Что сталкивают в адронном коллайдере
Частица бога, багет и Шива-разрушитель: 10 фактов о Большом адронном коллайдере
Горячий, как ранняя Вселенная, и холодный, как абсолютный ноль; намного точнее, чем швейцарские часы, но настолько хрупкий, что его можно сломать куском багета; поражающий обывателей и даже ученых своей мощью и известный юмором своих сотрудников. Все это про LHC, юбилею которого посвящает этот материал Indicator.Ru.
Большой адронный коллайдер (Large Hadron Collider, LHC) — гигантский и мощнейшый аппарат, в котором можно ускорять и сталкивать частицы-адроны (протоны и тяжелые ионы), чтобы изучать то, на что они распадутся. На строительство этого сооружения — самого сложного экспериментального устройства из существующих и самого огромного цельного механизма из когда-либо созданных человеком — было потрачено около шести миллиардов долларов. И это не считая уже имеющейся инфраструктуры Европейского центра ядерных исследований!
Главная цель работы LHC — поиск отклонений от Стандартной модели. Это одна из важнейших физических концепций, которая описывает современный мир, но не может пока объяснить гравитацию, темную материю и темную энергию. На коллайдере удалось открыть бозон Хиггса (неуловимую прежде «частицу бога»), а также обнаружить и подтвердить существование тетракварков и пентакварков. Официальный запуск LHC состоялся 10 сентября 2008 года, то есть сегодня у него день рождения! В честь этого мы расскажем о его необычных и неожиданных сторонах.
Факт 1: Откуда взялась аббревиатура CERN
Давайте перестанем путаться раз и навсегда. Все мы постоянно употребляем слово «CERN» или «ЦЕРН», но о расшифровке мало кто задумывается. Многие считают его калькой с английской аббревиатуры. Но как из названия организации, создавшей коллайдер, получить такую аббревиатуру? По-русски это Европейский центр ядерных исследований, по-английски — European Organization for Nuclear Research. Дело в том, что построен коллайдер вблизи Женевы, на границе Франции и Швейцарии, поэтому организация носит французское название, Conseil Européen pour la Recherche Nucléaire, от которого и пошла аббревиатура. Да и звучит CERN благозвучнее, чем какой-нибудь EONR или ЕЦЯИ.
Факт 2: Жарче 100 000 Солнц
Коллайдер очень горяч. Чтобы смоделировать условия, близкие к последствиям Большого взрыва, ученые ускоряют и сталкивают на нем два пучка тяжелых ионов, получая температуры в сотни тысяч раз больше, чем в центре Солнца. Благодаря тому, что в 2012 году в LHC смогли достичь температуры в 5,5 триллиона градусов, физикам удалось получить кварк-глюонную плазму — раскаленный «суп» из свободных строительных элементов материи, словно прямиком из недр новорожденной Вселенной. Плотность такого вещества была больше, чем плотность нейтронных звезд.
Факт 3: Ледяное притяжение
В коллайдере около 9600 супермагнитов, которые по силе в 100 000 раз превосходят притяжение Земли и помогают гонять протоны на околосветовых скоростях. Обмотки этих магнитов сплетены из 36 «струн» толщиной по 15 мм. Каждая «струна» состоит из 6-9 тысяч отдельных нитей из ниобий-титанового сплава, диаметр которых составляет 7 мкм.
Большой адронный коллайдер: назначение, открытия и мифы
Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).
10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.
Как выглядит Большой адронный коллайдер
Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.
Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.
Как работает Большой адронный коллайдер
Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.
БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.
Откуда берутся протоны в для столкновения?
Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.
БАК состоит из трёх основных частей:
Зачем нужен Большой адронный коллайдер
С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.
Какие открытия совершили на БАК
На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.
Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.
С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.
Может ли коллайер уничтожить Землю
С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.
Есть две причины, чтобы не волноваться.
Надеемся, Вам было интересно, как и нам во время работы над этим материалом!
История, мифы и факты
Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.
Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:
Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.
А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.
Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.
Как работает большой адронный коллайдер
В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.
Результаты работы большого адронного коллайдера.
Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».
Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц, получены первые данные столкновений на рекордных энергиях, показано отсутствие асимметрии протонов и антипротонов, обнаружены необычные корреляции протонов. Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.
Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут наши авторы. Обращайтесь за помощью, и пусть учеба приносит радость!
Не только бозон Хиггса: что еще нашли в Большом адронном коллайдере
В этом году адронным коллайдерам исполнилось 50 лет. 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings. За последние 10 лет на Большом адронном коллайдере открыты 50 новых частиц, а не только известный бозон Хиггса. Рассказываем, что это за частицы.
Читайте «Хайтек» в
Сколько новых частиц открыты на Большом адронном коллайдере?
Самым известным открытием, конечно же, является бозон Хиггса. Менее известен тот факт, что за последние 10 лет эксперименты на БАК (Большом адронном коллайдере) также обнаружили более 50 новых частиц, называемых адронами. По совпадению, число 50 появляется в контексте адронов дважды, поскольку в 2021 году исполняется 50 лет адронным коллайдерам: 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings, что сделало его первым ускорителем в мире. История возникновения столкновений между двумя противоположно вращающимися пучками адронов.
Что такое адроны?
Так что же это за новые адроны, которых всего 59? Давайте начнем с самого начала: адроны не являются элементарными частицами — физики знают это с 1964 года, когда Мюррей Гелл-Манн и Джордж Цвейг независимо друг от друга предложили то, что сегодня известно как модель кварков. Она представила адроны как составные частицы, состоящие из новых типов элементарных частиц — кварков.
Кварки рождаются свободными, но встречаются только связанными…
Фрэнк Вилчек,
лауреат Нобелевской премии по физике за за открытие асимптотическое свободы в теории сильных взаимодействий, 2004 г.
Сам термин «адрон» происходит от греческого «хадрос» («сильный») и отражает свойство адронов участвовать в сильных взаимодействиях. Это короткодействующие фундаментальные взаимодействия, связывающие кварки внутри нуклонов и других адронов. Сила этого взаимодействия намного превосходит силу трех других фундаментальных взаимодействий — электромагнитного, слабого и гравитационного.
Адроны — связанные системы кварков и антикварков. Они существуют двух типов — барионы и мезоны.
Как появляются новые адроны?
Но точно так же, как исследователи все еще открывают новые изотопы спустя 150 лет после того, как Менделеев создал периодическую таблицу, исследования возможных составных состояний, образованных кварками, все еще являются активной областью физики элементарных частиц.
Причина этого кроется в квантовой хромодинамике, или КХД, теории, описывающей сильное взаимодействие, которое удерживает кварки вместе внутри адронов. У этого взаимодействия есть несколько любопытных особенностей, включая тот факт, что сила взаимодействия не уменьшается с расстоянием. Это приводит к свойству, которое запрещает существование свободных кварков вне адронов — ограничение цвета. Такие особенности делают эту теорию очень сложной с математической точки зрения.
Фактически до настоящего времени само ограничение цвета не было доказано аналитически. И у ученых до сих пор нет способа точно предсказать, какие комбинации кварков могут образовывать адроны.
Что мы знаем об адронах?
Еще в 1960-х годах было уже более 100 известных разновидностей адронов. Их обнаружили в экспериментах на ускорителях и в экспериментах с космическими лучами. Модель кварков позволила физикам описать весь «зоопарк» как разные составные состояния всего трех разных кварков: верхнего, нижнего и странного. Все известные адроны могут быть описаны либо как состоящие из трех кварков (образующих барионы), либо как кварк-антикварковые пары (образующие мезоны). Но теория также предсказывала другие возможные устройства кварков.
Уже в оригинальной статье Гелл-Манна о кварках 1964 года идея частиц, содержащих более трех кварков, считалась возможной. Сегодня ученые знают, что такие частицы действительно существуют. И все же потребовалось несколько десятилетий, чтобы экспериментально подтвердить первые четырехкварковые и пятикварковые адроны, или тетракварки и пентакварки.
Полный список из 59 новых адронов, обнаруженных на БАК, показан на изображении ниже.
Некоторые из этих частиц являются пентакварками, некоторые — тетракварками, а некоторые — новыми (возбужденными) состояниями барионов и мезонов с более высокой энергией.
Открытие этих новых частиц вместе с измерениями их свойств по-прежнему дает важную информацию для проверки границ кварковой модели. В свою очередь, это позволяет исследователям углубить понимание сильного взаимодействия, проверить теоретические предсказания и настроить модели. Стоит отметить, что это особенно важно для исследований, проводимых на БАК. Дело в том, что сильное взаимодействие отвечает за большинство того, что происходит при столкновении адронов. Чем лучше ученые поймут сильное взаимодействие, тем точнее будет моделирование этих столкновений. В итоге шансы увидеть небольшие отклонения от ожиданий, которые могут намекать на возможные новые физические явления, вырастут.
Первый адрон, открытый на БАК (LHC), χb (3P), был открыт ATLAS, а самые последние включают новый возбужденный красивый странный барион, наблюдаемый CMS, и четыре тетракварка, обнаруженные LHCb.
Стандартная модель — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Современная формулировка была завершена в середине 70-х годов после экспериментального подтверждения существования кварков.
Фермион — частица или квазичастица с полуцелым значением спина, собственного момента импульса элементарных частиц.
Эксперименты на адронных коллайдерах
Все существующие в мире коллайдеры (ускорители на встречных пучках) можно разбить на несколько групп в соответствии с тем, какие частицы разгоняются и сталкиваются друг с другом:
Эксперименты на адронных коллайдерах, к которым относится и LHC, имеют ряд особенностей, о которых полезно рассказать отдельно.
Как выглядит типичное протон-протонное столкновение
Протон — составная частица; он состоит из трех кварков (двух u-кварков с электрическим зарядом +2/3 и одного d-кварка с зарядом –1/3), которые скреплены вместе глюонным полем. Однако если протон летит со скоростью, очень близкой к скорости света, то глюонное поле в нём перестает быть просто связывающей силой, но материализуется в виде потока частиц — глюонов, — которые летят рядом с кварками. Можно считать, что быстро летящий протон состоит из перемешанных друг в друге глюонных, кварковых и даже антикварковых «облаков» — партонных плотностей.
При очень больших энергиях протон оказывается заполненным в основном глюонами, а кварков и антикварков в нём заметно меньше. Протоны и антипротоны в таких условиях выглядят практически одинаково, и поэтому нет особой разницы, что сталкивать — протоны с протонами (как на LHC) или протоны с антипротонами (как на коллайдере Тэватрон).
Когда два протона сталкиваются лоб в лоб, то это вовсе не значит, что каждый партон обязательно ударяется обо что-то внутри встречного протона. Обычно всё происходит проще — один кварк из одного протона сталкивается с кем-то из встречного протона, а остальные партоны просто пролетают мимо.
Столкнувшиеся друг с другом партоны получают сильный «удар», выбивающий их из родительских протонов. Однако глюонное поле обладает важным свойством — конфайнментом, который не позволяет кваркам улететь просто так. Вместо этого происходит адронизация — энергия удара тратится на рождение многочисленных адронов. Именно из-за адронизации протон-протонное столкновение так сильно отличается от электрон-позитронного. В этом процессе партоны-«наблюдатели» уже принимают самое активное участие.
Здесь схематично показан процесс множественного рождения адронов. Каждый адрон отмечен отдельной стрелкой, причем длина стрелки примерно соответствует импульсу адрона. В результате адроны разлетаются не изотропно во все стороны, как как бы прижаты к оси столкновения.
Рожденные адроны группируются как вдоль оси столкновения, так и вокруг направления вылета жесткого партона. Поток адронов, вылетающих примерно в одинаковом направлении, называется адронной струей.
Кроме жесткого рассеяния двух партонов, существуют и другие механизмы рождения струй. Так, в столкновении двух партонов лоб в лоб может родиться очень тяжелая частица (например, Z-бозон), которая затем распадается на два кварка, а они уже порождают струи. Собственно, изучение событий со струями — это и есть один из методов поиска тяжелых нестабильных частиц. Наблюдаются также и многоструйные события.
Кинематика протон-протонных столкновений
Поскольку партонов внутри протона много, каждый партон несет лишь небольшую долю всей энергии протона. Из-за этого полная энергия столкновения двух партонов получается заметно меньше, чем номинальная энергия протон-протонного столкновения. Например, когда на LHC два протона сталкиваются с энергией 7+7 ТэВ, происходят процессы столкновения партонов, скажем, с энергиями 1+2 ТэВ, или 0,5+0,3 ТэВ, или 0,2+0,05 ТэВ и т. д.
Все эти столкновения происходят с некоторой частотой, причем чем меньше энергия, чем чаще они происходят. Именно поэтому увеличение энергии протонов приводит к резкому увеличению сечения многих интересных процессов столкновения. Например, на протон-антипротонном коллайдере Тэватрон тоже происходят столкновения двух партонов с энергией 0,5+0,3 ТэВ, но на LHC они будут происходит на порядки чаще.
Из-за того, что распределение частиц не изотропно, а прижато к осям, кинематику частиц на адронных коллайдерах удобно описывать с помощью переменных «быстрота–угол». В таких переменных удобно выделяются разные типы процессов, происходящих в протонных столкновениях.
Трудности изучения протон-протонных столкновений
В изучении протон-протонных столкновений есть две главные трудности: одна экспериментальная и одна теоретическая.
Однако есть несколько приемов, позволяющих в этой ситуации всё же узнать немало нового.
Во-первых, не все рожденные частицы одинаково «интересны». Самую важную информацию несут частицы с большим поперечным импульсом, то есть струи. Углы вылета и энергия струй «помнят» то жесткое столкновение между кварками или глюонами, которое их породило. Изучая свойства струй, экспериментаторы могут нащупать более тесную связь с теорией.
Во-вторых, иногда помимо адронов рождаются и другие частицы с большой энергией — электроны, мюоны, фотоны. Эти частицы не участвуют в сильном взаимодействии, поэтому адронизации им не мешает. Отбирая события с такими частицами, можно изучать гораздо более редкие процессы, чем в исключительно адронных событиях.