Что составляет основу наблюдения и эксперимента физика кратко

Опыты, эксперименты и наблюдения в физике: в чем между ними разница

Содержание:

Эксперимент, опыт, наблюдение – основополагающие методы изучения окружающего мира, постижения закономерностей природы. Люди испокон веков следят за протекающими вокруг них явлениями, часть из увиденного пытаются повторять в определённых условиях, имитировать протекающие в природе процессы. Рассмотрим, что такое в физике опыт, наблюдение, эксперимент, чем отличаются. Приведём примеры трёх методов познания законов творца.

Чем отличается опыт от эксперимента

Эксперимент – метод исследования, направленный на:

Из латинского «слово» переводится как «опыт», то есть понятия аналогичные. В русском языке они имеют слегка отличающуюся окраску.

Экспериментальное исследование – опыт, проводимый в строго заданных рамках, часто реализуется в лабораторных или иных специальных условиях, нацелен преимущественно на точный результат, его повторяемость. Обычно требует специального материально-технического обеспечения.

В чем разница между опытом и экспериментом?

При проведении опытов человек не ограничивается ничем: используемой материальной базой, внешними условиями, однако работает в ограниченном опытном пространстве. Эксперимент – разновидность опыта, проводимого в заданных условиях при регулярном контроле изучаемых и зависящих от них параметров.

Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко

Алгоритм проведения эксперимента включает:

Исследования, проводимые для удовлетворения любопытства, относят к экспериментам.

Эксперимент – научно проведённый опыт.

Чем эксперимент отличается от наблюдения

Опыт: бросаем камни в озеро и измеряем время, за которое волны дойдут до берега.

Эксперимент: опускаем камни весом около 30 г с высоты 1 м в воду с температурой

18 °C под прямым углом в безветренную погоду. Измеряем, за сколько образовавшаяся волна дойдёт до забитого возле берега кола.

Наблюдение: смотрим, как прогуливающийся мальчик с отцом бросают камни, замечаем, что волны, поднятые разными по весу камнями, доходят до берега со слегка отличающейся скоростью. Наблюдаем, что ветер влияет на скорость распространения волн.

Источник

Первый урок физики в 7-м классе по теме: «Что изучает физика. Некоторые физические термины, наблюдения и опыты»

Разделы: Физика

Оборудование: коробок спичек, свеча, весы, барометр, секундомер, термометр, шарик, желоб, электрическая спираль, маятник, линза, экран, компас, набор магнитов, компьютер, проектор, презентация “Что изучает физика”.

“Науку все глубже постигнуть стремись,
Познанием вечного жаждой тянись.
Лишь первых познаний блеснет тебе свет,
Узнаешь: предела для знания нет.”
Фирдоуси (Персидский и таджикский поэт 940–1030 г.г)

Методические приемы: лекция с элементами беседы.

I. Знакомство учеников с кабинетом физики и преподавателем. Организационный момент

II. Изучение нового теоретического материала (лекция учителя)

1. Из истории физики.

Учитель.Сегодня мы с вами начинаем изучение нового предмета – физики. На сегодняшнем уроке вы узнаете, что изучает физика, как она возникла, какое большое значение она имеет для понимания явлений природы и трудовой деятельности человека.

С давних времен человек наблюдал за окружающим миром, от которого зависела его жизнь, пытался понять явления природы. Солнце давало людям тепло и приносило иссушающий зной, дожди поили живительной влагой поля и вызывали наводнения, неисчислимые бедствия несли ураганы и землетрясения. Не зная причин их возникновения, люди приписывали эти действия сверхъестественным силам, но постепенно они стали понимать действительные причины природных явлений и приводить их в определенную систему. Так зародились науки о природе.

Трудно было человеку миллионы лет назад,
Он совсем не знал природы,
Слепо верил в чудеса!
Он всего, всего боялся
И не знал, как объяснить
Бурю, гром, землетрясенье,
Трудно было ему жить.
И решил он, что ж бояться,
Лучше просто всё узнать.
Самому во все вмешаться,
Людям правду рассказать.
Создал он Земли науку,
Кратко “физикой” назвал.
Под названьем тем коротким
Он природу распознал!

В русском языке слово “физика” появилось в XVIII веке, благодаря Михаилу Васильевичу Ломоносову, ученому-энциклопедисту, основоположнику отечественной науки, философу-материалисту, поэту, заложившему основы современного русского языка, выдающемуся деятелю просвещения, который сделал перевод с немецкого первого учебника по физике. Именно тогда в России и стали серьезно заниматься этой наукой.

Физика изучает мир, в котором мы живем, явления, в нем происходящие, открывает законы, которым подчиняются эти явления. Главная задача физики – познать законы природы, свойства различных веществ и поставить их на службу человеку.

Установив фундаментальные законы природы, человек использует их в процессе своей деятельности. Мы широко пользуемся электрическими приборами: плитками, чайниками, утюгами, пылесосами, холодильниками. Создание этих приборов стало возможным благодаря изучению электрических явлений и свойств различных материалов. Трудно представить нашу жизнь без радио и телевидения, компьютеров и стовых телефонов, изобретением которых мы также обязаны физике. Подумайте, представителям каких профессий нужны знания по физике.

Учащиеся. Необходимы знания по физике представителям всех ведущих профессий: строителям, космонавтам, металлургам, конструкторам, инженерам, военным и т.д.

Ответы на все эти вопросы дает именно физика.

Физика является интересной и, одновременно с этим, достаточно сложной наукой. Только постоянные усилия в изучении этой науки позволят вам глубоко понимать содержание и смысл законов, по которым развивается наш мир.

Изучение физики – это, в общем, бесконечный процесс, который можно сравнить с движением по лестнице всегда вверх.

Итак, приглашаю Вас, дорогие ребята, в захватывающий путь по исследованию простых явлений окружающего мира методами физической науки. Желаю успеха в постижении тайн мироздания, в раскрытии смысла понятий и законов физики!

Откройте тетради, запишите тему урока : “Что изучает физика. Некоторые физические термины. Наблюдения и опыты”.

Далее по ходу лекции учителя, учащиеся составляют опорный конспект (далее в тексте зеленый цвет шрифта).

Физика – это наука о наиболее простых и наиболее общих свойствах мира.

В XVIII веке М.В. Ломоносов ввел в русский язык слово “физика”, издал в переводе с немецкого первый учебник по физике.

2. Изучение терминологии.

Учитель.Чтобы рассказывать о физике, изучать ее, приходится использовать специальные слова – термины.

Физические термины – это специальные слова, которыми пользуются в физике для краткости, определенности и удобства.

Физическое тело – это каждый окружающий нас предмет. (Показ физических тел: ручка, книга, парта)

Материя – это всё то, что существует во Вселенной независимо от нашего сознания (небесные тела, растения, животные и др.)

Физические явления – это изменения, происходящие с физическими телами. (Учитель показывает картинки природных явлений, а ученики отвечают – какое природное явление изображено на них). Учитель отпускает из поднятой руки спичечный коробок, дав ему упасть на стол. Какое явление здесь наблюдается? (Движение) Учитель зажигает спичку, свечу, зажигалку. Какое явление можно наблюдать? (Горение)

Учитель приводит примеры и демонстрирует опыты, связанные с физическими явлениями: скатывание шарика по желобу, электрическая искра, действие магнитов на железо, получение изображения свечи на экране при помощи линзы, кипение воды.

Физические приборы – это специальные устройства, которые предназначены для измерения физических величин и проведения опытов.

Какие приборы вы знаете? Учащиеся приводят примеры: линейка, секундомер, термометр, барометр ( учитель демонстрирует приборы).

4. Обсуждение проблемы: какими методами, способами изучают физические явления.

Учитель. Давайте подумаем о том, как можно изучать физику. Откуда появляются у человека знания?

Учащиеся. Многие первичные знания появляются из собственных повседневных наблюдений.

Учитель. Совершенно верно. Именно с наблюдений и начиналась физика. Философы и ученые Древней Греции, такие как Аристотель, Архимед, Демокрит, в основном вели наблюдения. Из наблюдений они пытались установить закон, которому подчиняется то или иное наблюдаемое явление, и поставить знание установленного закона на службу человеку.

Представьте себя на некоторое время учеными-физиками. Вам предстоит совершить какое-то научное открытие, изобрести что-нибудь. Сразу это возможно? Могут ли открытия рождаться без знаний?

Учащиеся. Необходимо изучить предшествующий опыт, нужно многократно наблюдать одно и то же явление, чтобы увидеть, как оно изменяется при различных обстоятельствах. Ученый сначала может только предполагать, догадываться о том, как может происходить то или иное явление в новых условиях, но ему необходимо проверить и доказать предположения. Для этого ученый прибегает к опытам и измерениям.

Учитель. Совершенно верно. Изучение явлений – это достаточно долгий и тернистый путь – от гипотез, догадок, интуиции, наблюдений, через опыты к выводам. То есть источником физических знаний являются наблюдения и опыты.

Источники физических знаний

Окна в мир: зрение, слух, осязание, обоняние, вкус—>Мысль

Гипотеза,
догадка,
фантазия,
мечта,
интуиция—>Опыт

Вопрос природе на её языке вещей и событий—>Знание

III. Проверка усвоения изученного материала

(Фронтальный опрос учащихся; предварительно учитель сообщает о разной степени сложности заданий и желает учащимся успехов в выполнении более высокого уровня сложности;количество заданий можно сократить).

1. Приведите примеры тел, изготовленных из следующих веществ: дерева, бумаги, пластмассы.

2. Из каких веществ состоят следующие физические тела: книга, линейка, парта.

3. Назовите, какие физические тела могут быть сделаны из стекла, из резины, из пластмассы.

4. Какие из приведенных явлений являются механическими: движется автобус, плывет лодка, кипит вода.

5. Какие из приведенных явлений являются тепловыми: ученики греются у костра, Солнце нагревает крышу дома, летит мяч.

1. Укажите, что относится к понятию “физическое тело”, а что к понятию “вещество”: автобус, трамвай, медь, мел, мед, очки.

2. Какое из приведенных ниже слов обозначает физическую величину: алюминий, длина, килограмм, термометр, Земля.

3. Какое из приведенных ниже слов обозначает единицу физической величины: объем, температура, плавление, метр, скорость.

4. Назовите из приведенных ниже явлений только физические: таяние снега, кипение воды, гниение картофеля, выпадение снега, почернение серебряной монеты.

5. Какими основными физическими явлениями сопровождается выстрел из пушки?

1. В двух бидонах находилось молоко. В одном из них молоко скисло, а в другом отстоялись сливки. В каком из бидонов произошло физическое явление? Какое?

2. Мальчики во время похода попали в грозу. Они обратили внимание на то, что гром слышен всегда после удара молнии. Какое предположение можно сделать на основе этих наблюдений?

3. Какие наблюдения вы проводили в природе? Какие физические явления наблюдали? Приходилось ли вам ставить опыты? Какие? Каков главный признак, отличающий опыт от наблюдения?

1. Молоко продают в различной упаковке: бутылках, полиэтиленовых пакетах и бумажных коробках. Назовите достоинства и недостатки каждого из видов упаковки.

2. Влияет ли, по-вашему, функциональное назначение предмета(тела) на выбор вещества, из которого этот предмет (тело) изготовлен?

3. Обувь изготавливают из кожи, кожезаменителя, резины и специальных пластиков. Какие достоинства и недостатки имеет обувь каждого вида?

IV. Итоговое повторение

По ходу ответов учащиеся зарисовывают в тетрадях схему.

Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко

V. Домашнее задание

§ 1-3 читать, ответить на вопросы в конце параграфов учебника (Перышкин А.В. Физика. 7 кл. –М.: Дрофа, 2002).

В предлагаемые таблицы напишите по три примера.

Источник

НАБЛЮДЕНИЕ И ЭКСПЕРИМЕНТ

Полезное

Смотреть что такое «НАБЛЮДЕНИЕ И ЭКСПЕРИМЕНТ» в других словарях:

Эксперимент (психология) — Эту страницу предлагается объединить с Лабораторный эксперимент (психология) … Википедия

Наблюдение — – 1. любая форма исследования событий, моделей поведения, явлений и т.д., в том числе и экспериментальная. Концептуально термины «наблюдение» и «эксперимент» должны отчётливо различаться, так как под собственно наблюдением обычно понимают… … Энциклопедический словарь по психологии и педагогике

ЭКСПЕРИМЕНТ — (от лат. experimentum проба, опыт), метод познания, при помощи крого в контролируемых и управляемых условиях исследуются явления действительности. Э. осуществляется на основе теории, определяющей постановку задач и интерпретацию его… … Философская энциклопедия

эксперимент — Предложение человеку по своей воле прожить, испытать, ощутить актуальное для него или пойти на осознанный эксперимент, воссоздав в ходе терапии спорную или сомнительную для него ситуацию (прежде всего в символической форме). Краткий толковый… … Большая психологическая энциклопедия

НАБЛЮДЕНИЕ — преднамеренное и целенаправленное восприятие, обусловленное задачей деятельности. Н. как специфически человеч. акт принципиально отличается от различных форм прослеживания у животных. Исторически Н. развивается как составная часть… … Философская энциклопедия

ЭКСПЕРИМЕНТ — (лат.). первый опыт; все то, что употребляет естествоиспытатель, чтобы заставить действовать при известных условиях, силы природы, как бы искусственно вызывая явления, встречающиеся в ней. Словарь иностранных слов, вошедших в состав русского… … Словарь иностранных слов русского языка

Наблюдение — Наблюдение ♦ Observation Сознательный и внимательный опыт. Например, человек на опыте узнает, что такое траур. Если он имеет к тому желание и возможность, он может наблюдать, что в это время происходит в его душе. Или, скажем, он на опыте… … Философский словарь Спонвиля

Наблюдение в психологии — Наблюдение описательный психологический исследовательский метод, заключающийся в целенаправленном и организованном восприятии и регистрации поведения изучаемого объекта. Содержание 1 Общие сведения 1.1 Предмет наблюдения 1 … Википедия

эксперимент — См. опыт. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. эксперимент испытание, опыт, проба; исследование, проверка, попытка Словарь русских синонимов … Словарь синонимов

Эксперимент — Эксперимент ♦ Expérimentation Активный, обдуманный опыт; стремление не столько слышать реальную действительность (опыт) и даже не столько вслушиваться в нее (наблюдение), сколько пытаться задавать ей вопросы. Существует особое понятие… … Философский словарь Спонвиля

Источник

Предмет и структура физики, методы изучения физических явлений

п.1. Предмет и объект изучения физики

Примеры наблюдений и объяснений:

Корабли скрываются за линией горизонта

Земля вращается вокруг своей оси, подставляя одну сторону под солнечные лучи

Многократное эхо слышно в просторном помещении или в горах

Звуковые волны отражаются от препятствия (стены или скалы)

Мы воспринимаем окружающий мир с помощью ощущений (зрение, обоняние, осязание, вкус). Построенные нами приборы дополняют наши органы чувств, но и от них мы воспринимаем информацию в основном через зрение.

п.2. Место физики среди других наук

Физика является естественной наукой, поскольку изучает природу. Наряду с физикой к естественным наукам относятся химия, биология, астрономия, география.

Физика является точной наукой, поскольку исследует количественно точные закономерности и использует строгие методы проверки гипотез, основанные на воспроизводимых экспериментах и строгих логических рассуждениях. К точным наукам также относят математику, химию, информатику и некоторые разделы биологии.

Физика является фундаментальной наукой, поскольку включает в себя как теоретические, так и экспериментальные исследования материальных систем, и является основой для остальных естественных наук. Её понятия, законы, теории, методы и средства используются во всех областях науки и техники.

Физика является прикладной наукой в значительной части своих разделов и направлений (акустика, баллистика, гидродинамика, оптика, материаловедение и т.п.), где изучаются конкретные технологические и технические применения полученных знаний в приборах, установках, машинах и механизмах.

п.3. Физические явления

Окружающий нас мир заполнен твёрдыми, жидкими и газообразными физическими телами.

Примеры физических тел:

Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко
Песчинка
Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко
Пружина
Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко
Воздушный шар
Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко
Ракета
Что составляет основу наблюдения и эксперимента физика кратко. Смотреть фото Что составляет основу наблюдения и эксперимента физика кратко. Смотреть картинку Что составляет основу наблюдения и эксперимента физика кратко. Картинка про Что составляет основу наблюдения и эксперимента физика кратко. Фото Что составляет основу наблюдения и эксперимента физика кратко
Планета

Любое физическое тело из чего-то состоит или из чего-то изготовлено.

Сегодня нам известны десятки миллионов веществ. Многие из них можно найти в природе, но гораздо больше создается и применяется человеком.

Источник

Реферат: Домашние наблюдения и опыты учащихся по физике. Их организация

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Автор работы считает важным, чтобы в процессе обучения учащихся физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение. Это, по мнению автора, может являться показателем достаточно полного владения материалом.

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь, конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя. Эта классификация взята из [2, с. 4] в сокращенном виде, были выбраны пункты, касающиеся заданий практического характера.

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. В школьных учебниках физики на дом предлагается либо решать задачи, либо отвечать на поставленные в конце параграфа вопросы. Там редко можно встретить описание опыта, который рекомендуется школьникам для самостоятельного проведения дома. Следовательно, если учитель предлагает ученикам проделать что-либо дома, то он обязан дать им подробный инструктаж.

В этой работе автор ставит себе цель разработать набор опытов, пригодных для проведения школьниками в домашних условиях. Для достижения вышеуказанной цели перед автором стоят следующие задачи: 1)анализ литературы; 2)разработка методики применения домашних опытов и наблюдений по физике в процессе обучения; 3)разработка набора опытов, которые могут быть предложены учителем своим ученикам для домашнего выполнения.

Без эксперимента нет и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках. Однако если учащиеся будут проделывать различные опыты и наблюдать за демонстрацией опытов, выполняемых учителем, но не будут слышать продуманных ярких рассказов преподавателя, не будут решать задач, не будут читать учебника и знакомиться с литературой, то такую работу учителя еще нельзя назвать удовлетворительной.

Если рассказ преподавателя является введением в теоретическое и практическое обучение физике, то основой практического обучения являются: демонстрация опытов учителем и фронтальные лабораторные работы. Для того, чтобы понять какое место среди практических форм обучения занимают домашние опыты и эксперименты рассмотрим вкратце эти вышеперечисленные формы обучения. Для этого воспользуемся книгой [1] из списка литературы.

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

-учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

-у учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты, устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Значение и виды самостоятельного эксперимента учащихся по физике. При обучении физике в средней школе экспериментальные умения формируются при выполнении самостоятельных лабораторных работ.

Обучение физике нельзя представить только в виде теоретических занятий, даже если учащимся на занятиях показываются демонстрационные физические опыты. Ко всем видам чувственного восприятия надо обязательно добавить на занятиях “работу руками”. Это достигается при выполнении учащимися лабораторного физического эксперимента, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе. Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

-фронтальные лабораторные работы по физике;

-домашние экспериментальные работы по физике.

Главные задачи экспериментальных работ этого вида:

-формирование умения наблюдать физические явления в природе и в быту;

-формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

-формирование интереса к эксперименту и к изучению физики;

-формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

-работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

-работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

-работы, выполняемые на приборах, выпускаемых промышленностью.

Классификация взята из [1].

В своей книге [2] С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1)дают возможность нашей школе расширить область связи теории с практикой; 2)развивают у учащихся интерес к физике и технике; 3)будят творческую мысль и развивают способность к изобретательству; 4)приучают учащихся к самостоятельной исследовательской работе; 5)вырабатывают у них ценные качества: наблюдательность, внимание, настойчивость и аккуратность; 6)дополняют классные лабораторные работы тем материалом, который никак не может быть выполнен в классе (ряд длительных наблюдений, наблюдение природных явлений и прочее), и 7)приучают учащихся к сознательному, целесообразному труду.

Домашние опыты и наблюдения по физике имеют свои характерные особенности, являясь чрезвычайно полезным дополнением к классным и вообще школьным практическим работам.

Уже достаточно давно рекомендовано учащимся иметь домашнюю лабораторию. в нее включались в первую очередь линейки, мензурка, воронка, весы, разновесы, динамометр, трибометр, магнит, часы с секундной стрелкой, железные опилки, трубки, провода, батарейка, лампочка. Однако, несмотря на то, что в набор включены весьма простые приборы, это предложение не получило распространения.

Для организации домашней экспериментальной работы учащихся можно использовать так называемую мини-лабораторию, предложенную учителем-методистом Е.С. Объедковым, в которую входят многие предметы домашнего обихода (бутылочки от пенициллина, резинки, пипетки, линейки и т.п.) что доступно практически каждому школьнику. Е.С. Объедков разработал весьма большое число интересных и полезных опытов с этим оборудованием.

Появилась также возможность использовать ЭВМ для проведения в домашних условиях модельного эксперимента. Понятно, что соответствующие задания могут быть предложены только тем учащимся, у которых дома есть компьютер и програмно-педагогические средства.

Чтобы ученики хотели учиться, необходимо чтобы процесс обучения был интересен для них. Что же интересно ученикам? Для получения ответа на этот вопрос обратимся к выдержкам из статьи И.В. Литовко, МОС(П)Ш №1 г. Свободного “Домашние экспериментальные задания как элемент творчества учащихся”, опубликованной в интернете. Вот что пишет И.В. Литовко:

Для изучения мотивации учащихся им были предложены следующие вопросы и получены результаты:

Какое домашнее задание вы предпочитаете выполнять?

На каком уроке вам интересно?

В учебниках “Физика-7”, “Физика-8” (авторы А.В.Перышкин, Н.А.Родина) учащимся после изучения отдельных тем предлагаются экспериментальные задания для наблюдений, которые можно выполнить в домашних условиях, объяснить их результаты, составить краткий отчет о работе.

. Систематическое выполнение учащимися экспериментальных лабораторных работ способствует более осознанному и конкретному восприятию изучаемого на уроке материала, повышает интерес к физике, развивает любознательность, прививает ценные практические умения и навыки. Эти задания являются эффективным средством повышения самостоятельности и инициативы учащихся, что благоприятно сказывается на всей их учебной деятельности”

Из статьи И.В.Литовко видно, что многим учащимся при изучении физики нравится наблюдать за опытами, а многие не прочь проделать какие-либо опыта дома в качестве домашнего задания. Какие еще плюсы у домашних экспериментов по сравнению с опытами и лабораторными, проводимыми в классе? Как уже говорилось, это менее жесткое ограничение по времени. Так же дети дома чувствуют себя более комфортно, чем на лабораторных занятиях в школе, где многие дети могут пребывать в стрессовом состоянии, что может отрицательно влиять на продуктивность выполнения работы. При выполнении задания дома школьники полностью самостоятельно выполняют задание, занимаются творческой деятельностью, что благоприятно сказывается на их развитии. О том, что домашние опыты полезно использовать учителю в процессе обучения школьников сказано достаточно много. Теперь посмотрим, что же представляют собой эти опыты и как с ними можно работать учителю.

Требования, предъявляемые к домашним экспериментам. Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно, без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного кратко сформулируем предъявляемые к домашним экспериментальным заданиям требования :

-безопасность при проведении;

-минимальные материальные затраты;

-простота по выполнению;

-иметь ценность в изучении и понимании физики;

-легкость последующего контроля учителем;

-наличие творческой окраски.

Таким требованиям должны соответствовать опыты, предлагаемые учителем школьникам для самостоятельного проведения в домашних условиях. Далее рассмотрим, как домашние опыты и наблюдения учитель может применять в процессе обучения школьников физике.

Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Если учащийся, живущий на даче, в деревне, подойдя за водой к деревенскому колодцу, обратит внимание (по заданию учителя) на устройство ворота или на устройство колодезного журавля да еще сравнит диаметр вала с диаметром колеса или “длины плеч” журавля, то выполнение уже этого простенького задания принесет пользу. Этот учащийся при проработке или при повторении темы “Простые механизмы” будет воспринимать (или воспроизводить) материал гораздо сознательнее, чем тот учащийся, который никогда не видел или не обращал внимания на подобные механизмы.

Особенно разнообразные задания можно предложить тем ученикам, которые будут купаться и кататься на лодке. Не чувствуя обстановки урока, эти учащиеся с особенным интересом вспомнят о заданиях учителя и с большой охотой будут наблюдать различные явления и проделывать несложные опыты. По-новому будут смотреть они на зеркальную поверхность пруда или озера, в которой отражаются противоположный берег и облака, видя в этих явлениях действие законов отражения и преломления. А как просты и разнообразны опыты по образованию и распространению волн от брошенного в воду камня! Сколько раз учащийся может повторить эти опыты, находясь на мостках пруда. Еще можно предложить ученикам понаблюдать за плаванием тел, за “потерей в весе” по закону Архимеда, за понижением температуры собственного тела при выходе из воды наружу при ветре (теплота парообразования и интенсивность испарения). При плавании на лодке следует обратить внимание учащихся на проявление инерции, когда быстро плывущая лодка с разгона врезается в берег и на проявление третьего закона Ньютона при прыжках с лодки на берег или просто в воду. Или еще пример. Вот учащиеся пересекают речку на лодке. Кажется, маленький факт. Однако и здесь можно обратить их внимание на сложение движений и указать на правило параллелограмма.

Задача учителя в организации летних работ и наблюдений состоит главным образом в том, чтобы натолкнуть на мысль, направить, сделать намек. Все остальное добавит собственная зрения учащихся и их неиссякаемая любознательность.

Если учитель задал ученикам на дом провести эксперимент или наблюдение, то совершенно не обязательно, что все учащиеся (как и при любом домашнем задании) выполнят это задание. При любом домашнем задании есть ученики, выполнившие домашнюю работу и не сделавшие ее по какой-либо причине. Однако, следует ожидать, что учеников, желающих провести дома самостоятельно опыт, будет больше чем желающих читать учебник. Как карать за невыполненное домашнее задание и насколько сильно требовать выполнения опыта зависит от конкретного учителя. Обсуждение механизма выставления оценок не входит в тему данной работы, поэтому здесь мы не будем останавливаться. Ясно то, что выполнение дома опыта должно поощряться учителем. Это может быть выставление хороших оценок, постановка выполнивших в пример невыполнившим, тут опять же все зависит от конкретного учителя, от его характера работы с каждым отдельным классом.

Проверка выполнения работы. При выполнении работы будет очень хорошо, если ученики будут записывать свои наблюдения в виде письменного отчета о проделанной работе (кратко: что делали, что увидели, сделать попытку дать объяснение увиденному). Это даст учителю возможность проверить выполнение, точнее оценить каждого ученика. При проверке заданного на дом опыта учитель должен обязательно обсудить в классе со всеми учениками теоретические основы наблюдаемого явления. Сначала учителю следует выслушать учеников, как они объяснят увиденное. Далее следует отметить верные мысли учеников, дающих правильное (или почти правильное) объяснение. В заключении учителю следует вкратце напомнить ученикам про опыт и самому четко проговорить ученикам объяснение происходящего при опыте явления, отметить заблуждения учеников (если таковые будут присутствовать в их ответах), указать, где еще на практике можно столкнуться с проявлениями подобного явления. После самостоятельного проведения опыта учениками и обсуждения увиденного с научной точки зрения при участии учителя, у учеников должна сложиться достаточно полная картина об изучаемом явлении. Это представление (а учитель должен приложить все усилия для того, чтобы оно сформировалось правильно) останется у учеников в памяти надолго. Примерно так, по мнению автора, должна выглядеть проверка выполнения опыта, заданного на дом. Такая проверка отнимет от урока времени не больше, чем проверка любого другого домашнего задания, и, в то же время, принесет немалую пользу для формирования у учащихся верных представлений об окружающем мире.

Задание опыта или наблюдения на дом. А как может выглядеть процесс задания на дом работ практического характера? Тут дело обстоит несколько по-другому, чем при задании на дом чтения параграфа или решения задач из учебника или задачника. Не много в каких учебниках есть экспериментальные задания, (автор встречал подобные задания в учебниках “Физика-7” и “Физика-8” авторы: А.В. Перышкин, Н.А. Родина) предлагаемые авторами детям для самостоятельного проведения в домашних условиях. Если учитель хочет, чтобы ученики дома самостоятельно провели опыт или наблюдение, то ему необходимо дать им описание, по которому можно выполнить задание. Конечно, расписывать все подробно необязательно, т.к. в подобной работе должны присутствовать элементы творческой деятельности. Дети должны ясно представлять, что им необходимо сделать, на что обратить внимание. Если описание опыта находиться в учебнике (как уже говорилось выше, такие описания находятся в учебниках “Физика-7” и “Физика-8”, авторы А.В.Перышкин и Н.А.Родина), то тут не возникает никаких проблем. Просто надо указать ученикам на страницу учебника, где они могут найти всю необходимую для проведения опыта информацию. А если подходящего опыта нет в учебнике? Тогда учитель может потратить часть времени урока на объяснение того, что детям надо сделать дома. Рассказ должен быть таким, чтобы у учеников возникло большое желание самостоятельно проделать опыт. Для этого опыт не должен быть трудным, всё необходимое для постановки опыта должно найтись дома почти у каждого ученика. При описании опыта обязательно надо указать на то, что необходимо для проведения опыта. Какие предметы, вещества и т.д. (естественно, все это должно отвечать требованиям безопасности) необходимо иметь, где их можно найти. Далее в описании опыта следует указать последовательность действий, т.е. что надо делать, на что обратить внимание в процессе выполнения. Тут надо помнить, что предполагается, что опыт ученики будут проводить самостоятельно, без участия кого-либо. Следовательно, описание должно быть сделано на доступном для детей того возраста, для которого предназначен опыт, языке. Можно сразу дать теоретическое объяснение, а можно попросить учеников попытаться самостоятельно объяснить увиденное явление. Как уже говорилось, будет хорошо, если учащиеся сделают отчет о проведенном эксперименте. Лучше если отчет будет в письменной форме. Задание отсутствующего в учебнике опыта учителем в устной форме может отнять много времени от урока. Идеальным, по мнению автора диплома, будет такой вариант, когда детям раздадут инструкции с описанием опыта на дом. Для этого учителю надо распечатать инструкции с подробным описанием опыта в количестве, равному количеству учеников в классе. Такой комплект инструкций можно использовать многократно. Если после выполнения опыта одним классом комплект собрать, то его можно использовать для повторного использования в другом классе. Требования к письменному описанию эксперимента такие же, как и к устному рассказу учителя о рекомендуемом для выполнения дома опыте. А так время от урока не тратится, то письменное описание может быть еще более подробным, чем устный рассказ. Тут у учителя могут возникнуть трудности, связанные с необходимостью изготовления большого числа инструкций. По мнению автора, тут, как говорится, цель оправдывает средства. Мало какой школьник устоит от проведения самостоятельного эксперимента, если у него перед глазами будет все подробно написано, то ему захочется выполнить его. Получить результат, сравнить свой результат с результатами одноклассников. Провести опыт дома легко смогут даже отстающие ученики. Это для них неплохой способ получить хорошую оценку. А почему бы не поставить, ели опыт проведен, результаты описаны, ученик понимает теоретическую часть эксперимента, хорошую оценку?

При измерении ускорения свободного падения мы пользовались описанием лабораторной работы из учебника “Физика-9” (авторы И.К.Кикоин, А.К. Кикоин) которое, безусловно, сильно помогло. Практическая часть данного диплома как раз и состоит из набора описаний опытов, отвечающих соответствующим требованиям, которые могут быть предложены учителем школьникам для проведения в домашних условиях.

Как говорилось выше, практическая часть данного диплома представляет собой набор описаний опытов, пригодных для проведения школьниками в домашних условиях. Опыты разделены по темам: “Простейшие измерения”; “Давление”; “Закон Архимеда”; “Силы поверхностного натяжения”; “Трение”; “Центр тяжести”; “Инерция”; “Теплота”.

Опыты, в основном, взяты из книг: [4], [2], [5]. Некоторые опыты слегка подкорректированы автором. В них предметы, вышедшие из употребления, заменены имеющимися в настоящее время практически в любом доме (например, шариковые ручки вместо перьевых). В некоторых опытах помимо (или вместо) стеклянных бутылок автор предлагает использовать пластиковые. Они достаточно прочно вошли в современный быт и менее опасны, чем стеклянные.

Все ниже перечисленные опыты проверены на соответствие требованиям, предъявляемым к домашним экспериментальным заданиям.

Научившись пользоваться линейкой и рулеткой или сантиметром в классе, измерьте при помощи этих приборов длины следующих предметов и расстояний:

а)длину указательного пальца; б)длину локтя, т.е. расстояние от конца локтя до конца среднего пальца; в)длину ступни от конца пятки до конца большого пальца; г)окружность шеи, окружность головы; д)длину ручки или карандаша, спички, иголки, длину и ширину тетради.

Полученные данные запишите в тетрадь.

Измерьте свой рост:

1. Вечером, перед отходом ко сну, снимите обувь, встаньте спиной к косяку двери и плотно прислонитесь. Голову держите прямо. Попросите кого-нибудь с помощью угольника поставить на косяке небольшую черточку карандашом. Измерьте расстояние от пола до отмеченной черточки рулеткой или сантиметром. Выразите результат измерения в сантиметрах и миллиметрах, запишите его в тетрадь с указанием даты (год, месяц, число, час).

2. Проделайте то же самое утром. Снова запишите результат и сравните результаты вечернего и утреннего измерений. Запись принесите в класс.

Измерьте толщину листа бумаги.

Возьмите книгу толщиной немного больше 1см и, открыв верхнюю и нижнюю крышки переплета, приложите к стопке бумаги линейку. Подберите стопку толщиной в 1см=10мм=10000 микрон. Разделив 10000 микрон на число листов, выразите толщину одного листа в микронах. Результат запишите в тетрадь. Подумайте, как можно увеличить точность измерения?

Определите объем спичечной коробки, прямоугольного ластика, пакета из-под сока или молока. Измерьте длину, ширину и высоту спичечной коробки в миллиметрах. Перемножьте полученные числа, т.е. найдите объем. Выразите результат в кубических миллиметрах и в кубических дециметрах (литрах), запишите его. Проделайте измерения и вычислите объемы других предложенных тел.

Возьмите часы с секундной стрелкой (можно воспользоваться электронными часами или секундомером) и, глядя на

секундную стрелку, наблюдайте за ее движением в течение одной минуты (на электронных часах наблюдайте за цифровыми значениями). Далее попросите кого-нибудь отметить вслух начало и конец минуты по часам, а сами в это время закройте глаза, и с закрытыми глазами воспринимайте продолжительность одной минуты. Проделайте обратное: стоя с закрытыми глазами, попытайтесь установить продолжительность одной минуты. Пусть другой человек проконтролирует вас по часам.

Научитесь быстро находить свой пульс, затем возьмите часы с секундной стрелкой или электронные и установите, сколько ударов пульса наблюдается в одну минуту. Затем проделайте обратную работу: считая удары пульса, установите продолжительность одной минуты (следить за часами поручите другому лицу)

Примечание. Великий ученый Галилей, наблюдая за качаниями паникадила во Флорентийском кафедральном соборе и пользуясь (вместо часов) биениями собственного пульса, установил первый закон колебания маятника, который лег в основу учения о колебательном движении.

Определите давление, производимое стулом. Подложите под ножку стула листок бумаги в клеточку, обведите ножку остро отточенным карандашом и, вынув листок, подсчитайте число квадратных сантиметров. Подсчитайте площадь опоры четырех ножек стула. Подумайте, как еще можно посчитать площадь опоры ножек?

Узнайте вашу массу вместе со стулом. Это можно сделать при помощи весов, предназначенных для взвешивания людей. Для этого надо взять в руки стул и встать на весы, т.е. взвесить себя вместе со стулом.

Если узнать массу имеющегося у вас стула по каким-либо причинам не получается, примите массу стула равной 7кг (средняя масса стульев). К массе собственного тела прибавьте среднюю массу стула.

Посчитайте ваш вес вместе со стулом. Для этого сумму масс стула и человека необходимо умножить примерно на десять (точнее на 9,81 м/с^2). Если масса была в килограммах, то вы получите вес в ньютонах. Пользуясь формулой p=F/S, подсчитайте давление стула на пол, если вы сидите на стуле, не касаясь ногами пола. Все измерения и расчеты запишите в тетрадь и принесите в класс.

Налейте в стакан воду до самого края. Прикройте стакан листком плотной бумаги и, придерживая бумагу ладонью, быстро переверните стакан кверху дном. Теперь уберите ладонь. Вода из стакана не выльется. Давление атмосферного воздуха на бумажку больше давления воды на нее.

На всякий случай проделывайте все это над тазом, потому что при незначительном перекосе бумажки и при еще недостаточной опытности на первых порах воду можно и разлить.

Возьмите стакан и тарелку. В тарелку налейте воду и поставьте в нее перевернутый вверх дном стакан. Воздух в стакане сожмется, и дно тарелки под стаканом будет очень немного залито водой. Перед тем как поставить в тарелку стакан, положите на воду пробку. Она покажет, как мало воды осталось на дне.

Когда пипетка находится на дне бутылки, легко проследить, как от усиления нажима на стенки бутылки вода входит в пипетку, а при ослаблении нажима выходит из нее.

Сделайте фонтан, известный в истории физики как фонтан Герона. Через пробку, вставленную в толстостенную бутылку, пропустите кусок стеклянной трубки с оттянутым концом. Налейте в бутылку столько воды, сколько потребуется для того, чтобы конец трубки был погружен в воду. Теперь в два-три приема вдуйте ртом в бутылку воздух, зажимая после каждого вдувания конец трубки. Отпустите палец и наблюдайте фонтан.

Если хотите получить очень сильный фонтан, то для накачивания воздуха воспользуйтесь велосипедным насосом. Однако помните, что более чем от одного-двух взмахов насоса пробка может вылететь из бутылки и ее нужно будет придерживать пальцем, а при очень большом количестве взмахов сжатый воздух может разорвать бутылку, поэтому пользоваться насосом нужно очень осторожно.

Приготовьте деревянную палочку (прутик), широкую банку, ведро с водой, широкий пузырек с пробкой и резиновую нить длиной не менее 25 см.

1. Вталкивайте палочку в воду и наблюдайте, как она выталкивается из воды. Проделайте это несколько раз.

2. Вдвигайте банку в воду дном вниз и наблюдайте как она выталкивается из воды. Проделайте это несколько раз. Вспомните, как трудно вдвинуть ведро дном вниз в бочку с водой (если не наблюдали этого, проделайте при любом удобном случае).

3. Наполните пузырек с водой, закройте пробкой и привяжите к нему резиновую нить. Держа нить за свободный конец, наблюдайте, как она укорачивается при погружении пузырька в воду. Проделайте это несколько раз.

4. Жестяная пластинка на воде тонет. Загните края пластинки так, чтобы получилась коробочка. Поставьте ее на воду. Она плавает. Вместо жестяной пластинки можно использовать кусок фольги, желательно жесткой. Сделайте коробочку из фольги и поставьте на воду. Если коробочка (из фольги или металла) не протекает, то она будет плавать на поверхности воды. Если коробочка набирает воду и тонет, подумайте, как сложить ее таким образом, чтобы вода не попадала внутрь.

Опишите и объясните эти явления в тетради.

Возьмите кусочек сапожного вара или воска величиной с обыкновенный лесной орех, сделайте из него правильный шарик и при помощи небольшой нагрузки (вложите кусочек проволоки) заставьте его плавно затонуть в стакане или пробирке с водой. Если шарик тонет без нагрузки, то нагружать его, конечно, не следует. При отсутствии вара или воска можно вырезать небольшой шарик из мякоти сырой картофелины.

Подливайте в воду понемногу насыщенного раствора чистой поваренной соли и слегка перемешивайте. Добейтесь сначала того, чтобы шарик держался в равновесии в середине стакана или пробирки, а затем того, чтобы он всплыл к поверхности воды.

Примечание. Предлагаемый опыт является вариантом известного опыта с куриным яйцом и имеет перед последним опытом ряд преимуществ (не требует наличия свежеснесенного куриного яйца, наличия большого высокого сосуда и большого количества соли).

Возьмите резиновый мяч, шарик от настольного тенниса, кусочки дубового, березового и соснового дерева и пустите их плавать на воде (в ведре или тазу). Внимательно наблюдайте за плаванием этих тел и определите на глаз, какая часть этих тел при плавании погружается в воду. Вспомните, насколько глубоко погружается в воду лодка, бревно, льдина, корабль и прочее.

Силы поверхностного натяжения.

Подготовьте для этого опыта стеклянную пластинку. Хорошо ее вымойте мылом и теплой водой. Когда она высохнет, протрите одну сторону ваткой, смоченной в одеколоне. Ничем ее поверхности не касайтесь, а брать пластинку теперь нужно только за края.

Возьмите кусочек гладкой белой бумаги и накапайте на него стеарин со свечи, чтобы на нем получилась ровная плоская стеариновая пластинка размером с донышко стакана.

Положите рядом стеариновую и стеклянную пластинки. Капните из пипетки на каждую из них по маленькой капле воды. На стеариновой пластинке получится полушарие диаметром примерно 3 миллиметра, а на стеклянной пластинке капля растечется. Теперь возьмите стеклянную пластинку и наклоните ее. Капля уже и так растеклась, а теперь она потечет дальше. Молекулы воды охотнее притягиваются к стеклу, чем друг к другу. Другая же капля будет кататься по стеарину при наклонах пластинки в разные стороны. Удержаться на стеарине вода не может, она его не смачивает, молекулы воды притягиваются друг к другу сильнее, чем к молекулам стеарина.

Примечание. В опыте вместо стеарина можно использовать сажу. Надо капнуть на закопченную поверхность металлической пластинки воды из пипетки. Капля превратится в шарик и быстро покатится по саже. Чтобы следующие капли сразу не скатывались с пластины, нужно держать ее строго горизонтально.

Можно заставить плавать и иголку, смазав ее предварительно тонким слоем жира. Класть на воду ее надо очень осторожно, чтобы не проколоть поверхностный слой воды. Сразу это может и не получиться, понадобится некоторое терпение и тренировка.

Обратите внимание на то, как расположена иголка на воде. Если иголка намагничена, то это плавающий компас! А если взять магнит, можно заставить иглу путешествовать по воде.

Положите на поверхность чистой воды два одинаковых кусочка пробки. Кончиками спички сблизьте их. Обратите внимание: как только расстояние между пробками уменьшится до половины сантиметра, этот водяной промежуток между пробками сам сократиться, и пробки быстро притянутся друг к другу. Но не только друг к другу стремятся пробки. Они хорошо притягиваются и к краю посуды, в которой они плавают. Для этого надо только их приблизить к нему на небольшое расстояние.

Попытайтесь дать объяснение увиденному явлению.

Этот опыт (опыт Плато) наглядно показывает, как под действием сил поверхностного натяжения жидкость превращается в шар. Для этого опыта смешивают спирт с водой в таком соотношении, чтобы смесь имела плотность масла. Наливают эту смесь в стеклянный сосуд и вводят в нее постное масло. Масло сразу располагается в середине сосуда, образуя красивый, прозрачный, желтый шар. Для шара созданы такие условия, как будто он в невесомости.

Налейте немного подсолнечного масла в приготовленный пузырек. В качестве посуды возьмите наперсток. Капните в него несколько капель воды и столько же одеколона. Размешайте смесь, наберите ее в пипетку и выпустите одну каплю в масло. Если капля, став шариком, пойдет на дно, значит, смесь получилась тяжелее масла, ее надо облегчить. Для этого добавьте в наперсток одну или две капли одеколона. Одеколон состоит из спирта, он легче воды и масла. Если шарик из новой смеси начнет не опускаться, а, наоборот, подниматься, значит, смесь стала легче масла и в нее надо добавить каплю воды. Так, чередуя добавление воды и одеколона маленькими, капельными дозами, можно добиться, что шарик из воды и одеколона будет “висеть” в масле на любом уровне. Классический опыт Плато в нашем случае выглядит наоборот: масло и смесь спирта с водой поменялись местами.

Примечание. Опыт можно задавать на дом и при изучении темы “Закон Архимеда”.

Как изменить поверхностное натяжение воды? Налейте в две тарелки чистой воды. Возьмите ножницы и от листа бумаги в клеточку отрежьте две узкие полоски шириной в одну клеточку. Возьмите одну полоску и, держа ее над одной тарелкой, отрезайте от полоски кусочки по одной клеточке, стараясь делать это так, чтобы падающие в воду кусочки располагались на воде кольцом по середине тарелки и не прикасались ни друг к другу, ни к краям тарелки.

Возьмите кусочек мыла, заостренный на конце, и прикасайтесь заостренным концом к поверхности воды в средней части кольца из бумажек. Что наблюдаете? Почему кусочки бумаги начинают разбегаться?

Возьмите теперь другую полоску, так же отрежьте от нее несколько кусочков бумаги над другой тарелкой и, прикоснувшись кусочком сахара к середине поверхности воды внутри кольца, держите его некоторое время в воде. Кусочки бумаги будут приближаться друг к другу, собираясь.

Ответьте на вопрос: как изменилась величина поверхностного натяжения воды от примеси к ней мыла и от примеси сахара?

Возьмите длинную тяжелую книгу, перевяжите ее тонкой ниткой и прикрепите к нитке резиновую нить длиной 20 см.

Положите книгу на стол и очень медленно начинайте тянуть за конец резиновой нити. Попытайтесь измерить длину растянувшейся резиновой нити в момент начала скольжения книги.

Измерьте длину растянувшейся книги при равномерном движении книги.

Положите под книгу две тонкие цилиндрические ручки (или два цилиндрических карандаша) и так же тяните за конец нити. Измерьте длину растянувшейся нити при равномерном движении книги на катках.

Сравните три полученных результата и сделайте выводы.

Примечание. Следующее задание является разновидностью предыдущего. Оно так же направлено на сравнение трения покоя, трения скольжения и трения качения.

Подумайте, почему гвоздь легче вытащить из доски, если вращать его вокруг оси?

Чтобы толстую книгу передвинуть по столу одним пальцем, надо приложить некоторое усилие. А если под книгу положить два круглых карандаша или ручки, которые будут в данном случае роликовыми подшипниками, книга легко передвинется от слабого толчка мизинцем.

Проделайте опыты и сделайте сравнение силы трения покоя, силы трения скольжения и силы трения качения.

На этом опыте можно наблюдать сразу два явления: инерцию, опыты с которой будут описаны дальше, и трение.

Возьмите два яйца: одно сырое, а другое сваренное вкрутую. Закрутите оба яйца на большой тарелке. Вы видите, что вареное яйцо ведет себя иначе, чем сырое: оно вращается значительно быстрее.

В вареном яйце белок и желток жестко связаны со своей скорлупой и между собой т.к. находятся в твердом состоянии. А когда мы раскручиваем сырое яйцо, то мы раскручиваем сначала лишь скорлупу, только потом, за счет трения, слой за слоем вращение передается белку и желтку. Таким образом, жидкие белок и желток своим трением между слоями тормозят вращение скорлупы.

Примечание. Вместо сырого и вареного яиц можно закрутить две кастрюли, в одной из которых вода, а в другой находится столько же по объему крупы.

Возьмите два граненых карандашаи держите их перед собой параллельно, положив на них линейку. Начните сближать карандаши. Сближение будет происходить поочередными движениями: то один карандаш движется, тот другой. Даже если вы захотите вмешаться в их движение, у вас ничего не получится. Они все равно будут двигаться по очереди.

Как только на одном карандаше давление стало больше и трение настолько возросло, что карандаш дальше двигаться не может, он останавливается. Зато второй карандаш может теперь двигаться под линейкой. Но через некоторое время давление и над ним становится больше, чем над первым карандашом, и из-за увеличения трения он останавливается. А теперь может двигаться первый карандаш. Так, двигаясь по очереди, карандаши встретятся на самой середине линейки у ее центра тяжести. В этом легко убедится по делениям линейки.

Этот опыт можно проделать и с палкой, держа ее на вытянутых пальцах. Сдвигая пальцы, вы заметите, что они, тоже двигаясь поочередно, встретятся под самой серединой палки. Правда, это лишь частный случай. Попробуйте проделать то же самое с обычной половой щеткой, лопатой или граблями. Вы увидите, что пальцы встретятся не на середине палки. Попытайтесь объяснить, почему так происходит.

Теперь вопрос: где находится центр тяжести карандаша и перочинного ножа?

Определите положение центра тяжести спички с головкой и без головки.

Поставьте на стол спичечный коробок на длинную узкую его грань и положите на коробок спичку без головки. Эта спичка будет служить опорой для другой спички. Возьмите спичку с головкой и уравновесьте ее на опоре так, чтобы она лежала горизонтально. Ручкой отметьте положение центра тяжести спички с головкой.

Соскоблите головку со спички и положите спичку на опору так, чтобы отмеченная вами чернильная точка лежала на опоре. Это теперь вам не удастся: спичка не будет лежать горизонтально, так как центр тяжести спички переместился. Определите положение нового центра тяжести и заметьте, в какую сторону он переместился. Отметьте ручкой центр тяжести спички без головки.

Спичку с двумя точками принесите в класс.

Определите положение центра тяжести плоской фигуры.

Вырежьте из картона фигуру произвольной (какой-либо причудливой) формы и проколите в разных произвольных местах несколько отверстий (лучше, если они будут расположены ближе к краям фигуры, это увеличит точность). Вбейте в вертикальную стену или стойку маленький гвоздик без шляпки или иглу и повесьте на него фигуру через любое отверстие. Обрати внимание: фигура должна свободно качаться на гвоздике.

Возьмите отвес, состоящий из тонкой нити и груза, и перекиньте его нить через гвоздик, чтобы он указывал вертикальное направление не подвешенной фигуре. Отметьте на фигуре карандашом вертикальное направление нити.

Снимите фигуру, повесьте ее за любое другое отверстие и снова при помощи отвеса и карандаша отметьте на ней вертикальное направление нити.

Точка пересечения вертикальных линий укажет положение центра тяжести данной фигуры.

Пропустите через найденный вами центр тяжести нить, на конце которой сделан узелок, и подвесьте фигуру на этой нити. Фигура должна держаться почти горизонтально. Чем точнее проделан опыт, тем горизонтальнее будет держаться фигура.

Определите центр тяжести обруча.

Возьмите небольшой обруч (например, пяльцы) или сделайте кольцо из гибкого прутика, из узкой полоски фанеры или жесткого картона. Подвесьте его на гвоздик и из точки привешивания опустите отвес. Когда нить отвеса успокоится, отметьте на обруче точки ее прикосновения к обручу и между этими точками натяните и закрепите кусок тонкой проволоки или лески (натягивать надо достаточно сильно, но не настолько чтобы обруч менял свою форму).

Подвесьте обруч на гвоздик за любую другую точку и проделайте то же самое. Точка пересечения проволок или лесок и будет центром тяжести обруча.

Заметьте: центр тяжести обруча лежит вне вещества тела.

К месту пересечения проволок или лесок привяжите нить и подвесьте на ней обруч. Обруч будет находится в безразличном равновесии, так как центр тяжести обруча и точка его опоры (подвеса) совпадают.

Вы знаете, что устойчивость тела зависит от положения центра тяжести и от величины площади опоры: чем ниже центр тяжести и больше площадь опоры, тем тело устойчивее.

Помня это, возьмите брусок или пустой коробок от спичек и, ставя его поочередно на бумагу в клеточку на самую широкую, на среднюю и на самую меньшую грань, обводите каждый раз карандашом, чтобы получить три разных площади опоры. Подсчитайте размеры каждой площади в квадратных сантиметрах и проставьте их на бумаге.

Измерьте и запишите высоту положения центра тяжести коробка для всех трех случаев (центр тяжести спичечного коробка лежит на пересечении диагоналей). Сделайте вывод, при каком положении коробок является наиболее устойчивым.

Какое же условие надо выполнить, чтобы встать? Надо наклониться вперед или поджать под сиденье ноги. Вставая, мы всегда проделываем и то и другое. При этом вертикальная линия, проходящая через ваш центр тяжести, должна обязательно пройти хотя бы через одну из ступней ваших ног или между ними. Тогда равновесие вашего тела окажется достаточно устойчивым, вы легко сможете встать.

Ну, а теперь попробуйте встать, взяв в руки гантели или утюг. Вытяните руки вперед. Возможно, удастся встать, не наклоняясь и не подгибая ноги под себя.

Положите на стакан почтовую открытку, а на открытку положите монету или шашку так, чтобы монета находилась над стаканом. Ударьте по открытке щелчком. Открытка должна вылететь, а монета (шашка) упасть в стакан.

Положите на стол двойной лист бумаги из тетради. На одну половину листа положите стопку книг высотой не ниже 25см.

Слегка приподняв над уровнем стола вторую половину листа обеими руками, стремительно дерните лист к себе. Лист должен освободиться из-под книг, а книги должны остаться на месте.

Снова положите на лист книги и тяните его теперь очень медленно. Книги будут двигаться вместе с листом.

Возьмите молоток, привяжите к нему тонкую нить, но чтобы она выдерживала тяжесть молотка. Если одна нитка не выдерживает, возьмите две нитки. Медленно поднимите молоток вверх за нитку. Молоток будет висеть на нитке. А если вы захотите его снова поднять, но уже не медленно, а быстрым рывком, нитка оборвется (предусмотрите, чтобы молоток, падая, не разбил ничего под собой). Инертность молотка настолько велика, что нитка не выдержала. Молоток не успел быстро последовать за вашей рукой, остался на месте, и нить порвалась.

Возьмите небольшой шарик из дерева, пластмассы или стекла. Сделайте из плотной бумаги желобок, положите в него шарик. Быстро двигайте по столу желобок, а затем внезапно его остановите. Шарик по инерции продолжит движение и покатится, выскочив из желобка.

Проверьте, куда покатится шарик, если:

а) очень быстро потянуть желоб и резко остановить его;

б)тянуть желоб медленно и резко остановить.

Разрежьте яблоко пополам, но не до самого конца, и оставьте его висеть на ноже.

Теперь ударьте тупой стороной ножа с висящим сверху на нем яблоком по чему-нибудь твердому, например по молотку. Яблоко, продолжая движение по инерции, окажется перерезанным и распадется на две половинки.

Точно то же самое получается, когда колют дрова: если не удалось расколоть чурбак, его обычно переворачивают и что есть сил ударяют обухом топора о твердую опору. Чурбак, продолжая двигаться по инерции, насаживается глубже на топор и раскалывается надвое.

Положите на столе, рядом, деревянную доску и зеркало. Между ними положите комнатный термометр. Спустя какое-то довольно долгое время можно считать, что температуры деревянной доски и зеркала сравнялись. Термометр показывает температуру воздуха. Такую же, какая, очевидно, и у доски и у зеркала.

Дотроньтесь ладонью до зеркала. Вы почувствуете холод стекла. Тут же дотроньтесь до доски. Она покажется значительно теплее. В чем дело? Ведь температура воздуха, доски и зеркала одинакова.

Почему же стекло показалось холоднее дерева? Попытайтесь ответить на этот вопрос.

Примечание. Вместо дерева можно использовать пенопласт.

Возьмите два одинаковых гладких стакана, налейте в один стакан кипятку до 3/4 его высоты и тотчас накройте стакан куском пористого (не ламинированного) картона. Поставьте на картон вверх дном сухой стакан и наблюдайте, как будут постепенно запотевать его стенки. Этот опыт подтверждает свойства паров диффундировать через перегородки.

Возьмите стеклянную бутылку и хорошо остудите ее (например, выставив на мороз или поставив в холодильник). Налейте в стакан воды, отметьте время в секундах, возьмите холодную бутылку и, зажав ее в обеих руках, опустите горлом в воду.

Сосчитайте, сколько пузырьков воздуха выйдет из бутылки в течение первой минуты, в течение второй и в течение третьей минуты.

Запишите результаты. Отчет о работе принесите в класс.

Возьмите стеклянную бутылку, хорошо прогрейте ее над парами воды и налейте в нее кипятку до самого верха. Поставьте бутылку так на подоконник и отметьте время. Через 1 час отметьте новый уровень воды в бутылке.

Отчет о работе принесите в класс.

Установите зависимость быстроты испарения от площади свободной поверхности жидкости.

Наполните пробирку (небольшую бутылку или пузырек) водой и вылейте на поднос или плоскую тарелку. Снова наполните ту же емкость водой и поставьте рядом с тарелкой в спокойное место (например, на шкаф), предоставив воде спокойно испарятся. Запишите дату начала опыта.

Когда вода на тарелке испарится, снова отметьте и запишите время. Посмотрите, какая часть воды испарилась из пробирки (бутылки).

Возьмите чайный стакан, наполните его кусочками чистого льда (например, от расколотой сосульки) и внесите стакан в комнату. Налейте в стакан до краев комнатной воды. Когда весь лед растает, посмотрите, как изменился уровень воды в стакане. Сделайте вывод об изменении объема льда при плавлении и о плотности льда и воды.

Наблюдайте возгонку снега. Возьмите зимой в морозный день пол стакана сухого снега и поставьте его снаружи дома под каким-нибудь навесом, чтобы в стакан не попал снег из воздуха.

Запишите дату начала опыта и наблюдайте за возгонкой снега. Когда весь снег улетучится, снова запишите дату.

В теоретической части данной дипломной работы автор рассмотрел домашние опыты и наблюдения как один из видов самостоятельных экспериментальных работ по физике, их влияние на процесс обучения школьников. В дипломной работе были рассмотрены требования, предъявляемые к домашним экспериментальным заданиям. Далее рассматривались возможные варианта применения учителями домашних экспериментальных заданий в процессе обучения детей физике, т.е. рассматривалась методика работы учителя с домашними экспериментальными заданиями.

В практической части данной дипломной работы автором собран набор опытов (43 опыта, которые были взяты из книг: [2], [4], [5], некоторые опыты были изменены автором, исходя из современных условий), пригодных (отвечающих требованиям, предъявляемым к домашним экспериментальным заданиям) для проведения школьниками в домашних условиях по следующим темам: “Простейшие измерения”; “Давление”; “Закон Архимеда”; “Силы поверхностного натяжения”; “Трение”; “Центр тяжести”; “Инерция”; “Теплота”.

Этот список не следует считать законченным. Можно задавать на дом школьникам экспериментальные задания и по другим темам.

Автор дипломной работы считает: если учителя будут применять домашние экспериментальные задания в своей работе, то это положительно скажется на процессе обучения школьников физике и на их общем развитии. Для того чтобы учителя могли использовать такие домашние задания, необходимы сборники опытов, пригодных для проведения в домашних условиях. Старые издания устарели, можно надеяться, что появятся новые.

1. Теория и методика обучения физике в школе. Общие вопросы. Под ред. С.Е.Каменецкого, Н.С.Пурышевой. М.: Издательский центр “Академия”, 2000.

2. Опыты и наблюдения в домашних заданиях по физике. С.Ф.Покровский. Москва, 1963.

3. “Физика-9” И.К.Кикоин, А.К.Кикоин. М. “Просвещение”, 1992.

4. Опыты без приборов. Ф.В.Рабиза. М. “Детская литература”, 1988.

5. Занимательные опыты по физике в 6-7 классах средней школы. Л.А.Горев. М. “Просвещение”, 1985.

6. Программы для общеобразовательных учреждений. Физика, астрономия. Составители Ю.И.Дик, В.А.Коровин. М “Дрофа”, 2002.

7. “Физика-7”. А.В.Перышкин, Н.А.Родина. М. “Просвещение”, 1993.

8. “Физика-8”. А.В.Перышкин, Н.А.Родина. М. “Просвещение”, 1993.

9. “Физика-8”. Н.М.Шахмаев, С.Н.Шахмаев, Д.Ш.Шодиев. М. “Просвещение”, 1995.

10. Теория и методика обучения физике в средней школе. Частные вопросы. Под ред. С.Е.Каменецкого. М. Издательский центр “Академия”, 2000.

11. Здравствуй, физика! Л.Гальпернштейн. М. “Детская литература”, 1967.

12. Активизация познавательной деятельности учащихся на уроках физики при изучении нового материала. Л.А.Иванова. М. 1978.

13. Самостоятельная работа учащихся по физике в средней школе. А.В.Усова, З.А.Вологодская. М. “Просвещение”, 1981.

Значение и виды самостоятельного

Требования, предъявляемые к

Методика работы учителя с домашними

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Домашние наблюдения и опыты учащихся по физике. Их организация
Раздел: Рефераты по педагогике
Тип: реферат Добавлен 11:38:20 12 сентября 2005 Похожие работы
Просмотров: 9955 Комментариев: 27 Оценило: 13 человек Средний балл: 4.6 Оценка: 5 Скачать