Что способствует распределению температуры на земле
Что способствует распределению температуры на земле
Теплооборот, один из климатообразующих процессов, описывает процессы получения, передачи, переноса и потери тепла в системе земля – атмосфера. Особенности процессов теплооборота определяют температурный режим местности. Тепловой режим атмосферы обусловлен, прежде всего, теплообменом между атмосферным воздухом и окружающей средой. Под окружающей средой при этом понимают космическое пространство, соседние массы и особенно земную поверхность. Решающее значение для теплового режима атмосферы имеет теплообмен с земной поверхностью путем молекулярной и турбулентной теплопроводности.
Распределение температуры воздуха по земному шару зависит от общих условий притока солнечной радиации по широтам (влияние широты местности), от распределения суши и моря, которые по-разному поглощают радиацию и по-разному нагреваются (влияние подстилающей поверхности), и от воздушных течений, переносящих воздух из одних областей в другие (влияние циркуляции атмосферы).
Как следует из рис. 1.9, меньше всего отклонений от широтных кругов на карте средних годовых температур для уровня моря. Зимой материки холоднее океанов, летом теплее, поэтому в средних годовых величинах противоположные отклонения изотерм от зонального распределения частично взаимно компенсируются. На карте средней годовой температуры по обе стороны от экватора − в тропиках находится широкая зона, где средние годовые температуры выше +25 °C. Внутри зоны очерчиваются замкнутыми изотермами острова тепла над Северной Африкой, Индией и Мексикой, где средняя годовая температура выше +28 °C. Над Южной Америкой, Южной Африкой и Австралией островов тепла нет. Однако над этими материками изотермы прогибаются к югу, образуя «языки тепла», в которых высокие температуры распространяются дальше в сторону высоких широт, нежели над океанами. Таким образом, тропики материков теплее тропиков океанов (речь идет о среднегодовой температуре воздуха над ними).
Рис. 1.9. Распределение средней годовой температуры воздуха на уровне моря (ºС) (Хромов С.П., Петросянц М.А., 2006)
Во внетропических широтах изотермы менее отклоняются от широтных кругов, особенно в Южном полушарии, где подстилающая поверхность в средних широтах представляет собой почти сплошной океан. В Северном полушарии в средних и высоких широтах наблюдаются более или менее заметные отклонения изотерм к югу над материками Азии и Северной Америки. Это означает, что в среднем годовом материки в этих широтах несколько холоднее океанов. Самые теплые места Земли в среднем годовом распределении наблюдаются на побережьях южной части Красного моря. В Массауа (Эритрея, 15.6° с. ш. 39.4° в. д.) средняя годовая температура на уровне моря +30 °C, а в Ходейде (Йемен, 14.6° с. ш., 42.8° в. д.) 32.5 °C. Самый холодный район − Восточная Антарктида, где в центре плато средние годовые температуры порядка-50¸-55 °C (Климатология, 1989).
Определение термина и общие сведения
Показателем степени нагревания воздуха является его температура. Характер ее изменения и распределения в слоях атмосферы называется тепловым режимом. Основной фактор, определяющий его параметры, — теплообмен между разными слоями атмосферы и окружающей средой. Верхние слои нагреваются за счет солнечной радиации довольно слабо. Основным источником повышения температуры приповерхностных воздушных слоев служит тепло, получаемое при попадании солнечных лучей в литосферу и гидросферу.
Влияние широты
В разных широтах воздушные массы нагреваются неодинаково. Значение температуры определяется углом падения солнечных лучей на земную поверхность в исследуемой зоне. Чем более отвесно они падают, тем сильней прогревают нижние слои атмосферы. Как температура воздуха зависит от географической широты:
Таким образом, чем выше широта, тем ниже температура. Угол падения солнечных лучей в определенной местности можно найти так: отнять от 90° значение широты, на которой она расположена. Температурный режим зависит от расстояния между точкой измерения и уровнем моря. Поэтому верно утверждение: с высотой температура воздуха изменяется, уменьшаясь на один градус при подъеме на один километр. Эта взаимосвязь определяется двумя причинами:
Земля вращается вокруг Солнца, поэтому в течение разных промежутков времени (сутки, месяц, год) ее поверхность освещается под разными углами. Помимо солнечной радиации, большое влияние на температурные значения оказывает география перемещений воздушных масс. Например, от холодного арктического воздуха температура будет понижаться, а от теплого с Гольфстрима — повышаться.
Подстилающая поверхность
Важным фактором при понимании, от чего зависит температура воздуха, является понятие подстилающей поверхности. Это один из внутренних климатообразующих факторов, включающий в себя соотношение океана и суши на местности, ее рельеф, структуру деятельного слоя климатической зоны. Он влияет на эффективность излучения с поверхности и количество тепла, затраченного на испарение.
Кроме того, вид поверхности играет важную роль в формировании и перемещении воздушных масс. Температура воздуха изменяется неодинаково над водной поверхностью и над сушей.
Способы и единицы измерения
Единица измерения температуры в СИ (общепринятая международная система единиц измерения) — Кельвин. Начало шкалы Кельвина совпадает с абсолютным нулем — точкой прекращения всех термодинамических процессов, которая считается недостижимой. Замерзание воды по этой шкале начинается при +273°К.
Самое широкое распространение получили температурные измерения по шкале Цельсия. Отсчетными точками для нее были взяты температуры таяния льда (0 °C) и кипения воды (100 °C). В США чаще всего пользуются шкалой Фаренгейта. Нормальная температура человеческого тела соответствует по ней 96°F, а «огненным» значением, необходимым для возгорания бумаги, называется известный роман-антиутопия Рэя Бредбери «251 градус по Фаренгейту».
Измеряться температурные данные могут разного типа термометрами. Для бытовых измерений используются жидкостные стеклянные термометры, в которых рабочей жидкостью может быть спирт или ртуть. Для точных метеорологических измерений термометр помещается в специальную будку, расположенную на высоте двух метров над землей. Прибор обязательно должен находиться в тени, иначе он будет измерять температуру солнечных лучей, а не воздуха.
Для непрерывного измерения и регистрации степени нагрева воздушных масс метеорологами используются термографы, основной элемент которого — биметаллический термометр.
Средние значения и амплитуда температур
Одна из характеристик климата географической точки — среднесуточная температура. Ее можно определить как среднее арифметическое от замеров, сделанных 4 раза за сутки:
Среднегодовая температура является средним арифметическим от суммы температур всех месяцев года. Соответственно, среднемесячная определяется по сумме ежедневных данных за месяц, разделенной на число дней в месяце.
Температурные колебания в каком-либо регионе характеризуются амплитудой температуры, т. е. разницей между самым высоким и самым низким значением, зафиксированным за определенный промежуток времени. Обычно говорят о суточной, месячной или годичной амплитуде.
В России самые большие амплитуды имеют суточные температурные колебания, происходящие в ясную погоду весной и летом.
Амплитуда колебаний зависит от многих факторов. Прежде всего — это температурные изменения на подстилающей поверхности, чем шире их диапазон, тем больше амплитуда температуры воздуха. Она зависит и от облачности: в ясную погоду колебания сильнее, чем в пасмурную. Сезонные показатели длительного воздействия также отличаются — зимой они меньше, чем летом. С увеличением широты амплитуда температуры воздушных масс идет на убыль, поскольку убывает высота, на которую поднимается солнце к полудню.
Суточная амплитуда неодинакова на разных формах рельефа земной поверхности. На склонах и вершинах холмов и гор она меньше, чем на равнинных территориях. Это объясняется тем, что у выпуклых рельефных форм площадь соприкосновения воздуха и подстилающей поверхности меньше, чем у плоских. Кроме того, на них воздушные массы быстро сменяются на новые.
В оврагах и лощинах форма рельефа вогнутая. Здесь происходит более сильный нагрев воздуха от поверхности и застаивание его в дневные часы. Ночью большие массы холодного воздуха стекают по стенкам вниз. Поэтому в таких местах наблюдается повышенная амплитуда температуры. Но в очень узких ущельях, где приток солнечной радиации небольшой, этот показатель даже меньше, чем в широких долинах.
На материковой широте 20—30° суточная амплитуда, взятая в среднем за год, составляет около двенадцати градусов Цельсия. На широте 60° — примерно 6 °C, а на широте 70° — всего 3 °C.
Имеет значение и почвенный покров: в местности, где он густой и обширный, суточный разброс температур небольшой, а в сухом климате пустынь, полупустынь и степей может достигать 30 °C. Расположение климатической зоны вблизи морей и океанов уменьшает амплитуду.
Суточный ход на суше
Изменения температуры воздуха происходят вместе с изменением температуры подстилающей поверхности с задержкой примерно 15 минут. В течение суток самые низкие показания у термометра наблюдаются в 4−6 часов утра. Так происходит потому, что воздушные массы, нагретые за дневные часы, в ночные постепенно остывают.
Пик процесса понижения приходится как раз на время перед восходом Солнца. С раннего утра солнечные лучи начинают постепенно нагревать воздух, успевший остыть за ночь. Днем солнце достигает зенита, согревая не только воздушные массы, но и поверхность земли. Самое большое значение термометр показывает в 14−16 часов.
К этому времени атмосфера начинает получать тепло и от солнечной энергии, и от нагретой подстилающей поверхности, а температурный показатель достигает своего максимального значения. Потом начинается постепенное остывание и земли, и воздуха. Правильные наблюдения за суточным ходом температуры желательно проводить при ясной погоде.
Закономерности суточного хода лучше прослеживаются в средних значениях при большом числе наблюдений. В виде графиков они представляют собой плавные кривые, сходные с синусоидами. В самых высоких широтах солнце не заходит или не восходит неделями, там регулярного суточного хода температуры нет.
Особенности теплообмена над водными поверхностями
Суточные амплитуды над поверхностью морей и океанов больше значений на самой поверхности. Их диапазон колебаний небольшой — в пределах десятых долей градуса. В нижних слоях атмосферы над океанами колебания достигают 1−1,5 °C, над внутренними морями — до 5 °C. Это происходит потому, что днем солнечная радиация поглощается водяным паром в самых нижних слоях воздуха, а ночью от них исходит длинноволновое тепловое излучение.
Отличия условий прогревания воды и суши обусловлены тем, что теплоемкость твердой поверхности в два раза меньше, чем у водной. Одинаковое количество тепла нагревает сушу в два раза быстрее воды. При охлаждении наблюдается обратный процесс. Кроме того, тепло над водными поверхностями расходуется на испарение воды и на прогревание водных масс на значительную глубину. При этом происходит перемешивание воды в вертикальном направлении.
Все это причины того, что в океанах накапливается намного больше тепла, чем на материках. Вода удерживает его долгое время и расходует равномерней суши. Можно утверждать, что температура воздуха над океанами повышается и понижается значительно медленней, чем на суше.
Годовые и ежемесячные изменения
Изменение температурных показателей по месяцам называют годовым ходом температуры и характеризуют годовой амплитудой, т. е. разностью между средней температурой самого теплого месяца и самого холодного.
Климат называется морским, если для него характерны небольшие годовые колебания температуры. Большая амплитуда определяет континентальный климат. Таким образом, климатические изменения происходят не только от экватора к полюсам, но и вдоль широт при удалении от берегов океанов вглубь материков.
На годовой ход оказывают влияние широта и континентальное месторасположение географических зон. Увеличение высоты над уровнем моря приводит к уменьшению температурных колебаний за год. Определение средней многолетней амплитуды и времени наступления минимальной и максимальной температуры позволяет выделить четыре типа годового хода:
Тема изменения температуры очень важна для определения метеорологических условий в каждой из географических зон земной поверхности. Температурная климатическая норма — это среднее значение, вычисленное за тридцатилетний период. При отслеживании погоды для наглядности применяются такие статистические величины, как отклонения от нормы или аномалии за сутки, месяц, сезон или год.
Температура воздуха. Урок 12
Температура воздуха зависит от солнечной радиации
Солнечная радиация – это излучение ближайшей к нам звезды, которое является главным источником энергии для всех химических и физических процессов, происходящих на Земле. Солнце испускает широкий спектр волн, но до атмосферы нашей планеты доходит 99% только его коротковолнового потока (в интервале между 0,1 и 4 мкм):
Поэтому солнечную радиацию называют коротковолновой, в отличие от длинноволновой инфракрасной радиации (интервал длин волн от 3 – 4 до 80 – 120 мкм), которую излучают Земля и её атмосфера после поглощения коротковолновой солнечной.
В атмосфере радиация Солнца ослабляется
Солнце ежесекундно посылает на Землю гигантский заряд энергии (1,76 • 10 17 Дж/с). Однако температура воздуха в приповерхностном слое чрезмерно не повышается. Треть этой энергии отражается от атмосферы и подстилающей поверхности Земли, а оставшиеся две трети ими же и поглощаются.
Рис. 1
Как атмосфера поглощает солнечную энергию?
Встречаясь с молекулами газов, с пылью и диоксидом водорода, часть солнечной радиации преобразуется в другой вид энергии. Большая часть – в тепловую, но в верхних слоях атмосферы в результате фотоионизации – в электрическую.
Газы, которые поглощают основную часть коротковолнового солнечного излучения – это кислород, озон, углекислый газ, водяной пар и некоторые газовые примеси с малым процентным содержанием. Ультрафиолет в основном улавливает озон, инфракрасное излучение – молекулярный кислород. Углекислый газ и водяной пар абсорбируют широкий спектр излучения.
Бесполезным в этом смысле оказывается азот. Он свободно пропускает как коротковолновую солнечную, так и длинноволновую земную радиацию. Но это же и к лучшему, прямые солнечные лучи из-за этого достигают Земли, а для парникового эффекта достаточно и парниковых газов.
Абсорбируют солнечную энергию и примеси. Очень сильно это заметно над пустынями во время бурь и в городах с замутнённой атмосферой. Самое сильное замутнение атмосферы связано с торфяными и лесными пожарами.
Поглощая излучение, тела нагреваются, а остывая, испускают собственное излучение, т. е. сами становятся его источниками.
Рассеяние солнечной радиации в атмосфере
Над озером Тургояк
Автор: XXN
Интересно, что газы атмосферы сильнее рассеивает коротковолновое излучение (сине-голубое). Поэтому безоблачное и мало запылённое дневное небо выглядит голубым. Во время рассвета и заката при изменении угла падения солнечных лучей их путь до Земли удлиняется, что делает сами волны длиннее, и тогда мы видим оттенки красного.
Чем выше слой атмосферы, тем менее плотным он становится, а значит, меньше рассеивает солнечных лучей. Поэтому небо с высотой становится более тёмным и синим или даже фиолетовым. А на уровне 100 км начинается «эффект космоса», если посмотреть вверх, можно увидеть чёрное пространство, яркие звёзды, планеты и Солнце.
Вначале нагревается земная поверхность: суммарная солнечная радиация
Но ни рассеивание, ни поглощение не нагревают тропосферу настолько, чтобы нам в ней было комфортно. Она получает тепло от нагретой воды, почвы, горных пород и т.д., расположенных на планете. Но какую долю энергии улавливает сама поверхность Земли?
Рис. 2
Рассеянные и прямая радиация ( суммарная радиация ) нагревает подстилающую поверхность планеты, прогревая только её верхний слой. Земля сама становится источником излучения и часть тепла отдаёт воздуху. То тепло, которое остаётся после всех этих процессов, называется радиационным балансом (см. рис. 2).
Количество суммарной радиации зависит от облачности, прозрачности атмосферы и высоты солнца над горизонтом. Рассмотрим подробнее причины изменения количества получаемого разными участками Земли тепла и света.
Зависимость суммарной радиации от состояния атмосферы
Чем плотнее и насыщеннее влагой воздух, тем сильнее в нём идёт рассеяние и поглощение, тем меньше радиации получает земная поверхность.
Насыщенное водяным паром небо.
Автор: Saperaud
От географической широты
Количество радиации зависит от географической широты местности, а значит и от угла падения солнечных лучей и соответственно от длины их пути. Из-за шарообразной формы Земли и угла наклона её оси разные её участки освещаются неодинаково.
Количество радиации увеличивается от полюсов к экватору. Кратчайшим путём солнечные лучи попадают на Землю при угле падения в 90°. При этом они концентрируются на малой площади и эффективно её обогревают и освещают. Это происходит в тропическом поясе освещения.
Рис. 3
По мере удаления от тропиков угол падения солнечных лучей уменьшается, а путь их до Земли увеличивается. В районе умеренных и высоких широт лучи проходят по касательной линии. Площадь, захватываемая ими, увеличивается, соответственно растёт количество отражённой энергии.
От осевого движения Земли
Днём поверхность Земли нагревается сама и нагревает приземный слой воздуха. Ночью она остывает и отдаёт тепло атмосфере. Происходит охлаждение земли и воздуха. Самые низкие температуры воздуха наблюдаются перед рассветом, когда Земля уже максимально остыла.
Днём устанавливается два максимума температур: в 11 ч. и в 13 ч. В полдень же (в 12 ч) наблюдается незначительное понижение температур из-за повышения влажности атмосферы.
Из-за наклона земной оси и осевого движения умеренные пояса Земли больше всего тепла получают в дни летних солнцестояний (22 июня – Северное полушарие, 21 декабря – Южное). В эти дни Солнце находится в зените над соответствующим тропиком.
Но самым жаркими месяцами является не июнь и декабрь, а июль и январь. Это происходит потому, что в дни солнцестояний большое количество энергии тратится на разогрев остывшей земной поверхности. И хотя в январе (июле Северного полушария) количество радиации уменьшается, её убыль компенсируется нагретой поверхностью Земли.
От орбитального движения Земли
От времени года зависит высота Солнца над горизонтом и угол падения его лучей. В высоких и умеренных широтах по этой причине количество солнечной радиации сильно изменяется. Изменяется и расстояние Земли от Солнца. Соответственно колеблется и длина пути лучей.
Почти не меняется в течение всего года количество солнечной радиации, получаемой экваториальной зоной. Мало колеблется оно на океанах и морских побережьях. А в пустынях благодаря сухости воздуха амплитуда температур может превышать 50–60 °C. Днём поверхность пустынь сильно нагревается (до 50–60 °C), а ночью остывает, часто до 0 °C.
Пояса освещения, тепловые пояса Земли
От характера подстилающей поверхности
Особенно сильным альбедо характеризуются снег и лёд (90%), меньшим – песок (35%), ещё более слабым – чернозём (4%). Нагрев суши и воды тоже происходит неодинаково. Если суша нагревается и остывает быстро, то вода из-за высокой теплоёмкости нагревается медленно, а благодаря низкой теплоотдаче она также и остывает с незначительной скоростью.
Поэтому океан называют «печкой» планеты. Но из-за большой площади водной поверхности ей приходится много энергии тратить на испарение, а не на нагрев воздуха. Тем не менее около океана теплее зимой даже в высоких широтах.
Распределение суммарной радиации на Земле
Максимальные показатели суммарной солнечной радиации (около 850 Дж/см²) в год наблюдаются в тропических пустынях, где прямая радиация из-за большой высоты Солнца и безоблачного неба наиболее интенсивна. Летом различия в поступлении солнечной радиации между высокими и низкими широтами сглаживается за счёт большой продолжительности освещения в полярных районах (полярный день). В зимнее полугодие они достигают максимума (полярная ночь).
Как нагревается воздух тропосферы?
При безоблачной погоде большая доля прямых лучей Солнца беспрепятственно достигает поверхности Земли, проходя через атмосферу, как сквозь стекло. При этом они почти не нагревают воздух. Он получает тепло за счёт нагретой земной поверхности. Это происходит путём диффузии и конвекции.
Конвекция – перемешивание тёплого и холодного воздуха. Тёплый воздух становится легче и поднимается, тяжёлый холодный опускается и путём диффузии нагревается от поверхности планеты.
Азот N2 и кислород О2 и О для этого излучения прозрачны.
Подогретая поглощённой энергией, атмосфера сама становится источником излучения (противоизлучения атмосферы), вновь отправляя тепло к поверхности планеты. Атмосфера как одеяло препятствует охлаждению Земли. Из-за схожести этого явления с парником его назвали «парниковым эффектом». А газы, отправляющие назад противоизлучение атмосферы, назвали парниковыми.
Верхние слои тропосферы менее плотные, к тому же они просто не прогреваются за день, там меньше и парниковых газов, тепло из них уходит в стратосферу. Часть тепловой энергии тратится в виде теплового излучения.
По-разному нагревается воздух над сушей и водой, так как суша быстрее нагревается и быстрее остывает. Над океанами всегда теплее. Но температура воздуха зависит и от состояния самой атмосферы. Облачное небо теплее ясного.
Радиационный баланс Земли и температура воздуха
От экватора до сороковых широт (субтропиков) радиационный баланс положителен круглый год. Выше он положителен только летом, а зимой – отрицателен.
Зональность температуры воздуха можно наблюдать на климатических картах мира. Они показаны при помощи изотерм (годовых или максимальных – летних и минимальных – зимних). Изотермы зимних месяцев обозначаются синим цветом, летних – красным.
Проанализировав по карте закономерности изменения температур при помощи годовых изотерм, можно сделать следующие выводы:
Практическая часть
Наиболее точно температура воздуха измеряется на метеорологических станциях. Термометр там помещают в метеорологическую будку, пряча его от прямых солнечных лучей, и фиксируют температуру каждые 3 часа. После сбора данных составляют графики и высчитывают средние значения, обозначают максимумы и минимумы, узнают амплитуды и делают прогнозы.
Термометр изобрёл Галилео Галилей приблизительно в 1597 году. Он был без шкалы и показывал только степень нагрева. Сегодня существуют разные термометры:
Средние показатели температур
Чтобы узнать закономерности изменения температур и сравнивать их за определённые промежутки времени (например, за годы, века), используют показатели средних температур:
Чтобы узнать среднюю суточную температуру, в течение суток несколько раз через равные промежутки времени измеряют её при помощи термометра. Затем все показатели складывают и делят на количество измерений.
Пример 1
Определить среднесуточную температуру воздуха, зная следующие показатели.
3 ч | 6 ч | 9 ч | 12 ч | 15 ч | 18 ч | 21 ч | 24 ч |
+9°С | +8°С | +12°С | +14°С | +17°С | +15°С | +12°С | +6°С |
Ответ: среднесуточная температура равна 11,6°С.
Пример 2
Если в течение суток наблюдались как положительные, так и отрицательные температуры, нужно сложить их отдельно и из большего числа вычесть меньшее. Полученное число (сумму температур) разделить на число измерений, сохраняя знак делимого.
3 ч | 6 ч | 9 ч | 12 ч | 15 ч | 18 ч | 21 ч | 24 ч |
-7°С | -6°С | -3°С | 0°С | +2°С | +3°С | -1°С | -4°С |
Чтобы рассчитать среднемесячную температуру, складывают среднесуточные температуры этого месяца и делят на число дней месяца. Чтобы рассчитать среднегодовую температуру, складывают среднемесячные и делят на 12 (число месяцев в году). Также можно рассчитывать средневековую температуру.
Анализ графиков изменения температур
По значениям средних температур составляют графики годового, месячного, многолетнего изменения температур. Проанализируем график и научимся с ним работать.
График суточного хода температур
График температур строят на обычной координатной оси. По оси Х отмечают температуру воздуха, по оси У – время (часы, месяцы или годы). Точки с отрицательными показателями соединяют синим цветом, с положительными – красным.
1) Чему равна максимальная температура воздуха в течение суток?
Ищем самую высокую положительную температуру на графике. Это можно заметить по выдающейся верхушке. Проводим перпендикулярную линию карандашом или просто глазами от найденной точки на ось Х. На этом графике самая высокая температура воздуха в течение суток равна +8°С.
Как провести перпендикулярную линию к оси Х
2) Когда она отмечалась?
Теперь от точки на графике проводим перпендикулярную линию к оси У. Самая высокая температура наблюдалась в 15 ч.
Перпендикулярная линия к оси У
3) Чему равна минимальная суточная температура?
На графике нужно найти точку, которая максимально опущена вниз. От неё провести перпендикулярную линию к оси Х, ведь там отмечена температура воздуха. Она равна +2°С.
Как определить минимальную суточную температуру по графику?
4) Чему равна амплитуда температур?
Находим разницу между максимальной и минимальной суточными температурами: 8-2=6°С.
Амплитуда температур
Задача 1
Максимальная температура в течение суток составляла +20°С, минимальная +8°С. Какова суточная амплитуда температур?
Найдём разницу между самой высокой и самой низкой температурой: 20 – 8=12
Ответ: суточная амплитуда температур равна 12°С
Задача 2
Амплитуда равна 26°С
Задание 3
Если известно, что годовая амплитуда температур одной территории составляет 20°С, а другой 46°С, какая из территорий находится дальше от моря? (Чем дальше от океана находится точка земной поверхности, тем больше амплитуда температур).
По времени наступления максимальных и минимальных среднемесячных температур воздуха в течение года различают четыре основных типа годового хода температур.
Самые высокие температуры воздуха на Земле наблюдаются в тропических пустынях. На севере Африки близ Триполи зарегистрирована рекордная температура +58,1°С. Самые низкие температуры приземного слоя воздуха (-89,2°С) отмечены в 1982 г. в Антарктиде на внутриконтинентальной станции «Восток», расположенной на высоте 3488 м над уровнем моря. В Северном полушарии самая низкая температура известна в Восточной Сибири в посёлке Оймякон (-71°С), расположенном в котловине среди гор, в верховьях реки Индигирки.
Как рассчитать температуру воздуха за бортом самолёта?
Зная закономерность: при подъёме вверх в тропосфере температура воздуха снижается на каждый километр на 6°С (на 0,6 °С на каждые 100 м), можно делать расчеты. Чтобы узнать температуру за бортом самолёта или на вершине горы, нужно знать, какая температура в это время у поверхности Земли, и высоту нужной точки (полёта лайнера или вершины горы). А если знать температуру на вершине и её высоту, можно высчитать температуру у поверхности и т.д.
Следующее задание типично для ОГЭ по географии.
Вам будет интересно
Река рождается при таянии ледника, из озера или родника. Текущая вода активно меняет пейзаж, вызывает…
Численность населения мира продолжает увеличиваться. В этом можно убедиться, проанализировав график динамики количества людей в…
Атмосфера (от греч. ἀτμός – пар и σφαῖρα – шар) – это газовая оболочка крупного…