Что следует за миллиардом по счету
Названия больших чисел
Существует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Числа состоят из цифр. Число 52 состоит из двух цифр: 5 и 2. Числа с 1 впереди и последующими нулями имеют названия. Всем известны: 10 — десять, 100 — сто, 1000 — тысяча, 1 000 000 — миллион. Так как большие числа с большим числом нулей записывать неудобно, используют сокращения в виде степеней: запись 10 11 означает число с 11-ю нулями, запись 10 52 означает число с 52-мя нулями и т.д. Приведем названия чисел с десятками и сотнями нулей.
Названия «круглых» чисел, которые можно встретить в школьной программе:
1 000 000 — миллион (6 нулей)
1 000 000 000 — миллиард или биллион (9 нулей)
1 000 000 000 000 — триллион (12 нулей)
1 000 000 000 000 000 — квадриллион (15 нулей)
1 000 000 000 000 000 000 — квинтиллион (18 нулей)
1 000 000 000 000 000 000 000 — секстиллион (21 нуль)
1 000 000 000 000 000 000 000 000 — септиллион (24 нуля)
1 000 000 000 000 000 000 000 000 000 — октиллион (27 нулей)
1 000 000 000 000 000 000 000 000 000 000 — нониллион (30 нулей)
1 000 000 000 000 000 000 000 000 000 000 000 — дециллион (33 нуля)
Еще некоторые примеры интересных названий:
10 100 — гугол, googol (100 нулей)
10 10 100 — гуголплекс, googolplex (десять в степени гугол)
10 140 — асанкхейя, asankhyeya или сто квинквадрагинтиллионов
10 303 — центиллион, centillion
10 3003 — миллиллион, millillion
10 3000003 — милли-миллиллион, milli-millillion
Самого большого числа в мире не существует, так как любое большое число всегда можно увеличить, умножить, возвести в степень, и получится другое большее число. Бесконечность не является числом.
Из известных самых больших чисел, имеющих название (математическое доказательство) можно выделить: число TREE(3), число SCG(13), число Лоудера, число Мозера, число Скьюза, число Райо, число Грэма, инфитеиплеон.
Таблица больших чисел с указанием количества нулей и названиями на русском и английском.
Миллион, миллиард, триллион, триллиард, а что дальше, до бесконечности
Известно, что чисел бесконечное множество и лишь у немногих есть собственные названия, ведь большинство чисел получили имена, состоящие из малых чисел. Наибольшие числа необходимо каким-то образом обозначать.
«Короткая» и «длинная» шкала
Используемые сегодня имена числа начали получать в пятнадцатом столетии, тогда итальянцы впервые использовали слово миллион, имеющее значение «большой тысячи», бимиллион (миллиона в квадрате) и тримиллион (миллиона в кубе).
Данную систему описал в своей монографии француз Николя Шюке, он рекомендовал употреблять числительные латинского языка, добавив к ним флексию «-иллион», таким образом бимиллион стал биллионом, а тримиллион – триллионом и так далее.
Но согласно предложенной системе числа между миллионом и биллионом он называл «тысячей миллионов». С подобной градацией было не комфортно работать и в 1549 году француз Жак Пелетье советовал числа, находящиеся в указанном промежутке, называть опять же используя латинские приставки, при этом введя другое окончание — «-иллиард».
Так 109 получило название миллиард, 1015 — биллиард, 1021 — триллиард.
Постепенно эту систему стали использовать в Европе. Но некоторые ученые путали наименования чисел, это создало парадокс, когда слова биллион и миллиард стали синонимичными.
Впоследствии в США был создан свой порядок именования больших чисел. Согласно ему построение названий осуществляется аналогично, но только числа разнятся.
Прежняя система продолжала применяться в Великобритании, потому и была названа британской, хотя изначально создавалась французами. Но уже с семидесятых годов прошлого века Великобритания также начала применять систему американскую.
Поэтому, чтобы избежать путаницы, созданную американскими учеными концепцию, принято именовать короткой шкалой, в то время как изначальную французско-британскую – длинной шкалой.
