Что способствует обеспечению круговорота углерода и кислорода в природе
Круговорот углерода и кислорода
Влияние химических веществ и их соединений на биосферу и организм человека. Изучение принципов круговорота элементов в природе. Влияние кислорода и соединений углерода на процессы обмена веществ и дыхание. Роль углерода в синтезе органических соединений.
Рубрика | Экология и охрана природы |
Вид | эссе |
Язык | русский |
Дата добавления | 30.04.2015 |
Размер файла | 13,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
УО ФПБ Международный университет «МИТСО»
Факультет международных экономических отношений и менеджмента
Самостоятельная управляемая работа студента (ЭССЕ)
по дисциплине «Экономика природопользования»
«Круговорот углерода и кислорода»
Выполнил: студент 1-го курса,
дневной формы обучения,
факультета МЭО и М,
Минск 2014
Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 10 15 m, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.
Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды. Круговорот воды (H2O) заключается в испарении воды с поверхности суши и моря, переносе ее воздушными массами и ветрами, конденсации паров и последующее выпадение осадков в виде дождя, снега, града, тумана.
Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в ФРГ, Шри-Ланка и СССР). Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ. В форме диоксида углерода он входит в состав земной атмосферы, в которой на его долю приходится 0,046% массы. кислород углерод круговорот синтез
Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом из паров воды и углекислого газа.
Размещено на Allbest.ru
Подобные документы
Кругооборот химических веществ из неорганической среды. Сущность большого (геологического) круговорота. Описание циркуляции веществ в биосфере на примере углерода, азота, кислорода, фосфора и воды. Антропогенные воздействия на окружающую природную среду.
реферат [201,9 K], добавлен 17.12.2011
Основные этапы полного цикла биологического круговорота химических элементов на суше. Изучение антропогенного воздействия на потоки энергии, круговороты воды, кислорода, углерода, азота, фосфора, серы. Отличительные черты техногенного массообмена.
реферат [33,7 K], добавлен 26.11.2011
дипломная работа [1,1 M], добавлен 12.06.2011
Понятие круговорота веществ как ключевого понятия биогеохимии. Общие сведения о кислороде как химическом элементе: нахождение в природе, химические и физические свойства, применение. Круговорот кислорода в различных видах и его роль в жизни природы.
реферат [430,8 K], добавлен 10.11.2012
Природная среда: атмосфера, литосфера, гидросфера, природные ресурсы и ресурсы, необходимые для жизнедеятельности организмов. Биогеохимический кругооборот веществ в природе и его нарушение человеком. Круговорот веществ, воды, углерода, кислорода, азота.
реферат [160,7 K], добавлен 09.11.2008
Характеристика большого и малого круговоротов (воды, углерода, кислорода, азота, фосфора, серы, неорганических катионов), их особенности, взаимосвязи, структура потоков и их значение. Антропогенный круговорот ксенобиотиков (ртути, свинца, хрома).
реферат [42,3 K], добавлен 10.03.2012
Антропогенное влияние на окружающую среду на локальном, региональном и глобальном уровнях. Понятие биогеохимии и история ее развития. Биогеохимические циклы макроэлементов. Процессы деградации органической массы в океане. Круговорот углерода в природе.
реферат [2,0 M], добавлен 18.12.2011
АГРОИНФормация
Круговорот углерода и кислорода
Микроорганизмы играют главную роль в круговороте всех биологически важных элементов в природе, в том числе углерода и кислорода. В круговороте углерода различают два процесса, связанных с выделением и поглощением кислорода: 1) фиксация СО2 в процессе кислородного фотосинтеза и 2) минерализация органических веществ с выделением СО2.
Первый процесс осуществляют высшие растения, водоросли и цианобактерии. Он обеспечивает перевод окисленной формы углерода (СО2) в восстановленную (в этой форме углерод находится в органических веществах), при этом восстановленный кислород (Н2О) окисляется до молекулярного (О2).
Второй процесс совершают микроорганизмы, он идет с поглощением кислорода и прямо или косвенно связан с восстановлением молекулярного кислорода и образованием субстратов для кислородного фотосинтеза — СО2 и Н2О.
В воздухе содержится около 0,03% СО2 (по объему). Такая концентрация углекислоты в атмосфере поддерживается относительно постоянной в результате достаточно устойчивого равновесия между фотосинтезом и минерализацией. О значимости круговорота углерода в природе свидетельствует расчет, который показывает, что весь СО2 воздуха при отсутствии его пополнения был бы почти полностью использован в результате фотосинтеза меньше, чем за 20 лет. Круговорот углерода и кислорода схематично показан на рисунке 27.
Примерные подсчеты показывают, что годовая продукция органического вещества на Земле достигает 33-1011 т. Основную массу этого вещества составляют соединения растительного происхождения. Химический состав растительных остатков весьма сложен: имеются разнообразные органические вещества — белки, аминокислоты, углеродсодержащие соединения (клетчатка, лигнин, гемицеллюлозы), а также жиры, воска и многие другие. Преобладают по массе целлюлоза, гемицеллюлозы и лигнин.
Количество и качество клетчатки, гемицеллюлоз и лигнина, образуемых в растительных ассоциациях, может быть весьма различно, что связано с определенными растительными сообществами и геоклиматическими зонами.
После отмирания растений в результате деструктивных биологических процессов происходит распад органических веществ, созданных растительными организмами. В нем участвуют представители разнообразных групп животного и растительного мира, начиная от микроорганизмов и кончая высшими позвоночными животными.
Известны два основных типа распада: фитогенный и зоогенный.
Фитогенный распад органического вещества осуществляется при участии грибов (высших и низших), бактерий, актиномицетов и других микроорганизмов, а Зоогенный — при участии беспозвоночных животных (простейших, червей, моллюсков), различных насекомых и, наконец, млекопитающих. Основной тип распада органических веществ — фитогенный, хотя и животные играют важную роль в этом процессе: они поедают растительные остатки или переносят споры микроорганизмов. Правильнее считать, что в почве одновременно протекают оба отмеченных процесса.
Полисахариды (крахмал, гемицеллюлозы, пектины и др.), жиры и воска расщепляются значительно медленнее. Довольно стойки к воздействию микроорганизмов клетчатка и близкие к ней высокополимеризованные соединения, а наиболее устойчивое органическое соединение — лигнин, поэтому он имеет тенденцию накапливаться в почве.
В зависимости от условий среды органические вещества подвергаются разложению анаэробными и аэробными микроорганизмами. Конечные продукты разложения органических веществ анаэробными микроорганизмами — органические кислоты и спирты, а аэробными — СО2 и Н20.
Рассмотрим процессы анаэробного и аэробного превращения микроорганизмами безазотистых органических веществ.
Раздел 2. Организация биосферы
И.Ф. Рассашко, О.В. Ковалева, А.В. Крук
Общая экология
Тексты лекций для студентов специальности 1-33 01 02 «Геоэкология». – Гомель: ГГУ им. Ф. Скорины, 2010. – 252 с.
Раздел 2. Организация биосферы
Лекция 12. Биологический круговорот, круговорот азота, кислорода, углерода
12.2. Круговорот азота, кислорода, углерода
Круговорот азота (рисунок 12.2) является одним из самых сложных круговоротов в природе. Охватывает всю биосферу, а также атмосферу, литосферу, гидросферу. Очень важную роль в круговороте азота играют микроорганизмы. В круговороте азота выделяют следующие этапы:
1-й этап (фиксация азота): а) азотфиксирующие бактерии связывают (фиксируют) газообразный азот с образованием аммонийной формы (NH и солей аммония) – это биологическая фиксация; б) вследствие грозовых разрядов и фотохимического окисления образуются оксиды азота, при взаимодействии с водой они образуют азотную кислоту, в почве она превращается в нитратный азот.
2-й этап – превращение в растительный белок. Обе формы (аммонийная и нитратная) фиксированного азота усваиваются растениями и превращаются в сложные белковые соединения.
3-й этап – превращение в животный белок. Животные поедают растения, в их организме растительные белки превращаются в животные.
4-й этап – разложение белка, гниение. Продукты метаболизма растений и животных, а также ткани отмерших организмов под воздействием микроорганизмов разлагаются с образованием аммония (процесс аммонификации).
5-й этап – процесс нитрификации. Аммонийный азот окисляется до нитритного и нитратного азота.
6-й этап – процесс денитрификации. Нитратный азот под воздействием денитрифицирующих бактерий восстанавливается до молекулярного азота, который поступает в атмосферу. Круг замыкается.
Рисунок 12.2 – Структурная схема круговорота азота
(по Н. И. Николайкину, 2004)
Антропогенное воздействие на круговорот азота заключается в следующем:
1 Промышленное использование азота для получения аммиака примерно на 10% повышает общее количество азота, фиксированного естественным путем.
2 Широкое использование азотных удобрений, превышающее потребности растений, приводит к загрязнению окружающей среды, при этом часть избыточного азота смывается в водоемы, вызывая опасное явление «евтрофирования». Оно вызывает вторичное загрязнение водоемов, нарушение круговорота веществ, изменение их трофического статуса.
Круговорот кислорода сопровождается его приходом и расходом.
Приход кислорода включает: 1) выделение при фотосинтезе; 2) образование в озоновом слое под воздействием УФ-излучения (в незначительном количестве); 3) диссоциацию молекул воды в верхних слоях атмосферы под воздействием УФ-излучения; 4) образование озона – О3.
Расход кислорода включает: 1) потребление животными при дыхании; 2) окислительные процессы в земной коре; 3) окисление окиси углерода (СО), выделяющегося при извержении вулканов.
Круговорот кислорода тесно связан с круговоротом углерода.
Круговорот углерода (рисунок 12.3). Масса углекислого газа (СО2) в атмосфере оценивается в 10 12 тонн.
Приход углекислого газа включает: 1) дыхание живых организмов; 2) разложение отмерших организмов растений и животных микроорганизмами, процесс брожения; 3) антропогенные выбросы при сжигании топлива; 4) вырубку лесов.
Расход углекислого газа включает: 1) фиксацию углекислого газа из атмосферы при фотосинтезе с освобождением кислорода; 2) потребление части углерода животными, питающимися растительной пищей; 3) фиксацию углерода в литосфере (образование органогенных пород – уголь, торф, горючие сланцы, а также почвенных компонентов, как гумуса); 4) фиксацию углерода в гидросфере (образование известняков, доломитов).
Постепенное возрастание содержания углекислого газа в атмосфере в сочетании с другими причинами привело к «парниковому эффекту», влияющему на тепловой баланс, на климат нашей планеты.
Большую роль в общем круговороте веществ в природе кроме рассмотренных элементов играют также фосфор, сера, железо.
Рисунок 12.3 – Структурная схема круговорота углерода
Особенности кругооборота воды и некоторых веществ в биосфере
Понятие и краткое описание
Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.
Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.
Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.
И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.
Пищевая цепь, резервный и обменный фонд
Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.
Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.
Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.
Кислород
Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.
Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.
И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.
Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.
Если результатом фотосинтеза является кислород, то его сырьем – углерод.
Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.
Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.
Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.
Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.
И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.
Содержание азота в различных веществах сопоставляют с содержанием там углерода. Оборотные циклы этих двух элементов крепко связаны.
Углерод
Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.
В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.
Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.
Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.
Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.
Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.
В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.
Фосфор
Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.
В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.
Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.
Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.
Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.
Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.
В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.
Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.
Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».
В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.
Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.
Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.
Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.
Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.
В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.
Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?