, стружка становится более ломкой. Кроме того, он хорошо противостоит трению также из-за графита.
Примеси
Конечно, этот металл содержит не только железо и углерод. В него входят те же элементы, что и в стальные сплавы – фосфор, марганец, сера, кремний и другие. Эти добавки косвенно влияют на особенности сплава – они изменяют ход графитизации. Именно от этого параметра и зависят качества материала.
Кроме обычных примесей, чугун может содержать и другие вещества. Это так называемый легированный материал. Хром, молибден, ванадий мешают процессу образования графита. Медь, никель и большинство других веществ, графитизации способствуют.
Технология самостоятельной плавки
Непромышленное выплавление чугуна – процесс очень трудоемкий. Выплавить своими руками отливки заводского качества в кустарных условиях невозможно.
Дома выплавлять этот металл нельзя. Нужно отдельное вентилируемое помещение – гараж, например. Плавку ведут в печах. В промышленности используют доменные печи, вагранки и индукционные печи.
Доменная печь – промышленный агрегат, способный расплавлять металл в огромных масштабах. В ней можно переплавлять железорудное сырье. После запуска она работает без перерыва до 5-6, а то и до 10 лет.
Затем ее останавливают, проводят обслуживание и снова запускают. Расплавление металла проходит в присутствии газов для улучшения качества материала. Для малого и среднего производства такие печи не подходят.
Вагранка – печь шахтного типа, как и доменная. От последней она отличается тем, что в ней не поддерживается специальный состав газов. В ней плавят не руду, а железный лом. Она больше подходит для малого производства.
Инженеру про алюминий
Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см3, что составляет всего лишь треть от плотности сталей.
Коррозионная стойкость алюминия
Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл.
Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой.
Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.
Температурное расширение алюминия
Линейное температурное расширение алюминия и его сплавов составляет 24·10-6 на 1 градус Цельсия – в два раза больше чем у сталей.
Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов.
При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.
Модуль упругости алюминия
Модуль упругости алюминия – 70000 МПа, только треть от модуля упругости сталей. Это влечет за собой существенные последствия для геометрии конструкции, так как прогибы балок, несущая способность колонн, т.е. их боковое выпучивание или местное выпучивание прямо зависят от модуля упругости.
Жесткость алюминиевых профилей
Во многих строительных конструкциях критическим параметром профилей является их жесткость.
Если стальной профиль заменять на алюминиевый с сохранением его жесткости, то утолщать в три раза все стенки не совсем экономично, так как алюминий легче стали как раз в те же три раза.
Однако облегчение конструкций за счет применения алюминия – это естественное стремление, как по физическим, так и по экономическим причинам.
При проектировании балок есть практичное и проверенное правило: увеличивайте все размеры кроме ширины в 1,4 раза и получите поперечное сечение с моментом инерции почти в три раза больше. Тогда для профиля с той же жесткостью (Е · I) сэкономите около 50 % веса.
При этом в некоторой степени компенсируется потеря жесткости в отношении бокового выпучивания. С учетом того, что часто стандартные стальные профили являются весьма не оптимальными, можно сэкономить и больше чем 50 % веса. Это хорошо видно из рисунка 1.
Если нет ограничений по высоте, и боковое выпучивание не является конструкционным параметром, то можно сэкономить до 60 % веса.
Если жесткость элемента не важна, а прочность стали близка к прочности алюминиевого сплава, то экономия может быть и до 70 %, но это уже окончательный предел возможной экономии веса.
Эти рассуждения приводят ко второму важному моменту. Если момент инерции профиля увеличивается в три раза при увеличении высоты профиля только в 1,4 раза, то момент сопротивления сечения увеличится соответственно в 3:1,4=2,1 раза.
Поэтому напряжения в алюминиевой балке по сравнению со стальной будут в два с лишним раза меньше.
Теперь понятно, почему конструктору не надо сразу «хвататься» за высокопрочные алюминиевые сплавы, и почему менее легированные алюминиевые сплавы 6060 и 6063 (АД31) настолько популярны.
Нагрев алюминия
Как и у других металлов прочность алюминия с повышением температуры снижается. До некоторых температур это явление обратимо, то есть после охлаждения материал возвращается к тем же свойствам, что и до нагрева.