Короткая шкала нашла активное применение в США, Канаде, Великобритании, Греции, Румынии, Бразилии. В России она тоже в ходу, только с одним отличием – число 109 традиционно именуют миллиардом. А вот французско-британскому варианту отдали предпочтение во множестве других стран.
С целью обозначить числа, большие нежели дециллион, ученые решили объединять несколько латинских приставок, так были названы ундециллион, кваттордециллион и прочие. Если воспользоваться системой Шюке, то согласно ей гигантские числа обретут имена«вигинтиллион», «центиллион» и «миллеиллион» (103003), соответственно согласно длинной шкале такое число получит имя «миллеиллиард» (106003).
Числа с уникальными именами
Многие числа получили наименование без привязки к различным системам и частям слов. Этих чисел немало, например, это число «пи», дюжина, а также числа более миллиона.
В Древней Руси издавна использовалась своя числовая система. Сотни тысяч обозначали словом легион, миллион – называли леодром, десятки миллионов были воронами, сотни миллионов именовались колодой. Это был «малый счет», а вот «великий счет» применял те же слова, вот только смысл в них вкладывали иной, например леодр мог означать легион легионов (1024), а колода — уже десять воронов (1096).
Бывало, что названия числам придумывали дети, так, математику Эдварду Кэснеру подал идею юный Милтон Сиротта, предложивший дать имя числу с сотней нулей (10100) просто «гугол» (googol). Это число получило наибольшую огласку в девяностых годах двадцатого века, когда в его честь получил название поисковик Google. Также мальчик предложил наименование «гуглоплекс», число имеющее гугол нолей.
А вот Клод Шеннон в средине двадцатого века, оценивая ходы в шахматной игры, подсчитал, что таковых существует 10118, теперь это «число Шеннона».
В старинном труде буддистов «Джайна-сутры», написанном почти двадцать два века назад, отмечается число «асанкхейя» (10140), именно столько космических циклов, по мнению буддистов, необходимо, чтобы обрести нирвану.
Стэнли Скьюзом были описаны большие величины, так «первое число Скьюза», равное 10108,85.1033, а «второе число Скьюза» еще внушительней и равняется 1010101000.
Нотации
Разумеется, в зависимости от количества степеней содержащихся в числе, поялвяется проблематичность в фиксировании его на письме, да и чтении, баз ошибок. некоторые числа невозможно поместить на нескольких страницах, поэтому математики придумали нотации для фиксации крупных чисел.
Стоит учесть, все они отличаются, в основе каждой свой принцип фиксации. Среди таковых стоит упомянуть нотации Штейнггауза, Кнута.
Однако наиболее крупное число — «число Грэма», применялось Рональдом Грэмом в 1977 году при проведении математических расчетов, и это число G64.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Числа великаны
Один из первых, кто научился называть большие числа, был древнегреческий математик Архимед. Названия были, но обозначать он их не мог. Архимед один из гениальнейших математиков не додумался до нуля. Впервые нуль был придуман вавилонянами примерно 2 тысячи лет назад. Однако, открытие писать нули в конце числа, было сделано в Индии полторы тысячи лет назад. Нуль был присоединен к девяти цифрам, и появилась возможность обозначать этими десятью цифрами любое число, как бы велико оно ни было.
В истории математики сложилось так, что числа-великаны имеют свои названия и записи в двух вариантах. Их называют «длинная шкала» и «короткая шкала».
Количество нулей в числе, записанном по этой системе, определяется по формуле3·x+3 (где x — латинское числительное).
Система названий чисел-великанов по короткой шкале используется всего лишь в нескольких странах: США, Великобритании, Канаде, России, Украине, Турции и Греции. В некоторых странах вместо слова «биллион» используется слово «миллиард»
Построение ряда чисел-великанов
1000 единиц – просто тысяча
1000 тысяч – 1 миллион
1000 миллионов – 1 биллион (или миллиард)
1000 биллионов – 1 триллион
1000 триллионов – 1 квадриллион
1000 квинтиллионов – 1секстиллион
1000 секстиллионов – 1 септиллион
1000 септиллионов – 1октиллион
1000 октиллионов – 1 нониллион
Гугол число содержащее единицу и сто нулей.
Гуголплекс — число, изображаемое единицей с гуголом нулей.
Числа гугол, гуголплекс были придуманы американским математиком Эдвардом Каснером (Edward Kasner) и его племянником Милтоном Сиротта (Milton Sirotta).
В 1938 году американский математик Эдвард Каснер (Edward Kasner, 1878—1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirotta), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» («New Names in Mathematics»), где и рассказал любителям математики о числе гугол.
Термин «гугол» не имеет серьёзного теоретического и практического значения. Каснер предложил его для того, чтобы проиллюстрировать разницу между невообразимо большим числом и бесконечностью, и с этой целью термин иногда используется при обучении математике.
Число гугол больше числа всех частиц в известной нам части вселенной. Таким образом, число гуголплекс в классическом десятичном виде записать невозможно, даже если всю материю в известной части вселенной превратить в бумагу и чернила или в компьютерное дисковое пространство.
Но эти названия почти не используются. Астрономы и физики, имеющие дело с большими числами, предпочитают записывать числа с помощью степени числа десять.
В заключение приведу таблицу существующих чисел-великанов для нашей шкалы:
Числа-гиганты
Миллион = 1 000 000 = 10⁶
Наша первая остановка — «миллион» или 10 в 6-й степени. Это большое число, но все-таки оно не поражает воображение настолько, насколько это делают те числа, к которым мы перейдем вскоре. С миллионами чего-либо мы сталкиваемся довольно часто. До миллиона можно даже досчитать, и один весьма необычный человек по имени Джереми Харпер сделал это, транслируя свой трехмесячный счетный марафон в Интернет. Кстати, миллион секунд — это всего-навсего 11,5 дней. Миллиона рублей может не хватить для покупки хорошего автомобиля или скромной квартиры в Санкт-Петербурге. Стопка из миллиона книг, поставленных друг на друга, не выйдет даже за пределы атмосферы Земли. В свою очередь, из миллиона букв можно составить одну, достаточно большую, книгу (например, полная Библия состоит из более чем 2,5 миллионов букв). Миллион горошин поместится в большом мешке, который в принципе можно будет даже приподнять, если вы не боитесь надорваться. Миллион песчинок запросто поместится в пригоршне.
А миллион бактерий будет едва различим невооруженному глазу. Человеческий волос, увеличенный в миллион раз, будет диаметром около 100 метров. Здание в миллион этажей (если бы такое можно было построить) поднялось бы в высоту на 2,5 тысячи километров, — в 4 с лишним раза выше, чем летает телескоп Хаббла и большинство искусственных спутников Земли.
Миллиард = 1 000 000 000 = 10⁹
Всё это достаточно любопытно, но особо не впечатляет. Впрочем, мы только начали свой путь. И наше следующее число — «миллиард» или 10 в 9-й степени. С миллиардами мы встречаемся гораздо реже. Если мы хотим увидеть миллиард чего-либо и при этом не быть раздавленными, то придется брать что-то очень, очень маленькое. Например, молекулы. Конечно, одна молекула невооруженным взглядом не видна (да и не во всякий микроскоп ее можно разглядеть). А вот миллиард молекул, поставленных «плечом к плечу», займут около 30 сантиметров (вообще, молекулы сильно различаются по своим размерам и для примера мы взяли молекулу воды, состоящую, как известно, из двух атомов водорода и одного атома кислорода). Сумму в миллиард долларов еще можно как-то представить. Это цена какого-нибудь суперсовременного боевого самолета или военного авианосца (да, война это очень дорогостоящее мероприятие). Стоимость Большого Адронного Коллайдера — около 10 миллиардов долларов. Головной мозг человека состоит из 100 миллиардов нейронов.
И столько же, но только людей, жило на нашей планете за всю ее историю. Теперь давайте посмотрим наверх. Если разделить расстояние от Земли до Луны на миллиард, то получится примерно 40 сантиметров. А если на тот же миллиард разделить расстояние от Земли до Солнца, то получится уже 150 метров, а это большой такой небоскреб высотой почти в половину Эйфелевой башни. Сама Земля, уменьшенная в миллиард раз, станет размером с виноградину, — и, кстати, тогда она превратится в черную дыру. Космические аппараты «Вояджер», запущенные в 1977 году, пролетели почти по 20 миллиардов километров каждый. Космос по-настоящему огромен, и мы еще ощутим это в полной мере, когда перейдем к числам гораздо большим. А что насчет времени? Миллиард секунд — это 31,7 года, целое поколение. Если увеличить атом водорода в миллиард раз, то его диаметр составит целых 10 сантиметров, хотя его ядро даже при таком увеличении все равно не разглядишь. В этом масштабе мельчайшие вирусы будут гигантами размером в несколько десятков, а то и сотен метров. И даже молекула ДНК будет шириной в целых 3 метра.
Триллион = 1 000 000 000 000 = 10¹²
Наш третий гость — «триллион» или 10 в 12-й степени. И чтобы представить его наглядно, уже придется потрудиться. Например, что может стоить триллион долларов? По некоторым подсчетам, это цена экспедиции на Марс. А как вы думаете, сколько всего наличных денег на планете Земля? Около 4 триллионов долларов. Забавно, что государственный долг США почти в 5 раз больше. А если сложить вообще всё то, что можно купить сегодня за деньги, то это будет стоить почти 100 триллионов долларов.
Общая масса воздуха, который вдыхают все люди на нашей планете за 1 год, составляет около 6 триллионов килограмм. В океанах нашей планеты обитает около триллиона рыб. Триллион секунд, как вы наверняка уже догадались, это в тысячу раз дольше, чем миллиард, — то есть 31 с лишним тысяча лет. Примерно столько времени назад вымерли неандертальцы. Но это секунды. А вот через триллион лет случится нечто гораздо более интересное — в галактиках прекратят образовываться новые звезды. Триллион километров — такое расстояние свет в вакууме проходит чуть больше чем за месяц. А 42 триллиона километров — это расстояние до ближайшей к нам звезды (Проксимы Центавра). Если мы возьмем триллион бактерий (допустим, у нас как-то получится их собрать всех вместе), то они займут объем одного кубика сахара. Примерно столько бактерий содержится на теле человека. А число клеток в нем — несколько десятков триллионов. Во всех когда-либо отпечатанных книгах за всю историю книгопечатания около 100 триллионов букв. Вообще, кажется, что триллион это очень много. Но попробуем взять что-нибудь по-настоящему маленькое, — например атом. Горстку из триллиона атомов даже не увидеть невооруженным взглядом, вот насколько они малы. Давайте лучше увеличим что-нибудь в триллион раз. Например, электрон. Он будет размером с горошину. А вот кварки, увеличенные в триллион раз, все еще не будут видны. Кстати, вы же понимаете, что взять триллион штук чего-либо это совсем не то же самое, что увеличить это что-то в триллион раз?
Квадриллион = 1 000 000 000 000 000 = 10¹⁵
Четвертое число — «квадриллион» или 10 в 15-й степени. Это название уже не на слуху и редко кто пользуется им в обыденной жизни. Например, квадриллион долларов — это сумма неиспользуемая в практическом смысле. Даже не понятно, что может стоить так много. Разве что небольшая гора высотой метров в 200, состоящая из цельного куска платины (если бы такая существовала и если бы мы умудрились продать ее на рынке по текущему курсу). В теле человека (не только на коже, как в предыдущем абзаце) обитает до 1 квадриллиона бактерий, и их общий вес составляет около 2 килограмм. А еще на нашей планете живет примерно квадриллион муравьев (да, их гораздо больше, чем людей, — примерно в 100 тысяч раз).
Если пролететь квадриллион километров (а это примерно 100 световых лет), то можно посетить несколько ближайших к Земле звезд и вернуться обратно. Через 200 квадриллионов секунд Солнце перейдет в стадию красного гиганта. Помните кварки из нашего предыдущего абзаца? Давайте увеличим их в квадриллион раз. Размер самых больших из них будет равен примерно 1 миллиметру, а самые маленькие (так называемые «истинные» кварки) все еще не будут видны. И нейтрино, кстати, тоже видны не будут, хотя об их размерах мы можем судить только весьма приблизительно. А еще самые мощные современные компьютеры выдают несколько десятков квадриллионов операций в секунду (петафлопсов).
Квинтиллион = 1 000 000 000 000 000 000 = 10¹⁸
Наш пятый гость — «квинтиллион» или 10 в 18-й степени. Он в тысячу раз больше квадриллиона. Квинтиллион километров — это примерный диаметр нашей галактики, которая называется Млечный Путь. До нашей соседки — галактики Андромеды — 25 квинтиллионов (и, кстати, это расстояние сокращается на 300 километров каждую секунду, потому что мы сближаемся именно с такой скоростью). Квинтиллион секунд — это время в 2 раза большее, чем то, которое прошло от Большого Взрыва и до сегодняшнего момента. Для того чтобы вычерпать все мировые океаны, достаточно 5-6 квинтиллионов стаканов. А если мы возьмем квинтиллион молекул чернил, то сможем написать ими какое-нибудь одно, не очень большое, слово. 25-30 квинтиллионов молекул содержится в 1 куб.см воздуха при нормальной температуре и давлении (в основном, это молекулы азота – 78% и кислорода – 21%). Масса всей атмосферы Земли — около 5 квинтиллионов килограмм. Число возможных комбинаций кубика Рубика — 43 квинтиллиона с лишним. Для размещения квинтиллиона бактерий нам потребуется достаточно большая бочка, впрочем всего одна. Компьютер с производительностью квинтиллион операций в секунду должен появиться через пару лет. И наконец, если мы хотим кинуть монету таким образом, чтобы она упала на ребро 5 раз подряд, то в среднем нам придется сделать для этого около 8 квинтиллионов попыток (хотя, конечно, это сильно зависит от того, что это за монета и как именно мы ее кидаем).
Секстиллион = 1 000 000 000 000 000 000 000 = 10²¹
Двигаемся дальше. «Секстиллион» или 10 в 21-й степени. Столько атомов содержится в небольшом шарике из алюминия, диаметром в пару миллиметров.
За один вдох мы захватываем около 10 секстиллионов молекул воздуха (причем среди них почти наверняка будут несколько молекул, которые были выдохнуты какой-нибудь выдающейся исторической личностью, например Элвисом Пресли). Вес гидросферы Земли – полтора секстиллиона килограмм, а Луны около 70 секстиллионов. Увеличив в секстиллион раз нейтрино, мы наконец-то сможем его разглядеть, хотя он будет совсем крошечным даже при таком фантастическом приближении. Количество песчинок на всех пляжах Земли — несколько секстиллионов, хотя это сильно зависит от того, как и что именно мы считаем. При этом, звезд во Вселенной даже еще больше (об этом чуть ниже). А размер видимой ее части — примерно 130 секстиллионов километров. Разумеется, такие расстояния никто в километрах не меряет, а использует для этого куда более подходящие световые годы и парсеки.
Септиллион = 1 000 000 000 000 000 000 000 000 = 10²⁴
Наш следующий на очереди гигант это «септиллион» или 10 в 24-й степени. Находить примеры из жизни становится всё труднее. 6 септиллионов килограмм весит наша Земля. Количество звезд в обозримой Вселенной — септиллион или совсем немного меньше.
Знаменитое число Авогадро, обозначающее количество молекул в одном моле вещества, составляет почти септиллион (более точное значение: 6 на 10²³ степени). 10 септиллионов молекул воды поместится в одном стакане. А если выложить в ряд 50 септиллионов маковых зерен, то такая цепочка протянется до Туманности Андромеды.
Октиллион = 1 000 000 000 000 000 000 000 000 000 = 10²⁷
10 в 27-й степени это «октиллион». Октиллион горошин займут такой же объем как планета Земля. Еще это число интересно тем, что если взять 5-10 октиллионов атомов, то из них можно составить человеческое тело.
Нониллион = 1 000 000 000 000 000 000 000 000 000 000 = 10³⁰
И, наконец, 10 в 30-й степени — это «нониллион». Приходится обращаться к примерам из чистой фантастики. Нониллион долларов стоили бы 5 планет размером с Землю, если бы они состояли из чистой платины. Для того, чтобы разглядеть невооруженным взглядом базовые составляющие материи (предполагается, что это одномерные квантовые струны), их придется увеличить в 100 нониллионов раз. Достаточно сказать, что толщина человеческого волоса при таком увеличении превысит размеры обозримой Вселенной. Масса Солнца — 2 нониллиона килограмм, а всей Солнечной системы лишь ненамного больше.
Время жизни протона – минимум нониллион лет (а скорее всего, намного больше). В 1 килограмме вещества примерно 1 нониллион электронов. А из нониллиона молекул можно составить целого слона.
10 в 33-й степени называется дециллион, но дальше мы обойдемся уже без обозначений. Масса Галактики – 2 на 10⁴¹ килограмм. Число возможных комбинаций в колоде из 36 карт – 3.72 на 10⁴¹, а позиций в шахматах – 4.6 на 10⁴². Энергия взрыва сверхновой звезды – 10⁴² джоуля. Количество молекул воздуха на Земле – 10⁴⁴, а количество атомов, составляющих всю нашу планету, – 10⁵⁰. Масса всей Вселенной – 1.7 на 10⁵³ килограмм. Типичный белый карлик состоит из 10⁵⁷ частиц. Если поделить самое большое из реально существующих расстояний (радиус Вселенной) на самое малое (длину Планка), то получится 4.6 на 10⁶¹. 10⁶⁶ лет – время испарения черной дыры с массой Солнца. Число атомов в Галактике – 10⁶⁷, а во всей Вселенной – 10⁷⁷. При этом, элементарных частиц во Вселенной – 10⁸⁰, а число фотонов и того больше, – 10⁹⁰. Число 10¹⁰⁰ имеет красивое название «Гугол». Через Гугол лет испарятся последние черные дыры и наша Вселенная погрузится во тьму (наверное). Количество неповторяющихся шахматных партий (так называемое Число Шеннона) равно минимум 10¹¹⁸.
Если набить всю обозримую Вселенную «под завязку» протонами, то их в нее поместится около 10¹²². А если взять для той же самой цели самый малый из известных науке объемов (планковский объем), то получится 10¹⁸⁵. Поистине ошеломляюще. Наверное, здесь заканчивается теоретическая физика и начинается чистая математика — царица всех наук.
Да, есть числа и гораздо большие, но они уже не имеют применения в реальном мире. Одним из самых больших чисел (а до недавнего времени — самым большим) из тех, которые использовались в доказательствах теорем, является число Грэма, введенное математиком Рональдом Грэмом. Оно настолько велико, что для его обозначения пришлось использовать совершенно новую нотацию, то есть систему записи чисел. Единственное, что можно сказать о числе Грэма, так это то, что каким бы вы его не представили, на самом деле оно гораздо, гораздо больше. Заканчивается оно на 387, а вот с какой цифры начинается, не знает никто и не узнает, судя по всему, никогда.
Поскольку в данном тексте я обращался к очень большим числам, то наверняка допускал неточности, хотя и старался по возможности их не делать, проверяя то, что пишу, во внушающих доверие источниках. Конечно, если мы говорим, например, о квинтиллионе частиц, то ошибка в 10 раз будет почти незаметна (10¹⁸ и 10¹⁹ на глаз различаются не слишком сильно). Если же вы считаете, что где-то я допустил более грубую ошибку, то пожалуйста напишите об этом.
Системы наименования чисел
В европейской традиции исторически сложились два варианта построения системы наименования чисел.
Содержание
Краткая история
Термин «миллион» итальянского происхождения и встречается уже в первой печатной арифметике (анонимной), вышедшей в итальянском городе Тревизо в 1478 году, и ещё ранее в нематематической книге путешественника Марко Поло (умер в 1324 году), а в форме «миллио» — уже в рукописи 1250 года.
Для чтения многозначных чисел анонимная рукопись 1200 года впервые рекомендует разбить цифры на группы по 3 или отмечать группы точками вверху или дугами; это же затем рекомендует Леонардо Пизанский (1228). К этой системе приходят и последующие авторы.
Использование систем наименования чисел в мире:
короткая шкала длинная шкала | обе шкалы другие системы |
В России первоначально была введена система наименования чисел с длинной шкалой, и, по-видимому, в печатном виде впервые в 1703 году в «Арифметике» Л. Ф. Магницкого. Однако в конце XVIII века, в царствование императора Павла I, вслед за Францией произошёл переход на короткую шкалу. Так, в опубликованном в 1798 году переводе части первой — «Арифметика» — «Курса математики» Этьенна Безу введена система наименования чисел с короткой шкалой, при том, что ещё в опубликованной в 1791 году книге «Арифметика или числовник» Н. Г. Курганова (1725 или 1726—1796) используется длинная шкала.
В дальнейшем выбор системы наименования чисел в России — СССР — РФ не менялся. Однако Франция в 1948 году вернулась к системе с длинной шкалой, поэтому сейчас используемая в России система отличается от французской, хотя и заимствовалась во Франции.
Короткая шкала
Длинная шкала
Названия чисел в этой системе строятся так: к латинскому числительному [1] добавляют суффикс «-иллион», название следующего числа (в 1000 раз большего) образуется из того же самого латинского числительного, но с суффиксом «-иллиард». То есть после триллиона в этой системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т. д. Количество нулей в числе, записанном по этой системе и оканчивающегося суффиксом «-иллион», определяется по формуле 6·x (где x — латинское числительное) и по формуле 6·x+3 для чисел, оканчивающихся на «-иллиард».
Сравнение систем
Таблица от значения к названию
Порядок | Значение | Короткая шкала | Длинная шкала | СИ | ||
---|---|---|---|---|---|---|
Название | Логика построения | Название | Логика построения | |||
0 | 10 0 | один | один | |||
1 | 10³ | тысяча | 1000 1 + 0 | тысяча | 1 000 000 0,5 | кило- |
2 | 10 6 | миллион | 1000 1 + 1 | миллион | 1 000 000 1,0 | мега- |
3 | 10 9 | биллион (миллиард) [2] | 1000 1 + 2 | тысяча миллионов (миллиард) | 1 000 000 1,5 | гига- |
4 | 10 12 | триллион | 1000 1 + 3 | биллион | 1 000 000 2,0 | тера- |
5 | 10 15 | квадриллион | 1000 1 + 4 | тысяча биллионов (биллиард) | 1 000 000 2,5 | пета- |
6 | 10 18 | квинтиллион | 1000 1 + 5 | триллион | 1 000 000 3,0 | экса- |
7 | 10 21 | секстиллион | 1000 1 + 6 | тысяча триллионов (триллиард) | 1 000 000 3,5 | зетта- |
8 | 10 24 | септиллион | 1000 1 + 7 | квадриллион | 1 000 000 4,0 | йотта- |
9 | 10 27 | октиллион | 1000 1 + 8 | тысяча квадриллионов (квадриллиард) | 1 000 000 4,5 | |
10 | 10 30 | нониллион | 1000 1 + 9 | квинтиллион | 1 000 000 5,0 | |
11 | 10 33 | дециллион | 1000 1 + 10 | тысяча квинтиллионов (квинтиллиард) | 1 000 000 5,5 |
Таблица от названия к значению
Примечания
Литература
Полезное
Смотреть что такое «Системы наименования чисел» в других словарях:
Число — У этого термина существуют и другие значения, см. Число (значения). Число основное понятие математики[1], используемое для количественной характеристики, сравнения и нумерации объектов. Возникнув ещё в первобытном обществе из потребностей… … Википедия
Число (матем.) — см. также: Число (лингвистика) Число абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое … Википедия
Зиллион — (англ. zillion) общее название для очень больших чисел. Этот термин не имеет строгого математического определения. В 1996 году Конвей (англ. J. H. Conway) и Гай (англ. R. K. Guy) в своей книге англ. The Book of Numbers… … Википедия
Лимард — Миллиард (млрд) в европейской системе наименования чисел тысяча миллионов, число, изображаемое единицей с девятью нулями (1 000 000 000), 109. Приставки СИ: для миллиарда гига (109), для одной миллиардной нано (10−9). В американской системе… … Википедия
Млрд — Миллиард (млрд) в европейской системе наименования чисел тысяча миллионов, число, изображаемое единицей с девятью нулями (1 000 000 000), 109. Приставки СИ: для миллиарда гига (109), для одной миллиардной нано (10−9). В американской системе… … Википедия
Именные названия степеней тысячи — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (13 мая 2011) … Википедия
Дециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Додециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Квинтиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия