Что сначала конъюнкция или дизъюнкция
Конъюнкция и дизъюнкция — правила и примеры решения в математике
Общие сведения
Булева алгебра — раздел математического анализа, изучающий истинность логических утверждений. Ее открыл Д. Буль в ХIХ веке. Алгебра логики получила практическое применение только в ХХ веке при проектировании различных элементов персонального компьютера. Дисциплина доказывает истинность или ложность тождеств логического типа математическим путем с применением специальных таблиц.
Следует отметить, что логическое тождество является определенной функцией, принимающей значения 0 или 1 в зависимости от ее элементов. В алгебре логики значения имеют следующие названия: 0 — ЛОЖЬ (FALSE) и 1 — ИСТИНА (TRUE).
Операторы сравнения
Следует отметить, что в этих примерах получается истинное значение, поскольку условие выполняется. Однако в информатике при построении алгоритмов используются методы ветвления. Они представляют собой такую конструкцию: ЕСЛИ (a>b), ТО a+b. ИНАЧЕ (a*b). Читается запись следующим образом: в том случае, когда значение а больше b, нужно сложить оба числа, а иначе (a Логические операции
Операции логического типа очень часто применяются при построении выражений, используемых в программировании. К ним относятся следующие:
Однако булева алгебра не ограничивается только ими, поскольку существуют и другие их производные. Для каждой из трех составляются определенные таблицы истинности, которые каждый раз необходимо строить для получения результата вычисления логических выражений. Специалисты рекомендуют отдельно на листе картона перечертить таблицы всех логических операций.
Функция конъюнкции
Конъюнкция — операция логического умножения, которая будет истинным при достоверности каждого выражения. Ее обозначение — символ конъюнктора «&». Записывается следующим образом: S&T, где S и T — логические тождества или конкретные значения. Операция имеет такие особенности: только при равенстве всех элементов 1 значение выражения является истинным, а в других случаях — ложью. Для проверки необходимо составить таблицу значений логического тождества:
S | T | S&T |
0 | 0 | F |
0 | 1 | F |
1 | 0 | F |
1 | 1 | T |
Таблица 1. Значение функции в зависимости от логических переменных.
Из таблицы 1 видно, что выражение S&T принимает только TRUE при всех истинных значениях переменных. Если рассматривать алгебру, то можно провести аналогию между логическим и обыкновенным умножениями. Например, произведение двух чисел S*T, которые для удобства сравнения принимают значения 0 или 1.
Если сравнивать два результата, то они будут идентичны. Следовательно, для правильного построения таблицы для конъюнкции нужно руководствоваться аналогичной операцией умножения.
Информация о дизъюнкции
В булевой алгебре операция логического сложения называется дизъюнкцией. Обозначается она символом, который называется дизъюнктором (V или I). Логическое тождество, содержащее два элемента, имеет такой вид: SVT. Операция имеет только ложное значение при равенстве S и T нулю. Для нее нужно также строить специальную таблицу:
S | T | Результат — S|T |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Таблица 2. Истинность операции дизъюнкции SVT.
Операция аналогична сложению в алгебре, хотя имеются некоторые отличия. Чтобы убедиться в этом, требуется выполнить определенное действие — построить специальную таблицу результатов для алгебраического сложения нулей и единиц.
Если рассмотреть результаты в последнем случае, то можно сделать вывод о схожести сложения и дизъюнкции. Однако в последней строке алгебраической суммы есть некоторое несоответствие — 2. Это показывает, какое переполнение разряда происходит в булевой алгебре. В последней происходит переход с одного разряда в другой.
Булево отрицание
В алгебре логики применяется также операция отрицания, которую также называют инверсией. Суть ее заключается в том, что при истинном значении выражения под знаком инверсии получается ложный результат, а при ложном — истина. Обозначается она символом инверсии «¬», а записывается в таком виде ¬(S). Для демонстрации операции необходимо ознакомиться с таблицей:
Исходное выражение, S | Результат, ¬(S) |
0 | T |
1 | F |
Таблица 3. Истинность ¬(S).
Например, если необходимо указывать несколько тождеств логического вида, то при помощи отрицания можно использовать только одно. Для примера необходимо написать, что число не равно 0: (t 0). При использовании логического отрицания условие выглядит короче: t=!0.
Приоритеты вычислений
При решении выражений булевского типа, как и в алгебре, существуют определенные приоритеты. Каждая операция обладает определенным из них. Наибольшей степенью пользуется конъюнкция, средней — дизъюнкция. Наименьшим приоритетом обладает логическое отрицание. Однако эту особенность можно поменять при помощи группировки элементов в выражениях, которая производится скобками. С учетом этих особенностей алгоритм решения тождества имеет следующий вид:
Иногда бывают задачи, в которых следует упрощать выражение. Для этой цели следует знать некоторые особенности:
Этих правил достаточно для упрощения булевского выражения. Следует отметить, что перед построением булевской таблицы требуется с самого начала упростить исходное тождество.
Примеры решений
В первом простом примере требуется составить таблицу булевского типа для выражения S&(S|T)|T&S|¬(T&S).
Решать задание нужно по такому алгоритму:
Следующий пример будет сложнее, поскольку выражение ¬ < ¬[ ¬((S|0)&¬(T|S)& ¬(S&(T&S)) ]& ¬(S&S) >следует упростить, а затем составить таблицу. Задача решается по такой методике:
Следует отметить, что исходное логическое выражение необходимо на начальном этапе решения упростить, а затем строить таблицу. В этом возможно убедиться на основании приведенного примера, в котором сокращается одна переменная.
Таким образом, для решения выражения, содержащего логические операции конъюнкции, дизъюнкции и инверсии, необходимо его упростить, а затем разбить на простые элементы.
Что сначала конъюнкция или дизъюнкция
2) Логическое сложение или дизъюнкция:
Таблица истинности для дизъюнкции
A | B | F |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
3) Логическое отрицание или инверсия:
Таблица истинности для инверсии
A | ¬ А |
1 | 0 |
0 | 1 |
4) Логическое следование или импликация:
«A → B» истинно, если из А может следовать B.
Обозначение: F = A → B.
Таблица истинности для импликации
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
5) Логическая равнозначность или эквивалентность:
Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация
Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.
Основные положения
Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.
Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).
Примером таким высказываний будут являться:
Логические высказывания делятся на два типа — простые и сложные.
В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.
Булево выражение – это символическое (знаковое) описание высказывания.
Операции
Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.
Конъюнкция
Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).
Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков \( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:
Дизъюнкция
Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.
Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.
Инверсия
Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.
Импликация
Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит гром, то стоит пасмурная погода.
Эквивалентность
Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.
Обозначается с помощью трех черточек или ⟺.
Порядок выполнения операций
Логические операции выполняются в следующем порядке:
Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.
Пример
Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:
Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:
Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию \( z \in A \)=1.
Таблица истинности для всех отрезков:
Ответ: A = [3,11].
Видео
Заключение
Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.
Основы логики. Логические операции и таблицы истинности
На данной странице будут рассмотренны 5 логических операций: конъюнкция, дизъюнкция, инверсия, импликация и эквивалентность, которых Вам будет достаточно для решения сложных логических выражений. Также мы рассмотрим порядок выполнения данных логических операций в сложных логических выражениях и представим таблицы истинности для каждой логической операции. Советуем Вам воспользоваться нашими программами для решения задач по математике, геометрии и теории вероятности. Помоми большого количества программ для решения задач на сайте работает форум, на котором Вы всегда можете задать вопрос и на котором Вам всегда помогуть с решением задач. Пользуйтесь нашими сервисами на здоровье!
Глоссарий, определения логики
Логические операции и таблицы истинности
1) Логическое умножение или конъюнкция:
Таблица истинности для конъюнкции
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
2) Логическое сложение или дизъюнкция:
Таблица истинности для дизъюнкции
A | B | F |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
3) Логическое отрицание или инверсия:
Таблица истинности для инверсии
A | неА |
1 | 0 |
0 | 1 |
4) Логическое следование или импликация:
Таблица истинности для импликации
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
5) Логическая равнозначность или эквивалентность:
Таблица истинности для эквивалентности
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
Порядок выполнения логических операций в сложном логическом выражении
1. Инверсия;
2. Конъюнкция;
3. Дизъюнкция;
4. Импликация;
5. Эквивалентность.
Для изменения указанного порядка выполнения логических операций используются скобки.
Конъюнкция и дизъюнкция
Конъюнкция, дизъюнкция эквивалентность, инверсия, импликация — сложные для запоминания и понимания термины логики, науки, которая и сама по себе сложная для освоения. Но при ближайшем рассмотрении все слова оказываются более простыми, но обозначают совершенно не простые понятия. Используются термины не только в логике, но и в информатике. Объясняется это тем, что архитектура компьютера построена на понятиях математической логики.
Логика применима для решения задач по геометрии, физике, теории вероятности, понимания некоторых противоречивых речевых оборотов и сложных для непрофессионала научных текстов. Для понимания терминов и сферы их применимости изучим несколько вспомогательных понятий:
Если вы еще не запутались в этих терминах, перейдем к сути вопроса. Первое в нашем списке слово «конъюнкция». Это одно из сложных логических выражений, в котором обе составные части должны быть истинными, чтобы сказанное являлось истиной. Если одна из частей ложна, то ложно все выражение. Для иллюстрации используют таблицу:
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
В тексте конъюнкция обозначается простой формулой F = A & B. Часто конъюнкцию называют логическим умножением, по аналогии с математическим действием. Если один из множителей ноль, то результат всегда нулевой. В таблице показаны все возможные комбинации исходных данных для выбранной операции. На базе таблицы истинности можно проанализировать любое сложное высказывание. В предложении конъюнкция выражается союзом «и», который соединяет два высказывания. Вместо «и» можно использовать запятую.
Пример — «Рубильник на подстанции включен, и в комнате выключатель включен — люстра светит».
Если одно из выражений ложное, то света в комнате не будет.
Дизъюнкция, логическое сложение, которое подчиняется правилам математического сложения. Если одно из слагаемых истина (то есть 1) то результат получается 1 (в математике также возможен результат 2, но в логике обозначаем 1, как истинное выражение). Если оба исходных понятия ложные (0), то и результат не может быть истиной (1). Таблица для дизъюнкции выглядит так:
A | B | F |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
А формула принимает вид: F = A + B.
Итак, сложные и непонятные слова конъюнкция и дизъюнкция приняли образ вполне понятных действий умножения и сложения, знакомых даже ученикам младших классов. В письменной речи используют союз «или». Но в логике он несколько отличается от филологического значения. В филологии «или» показывает, что правильна одна из частей предложения, а в логике — что правильны или ложны одна из частей, и обе части одновременно (все предложение).
«Если температуры нет, или анализы покажут, что воспаления нет, то пациент здоров».
Попутно рассмотрим другие понятия логики. Одно из сложных для понимания — инверсия, или логическое отрицание. Если начальное утверждение правильное, то результат отрицания будет ложным, и, наоборот, при ложном исходном выражении, отрицание будет настоящим. В письменной речи инверсия выражается словами «НЕ», «НЕВЕРНО, ЧТО». Таблица инверсии:
«Вы утверждаете, что все ученики 9 класса отличники, НЕВЕРНО, ЧТО все ученики 9 класса отличники». (Не все ученики 9 класса отличники).
Импликация — сложное выражение, в результате которого всегда получается единица (истина). В письменной речи аналогом импликации является связка если…, то. Пример «Если твердое тело тереть о жесткую поверхность, то оно нагревается». «Если замечены изменения в экономической ситуации, то изменится и политика». Таблица импликации:
А | В | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
Можно заметить, что в одной строке результат «0». Это исключение, когда из истинного утверждения не может получиться ложный результат.
Эквивалентность — операция в логике, при которой истина получается только в том случае, если обе части выражения истинны:
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
В сложном логическом выражении существует определенный порядок выполнения операций:
Если нужно изменить этот порядок, то используют скобки.