До температуры около 80 °С падением прочности можно пренебречь для всех сплавов и состояний. Выше 80 °С некоторые конструкторские ситуации могут потребовать учета эффекта ползучести.
Термически упрочненные сплавы начинают терять прочность при температурах выше 110 °С, причем степень этого явления зависит от длительности нагрева.
Сплавы, не упрочняемые термической обработкой, в нагартованных состояниях начинают терять прочность при температурах выше 150 °С и также в зависимости от длительности нагрева. После нагрева термически не упрочняемых сплавов в отожженном состоянии «О» необратимой потери прочности не происходит.
Считается, что короткий нагрев термически упрочненных алюминиевых профилей до температуры 180-200 °C в течение 10-15 минут, который происходит при «оплавлении» порошковых красок, не приводит к серьезной потере прочности.
Сварка алюминиевых сплавов
Намного серьезней является потеря прочности алюминиевых сплавов при сварке. Здесь температура поднимается настолько высоко из-за локального плавления, что падение прочности вблизи сварного шва надо обязательно принимать во внимание. Термически не упрочняемые сплавы теряют всю свою прочность, полученную при нагартовке, и возвращаются к отожженному состоянию «О».
Термически упрочняемые алюминиевые сплавы в состоянии Т6 теряют приблизительно 40 % их прочности (рисунок 2) за исключением сплава 7020, который теряет только 20 %. Все эти сплавы не доходят до состояния полного отжига, поскольку неизбежен определенный эффект закалки при охлаждении шва.
Требования к прочностным характеристикам материала в зоне сварного шва устанавливают и контролируют по результатам испытаний образцов.
Критические точки превращения
На рис.2 показаны кривые охлаждения и нагревания чистого железа. Как видно из этих кривых, в процессе перестройки одной решетки в другую, а также при расплавлении и затвердевании железа происходят температурные остановки, являющиеся результатом выделения дополнительного количества тепла при охлаждении и поглощении дополнительного количества тепла при нагревании.
Рис. 2. Кривые охлаждения и нагрева чистого железа.
Температурные остановки, при которых происходят перестройки решеток, называются критическими температурами или критическими точками и обозначаются Аrпри охлаждении и Ас при нагревании. В точках Аr2и Ас2,не происходит перестройка атомной решетки, а изменяются магнитные свойства железа. При температуре выше 768° железо теряет способность притягиваться магнитом. При очень малой скорости нагревания и охлаждения критические точки А с3и Аr3не совпадают друг с другом на 12°. При увеличении скорости охлаждения несовпадение критических точек увеличивается, так как температура значительно снижается и железо переохлаждается. Это явление, носит название гистерезис.
При нагревании и охлаждении стали происходит также перестройка атомной решетки, но температуры критических точек не постоянны. Они зависят от содержания углерода и легирующих примесей в стали, а также от скорости нагревания и охлаждения.
На рис. 3 представлена диаграмма состояния углеродистой стали при медленном охлаждении и нагревании.
Рис.3. Диаграмма состояния углеродистых сталей.
Коэффициент линейного расширения бетона и железа
Коэффициент теплового расширения | |
β = 1 V ( d V d T ) p > | |
Размерность | −1 |
Единицы измерения | |
−1 | |
СГС | −1 |
Коэффицие́нт теплово́го расшире́ния
— физическая величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 при постоянном давлении. Имеет размерность обратной температуры. Различают коэффициенты объёмного и линейного расширения.
Коэффициент линейного теплового расширения
Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:
Для железа коэффициент линейного расширения равен 11,3×10−6 K−1[1].
Для сталей
Таблица значений коэффициента линейного расширения α, 10−6K−1[2]
Марка стали | 20—100 °C | 20—200 °C | 20—300 °C | 20—400 °C | 20—500 °C | 20—600 °C | 20—700 °C | 20—800 °C | 20—900 °C | 20—1000 °C |
08кп | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
08 | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
10кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 14,8 | 12,6 |
10 | 11,6 | 12,6 | — | 13,0 | — | 14,6 | — | — | — | — |
15кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
15 | 12,4 | 13,2 | 13,9 | 14,4 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
20кп | 12,3 | 13,1 | 13,8 | 14,3 | 14,8 | 15,1 | 20 | — | — | — |
20 | 11,1 | 12,1 | 12,7 | 13,4 | 13,9 | 14,5 | 14,8 | — | — | — |
25 | 12,2 | 13,0 | 13,7 | 14,4 | 14,7 | 15,0 | 15,2 | 12,7 | 12,4 | 13,4 |
30 | 12,1 | 12,9 | 13,6 | 14,2 | 14,7 | 15,0 | 15,2 | — | — | — |
35 | 11,1 | 11,9 | 13,0 | 13,4 | 14,0 | 14,4 | 15,0 | — | — | — |
40 | 12,4 | 12,6 | 14,5 | 13,3 | 13,9 | 14,6 | 15,3 | — | — | — |
45 | 11,9 | 12,7 | 13,4 | 13,7 | 14,3 | 14,9 | 15,2 | — | — | — |
50 | 11,2 | 12,0 | 12,9 | 13,3 | 13,7 | 13,9 | 14,5 | 13,4 | — | — |
55 | 11,0 | 11,8 | 12,6 | 13,4 | 14,0 | 14,5 | 14,8 | 12,5 | 13,5 | 14,4 |
60 | 11,1 | 11,9 | — | 13,5 | 14,6 | — | — | — | — | — |
15К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,0 | — | — | — | — |
20К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,2 | — | — | — | — |
22 | 12,6 | 12,9 | 13,3 | 13,9 | — | — | — | — | — | — |
А12 | 11,9 | 12,5 | — | 13,6 | 14,2 | — | — | — | — | — |
16ГС | 11,1 | 12,1 | 12,9 | 13,5 | 13,9 | 14,1 | — | — | — | — |
20Х | 11,3 | 11,6 | 12,5 | 13,2 | 13,7 | — | — | — | — | — |
30Х | 12,4 | 13,0 | 13,4 | 13,8 | 14,2 | 14,6 | 14,8 | 12,0 | 12,8 | 13,8 |
35Х | 11,3 | 12,0 | 12,9 | 13,7 | 14,2 | 14,6 | — | — | — | — |
38ХА | 11,0 | 12,0 | 12,2 | 12,9 | 13,5 | — | — | — | — | — |
40Х | 11,8 | 12,2 | 13,2 | 13,7 | 14,1 | 14,6 | 14,8 | 12,0 | — | — |
45Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
50Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
/ Про Бетон / Коэффициент линейного расширения бетона и железа
В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.
Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь.
Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.
По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.
Представлены таблицы значений среднего температурного коэффициента линейного расширения сталей ТКЛР (или ТКР) распространенных марок (более 300 марок стали) при различных температурах в интервале от 27°С до указанной в таблицах. Для отрицательных температур приведены значения истинного коэффициента линейного расширения.
Температурный коэффициент линейного теплового расширения стали численно равен относительному изменению ее линейных размеров при увеличении (снижении) температуры этого сплава на 1 градус Цельсия или Кельвина.
При положительной величине ТКЛР в процессе нагрева сталь увеличивается в размерах (расширяется), при отрицательном значении этого коэффициента — сжимается. Отрицательным ТКЛР сталь обладает при сверхнизких температурах, приближающихся к абсолютному нулю (-273,15°С). В этих условиях коэффициент линейного расширения стали имеет малое отрицательное значение и практически равен нулю.
Коэффициенты линейного расширения углеродистой стали
Марка стали | Температура, °С | ТКЛР·10 6 1/град |
Сталь 3, сталь 3КП | -173…-73…27 | 5,5…10,1…11,8 |
Сталь 08КП | 100…200…300…400…500…600…700 | 11,6…12,3…13,2…13,7…14,2…14,6…15 |
Сталь 10 | 100…200…300…400 | 11,6…12,6…13,0…14,6 |
15 | 100…200…300…400…500…600…700…800…900…1000 | 12,2…12,3…13,1…13,5…14,3…14,3…15,3…14,1…13,2…13,3 |
20, 20КП | 100…200…300…400…500…600…700…800 | 11,1…12,1…12,8…13,4…13,9…14,4…14,8…12,9 |
25 | 100…200…300…400…500…600…700 | 12,2…12,7…13,1…13,5…13,9…14,4…14,9 |
25Л | 100…200…300…400…500…600 | 11,5…12,9…13…13,2…13,5…13,8 |
30 | 100…200…300…400…500…600…650 | 12,9…14,5…15,8…15,8…16,7…16,2…16,4 |
35 | 100…200…300…400…500 | 11,1…11,9…13,4…14…14,4 |
40 | 100…200…300…400…500…600…700…800…900…1000 | 11,2…13…13…13,6…14,1…14,6…14,6…11,9…12,7…13,6 |
45 | 100…200…300…400…500…600…700…800…900…1000 | 11,6…12,3…13,1…13,7…14,2…14,7…15,1…12,5…13,6…14,5 |
50 | -173…-73…27…100…300…500…700…900…1000 | 4,9…9,3…10,9…12…12,9…13,7…14,3…12,9…14 |
У8 | 100…200…300…400…500…600…650 | 12,1…14…12,8…16,1…16,8…17,8…19,8 |
У9 | 100…200…300…400…500…600…650 | 12,1…13,7…15,3…16,4…17,3…17,2…17,6 |
У12 | 100…200…300…400…500…600…650 | 11,7…13,3…15,4…16,2…17,1…18,3…18,9 |
Отрицательный коэффициент теплового расширения
Основная статья: Negative thermal expansion
Некоторые материалы при повышении температуры демонстрируют не расширение, а наоборот, сжатие, т. е. имеют отрицательный коэффициент теплового расширения.
Для некоторых веществ это проявляется на довольно узком температурном интервале, как, например, у воды на интервале температур 0…+3,984 °С, для других веществ и материалов, например фторид скандия(III), вольфрамат циркония (ZrW2O8)[3], некоторых углепластиков интервал весьма широк. Подобное поведение демонстрирует также обычная резина.
При сверхнизких температурах аналогичным образом ведут себя кварц, кремний и ряд других материалов. Также существуют инварные сплавы (ферро-никелевые), имеющие в некотором диапазоне температур коэффициент теплового расширения, близкий к нулю.
3.2. Термическое расширение твердых тел, жидкостей и газов
Относительное изменение длины твердых тел и объема твердых, жидких и газообразных тел при повышении температуры на ΔT характеризуется, с одной стороны, средним коэффициентом линейного расширения:
с другой — средним коэффициентом объемного расширения:
Здесь l0 и V0 — длина и объем тела при температуре T0, l и V — те же величины при температуре T.
Предельные значения и при ΔT>0 называются истинным коэффициентом линейного расширения:
и истинным коэффициентом объемного расширения:
Размерность коэффициентов линейного и объемного расширения: К–1, °С–1.
Структура стали
Структурой стали называется внутреннее ее строение. Углерод в стали находится в виде химического соединения с железом, и это соединение называется — цементит. Кроме цементита, в стали имеется феррит, представляющий собой почти чистое железо. В зависимости от содержания углерода большая или меньшая часть феррита находится в механической смеси с цементитом, образуя новую структуру — перлит. Если небольшой кусок металла прошлифовать, отполировать и протравить в специальном реактиве, то под микроскопом можно различить структуры. Ниже приводится описание структур железоуглеродистых сплавов.
Аустенит представляет собою твердый раствор углерода и других элементов в гамма-железе. Наибольшее содержание углерода, которое может раствориться в ау-стените — это 2%. Аустенит образуется при затвердевании жидкой стали и при нагреве твердой стали выше критических температур.
В обычных сталях аустенит устойчив только лишь при температуре выше критических точек. При охлаждении, даже самом быстром, с этих температур аустенит превращается в другие структуры. При комнатной температуре аустенит полностью сохраняется в ряде марок нержавеющих сталей, в высокомарганцовистой стали и в незначительном количестве остается при закалке некоторых марок инструментальной и конструкционной сталей.
Аустенит мягок, пластичен, тягуч, мало упруг. Твердость его по Бринелю находится в пределах 170—220.
Аустенит немагнитен, обладает невысокой электропроводностью.
Феррит представляет собой твердый раствор углерода и других элементов в альфа-железе. Наибольшее содержание углерода, которое может раствориться в феррите, это 0,04%. Феррит устойчив при температурах ниже критической точки AC1. Он выделяется из аустенита при медленном охлаждении последнего ниже A6i. Феррит мягок, сильно тягуч. Твердость HB= 60—100. Феррит магнитен до 768°. Свыше этой температуры он теряет магнитные свойства.
Цементит представляет собой химическое соединение железа с углеродом Fe3C—карбид железа. Цементит содержит углерода 6,67%. Выделяется из жидкого и твердого раствора при медленном охлаждении. Цементит весьма тверд и хрупок. Твердость его НB= 800—820. Он магнитен до 210°. Выше этой температуры цементит теряет магнитные свойства.
Перлит представляет собой механическую смесь феррита и цементита. Он образуется из аустенита при медленном его охлаждении. Температура превращения аустенита в перлит 723°С. При весьма медленном переходе через эту температуру цементит образуется в виде зерен (глобулей), и тогда перлит называется зернистым. При более быстром охлаждении цементит приобретает форму пластинок, и такой перлит называется пластинчатым. При весьма быстром охлаждении в результате значительного переохлаждения аустенита вместо перлита получаются другие структуры, о которых речь будет ниже.
Перлит магнитен, прочен и пластичен. Твердость его находится в пределах от 160 до 230 кг/мм2 по Бринелю. При обработке резанием наиболее чистую поверхность дает структура зернистого перлита.
Мартенсит образуется в результате весьма быстрого охлаждения (закалки) аустенита. При быстром охлаждении успевает произойти перестройка кристаллической решетки гамма-железа в решетку альфа-железа, выделение же углерода в карбид железа не успевает произойти, и он весь остается растворенным в решетке альфа-железа. Так как нормально альфа-железо может растворить в себе не более 0,04% углерода, то такой раствор называют пересыщенным. Он отличается весьма большой твердостью (свыше Rc= 60) и хрупкостью. Следует указать, что решетка альфа-железа, получающаяся в результате закалки, имеет искаженную форму. Так, размеры ее граней не одинаковы — в одном направлении они удлинены за счет других (см. рис. 4). Такая решетка называется тетрагональной. Чем больше в стали углерода, тем больше тетрагональность решетки и тем более велики внутренние напряжения. При нагревании до температур 100—200° тетрагональность мартенсита уменьшается, форма кристаллической его решетки приближается к форме правильного куба, и вместе с этим уменьшаются внутренние напряжения. Мартенсит магнитен.
Рис. 4. Строение кристаллической решетки стали, закаленной на мартенсит.
Троостит представляет собой высокодисперсную (мелкораздробленную) смесь феррита и карбидов. Он образуется при охлаждении аустенита с замедленной против закалки скоростью или в результате нагрева (отпуска) мартенсита в пределах 250—400°.
При нагреве закаленной стали происходит постепенное выделение углерода из кристаллической решетки с образованием карбидов. Троостит менее прочен, более пластичен, чем мартенсит. Твердость его НB330—400. При охлаждении аустенита в горячих средах в интервале 250—400° (изотермическое превращение аустенита) происходит образование игольчатого троостита, несколько более прочного, чем обычный троостит.
Сорбит представляет собой дисперсную смесь феррита и карбидов. Он образуется при охлаждении аустенита с небольшой скоростью или при нагреве (отпуске) мартенсита до 400—650°. Карбиды сорбита более крупные, чем троостита. Сорбит пластичен, вязок и магнитен. Твердость НВ 270—320.
Ледебурит представляет собой эвтектическую смесь аустенита и цементита. Он содержит углерода 4 3% Образуется ледебурит при затвердевании жидкого сплава с содержанием углерода свыше 2%. Ледебурит хрупок.
На рис. 5. представлены фотоснимки структур стали с различным содержанием углерода.
Структура стали с содержанием углерода 0,83% состоит из сплошного перлита и называется эвтектоидной; при меньшем содержании углерода структура стали состоит из перлита и феррита и носит название доэвтектоидной, а при большем содержании углерода — из перлита и цементита и называется заэвтектоидной. Температура 723°, при которой перлит переходит в аустенит, также называется критической и обозначается Ас.
Для того чтобы доэвтектоидную и эвтектоидную сталь полностью отжечь, нормализовать или закалить, их нужно нагреть до такой температуры, при которой они перешли бы в аустенитное состояние.
Рис. 5. Микроструктура отожженной углеродистой стали: