Что скинул галилей с падающей башни
Проверка Галилея: Пушинка против ядра
В 1971 г. Находившийся на Луне астронавт Дейв Скотт (Dave Scott) вытянул руки на уровне плеч, держа в одной молоток, а в другой — перо. Затаив дыхание, мир наблюдал за происходящим на телеэкранах. Это было странное зрелище: перо не просто упало, оно рухнуло вниз (запись можно скачать в виде ролика в формате MOV). В отсутствие атмосферы оба предмета коснулись поверхности Луны строго одновременно: «А все-таки, мистер Галилей был прав», — подытожил астронавт. Ускорение, которое придает гравитация, не зависит от массы или материала, из которого изготовлен предмет. В эйнштейновской теории гравитации это называется принципом эквивалентности: взаимозаменяемость гравитационного поля или ускорения, неинерциальности системы отсчета.
Впрочем, погрешность эксперимента Галилея составила около 1%, оставляя вполне достаточно сомнений для скептиков. Максимальная точность, достижимая с помощью современных инструментов — например, измерение скорости обращения Луны с помощью лазерного зондирования, достигает триллионных долей. Но и это не успокаивает сомнений: что, если открытый Галилеем принцип «не работает» на еще более микроскопическом уровне? «Остается еще крохотная вероятность, которую стоит исследовать, — утверждает астроном Клиффорд Уилл (Clifford Will). — Обнаружение микроскопических отклонений во влиянии гравитации на различные по химическому составу объекты будет иметь серьезнейшие последствия». В самом деле, это было бы первым серьезным экспериментальным доказательством в пользу струнной теории.
В рамках струнной теории элементарные частицы, из которых построена материя, представляются как вибрации бесконечно тонких, одномерных струн. Она объясняет многие загадки фундаментальной физики, но и сама остается довольно противоречивой. Существуют несколько соперничающих друг с другом вариантов теории. А главное — размеры суперструн таковы, что наблюдать их еще долгие годы вряд ли будет возможным. Некоторые варианты струнной теории теоретически показывают существование крайне слабых сил, влияющих на гравитационные взаимодействия объекта в зависимости от его состава. Так что обнаружение отклонений от открытого Галилеем принципа хотя и не подтвердит теорию окончательно и бесповоротно, но даст ей серьезную поддержку.
Однако наблюдение таких отклонений (если они существуют) — весьма непростая задача. Гравитация и сама по себе довольно слабая сила, примерно в 1036 раз слабее электромагнитного взаимодействия. А отклонения, по расчетам теоретиков-«суперструнников», слабее еще на 1013 порядков. Вдобавок, они должны зависеть от материала — подобно тому, как электромагнитные свойства проявляются железом, но не пластмассой. К примеру, согласно некоторым версиям теории суперструн, новые силы проявляются во взаимодействии с электромагнитной энергией вещества. К примеру, положительно заряженный протон и электрически нейтральный нейтрон с точки зрения общепринятой теории гравитации рассматриваются как эквивалентные, поскольку имеют практически равные массы. Но по ряду предположений, гравитационные свойства, которые они проявляют, будут слегка различны.
До сих пор не существует ни единого экспериментального доказательства этих предположений, и вот недавно сразу несколько групп ученых предложили провести космические миссии, способные провести измерения с ранее недоступной точностью. «Фактически, все, что требуется, — это измерить крохотные различия в ускорениях тел из разных веществ, — говорит Клиффорд Уилл. — На Земле время падения ограничено, но объект на околоземной орбите падает буквально постоянно, и мельчайшие различия со временем усиливаются настолько, что могут стать заметными».
Миссия STEP (Satellite Test of the Equivalence Principle) разрабатывается в Стэнфордском университете. Точность его достигает одной миллионной от триллиона (10−18), в 100 000 раз чувствительней современных аналогов. Для измерений используется не два, а сразу четыре объекта из бериллия и ниобия — это позволяет снизить влияние различных ошибок и неточностей. Все объекты помещаются в наполненный жидким гелием сосуд Дьюара, который защитит их от температурных колебаний, а резервуар окружен щитом из сверхпроводника, ограждающего его от внешних электромагнитных полей. Двигатели малой тяги должны скомпенсировать эффект от торможения спутника остатками атмосферы. В таких условиях все тестируемые образцы должны сохранить при свободном падении взаимное расположение. Но если новый компонент гравитационных сил и вправду существует, они немного сместятся друг относительно друга.
Что скинул галилей с падающей башни
Я не помню, когда впервые услышал, как ученые называют эксперимент «красивым», но очень хорошо помню, когда впервые понял, что они имеют в виду.
Однажды, много лет назад, я сидел в сумрачном кабинете в здании физического факультета Гарвардского университета в окружении вороха книг и бумаг. Напротив меня расположился Шелдон Глэшоу, энергичный физик; его лицо, включая и очки с толстенными стеклами, было скрыто за таинственной пеленой сигарного дыма.
– Это был очень красивый эксперимент, – говорил он. – Прекрасный эксперимент!
Что-то в манере, с которой Шелдон произнес приведенную фразу, в особом ударении, которое он поставил на словах «красивый» и «прекрасный», свидетельствовало о неслучайном выборе слов. В его понимании эксперимент, который он описывал, действительно являлся в самом буквальном смысле воплощением красоты.
Глэшоу – весьма эрудированный и культурный человек. Подобно многим ученым-естественникам, он знает о гуманитарных науках и искусствах значительно больше, чем гуманитариям известно о его специальности – физике высоких энергий. Более того, он не какой-то рядовой физик, а выдающийся ученый: за несколько лет до того, как состоялся наш разговор, в 1979 году, он был удостоен Нобелевской премии по физике. В тот момент, сидя у Глэшоу в кабинете, я впервые задумался над тем, можно ли научный эксперимент в прямом смысле слова воспринять как красивый и назвать его таковым – точно так же, как мы называем красивым пейзаж, человека или картину.
Мне захотелось больше узнать об эксперименте, который Глэшоу – по привычке к научной краткости – именовал экспериментом с «нейтральными токами SLAC». Оказалось, что это было довольно сложное предприятие, потребовавшее усилий многих ученых, инженеров и технологов на протяжении нескольких лет. Планирование и подготовка заняли почти десять лет, и эксперимент был проведен весной 1978 года на ускорителе элементарных частиц в две мили длиной в Стэнфордском центре линейного ускорителя (SLAC), расположенном к югу от Сан-Франциско в горах Санта-Клара. Эксперимент заключался в создании поляризованных электронов – электронов со спином, ориентированном в одном направлении, – и прогоне их через ускоритель со скоростью, близкой к скорости света. Мишенью для электронов служила группа протонов и нейтронов. Нужно было отследить результат такого столкновения. Испытанию в ходе описываемого эксперимента подвергалась новая, достаточно всеобъемлющая теория строения материи и ее фундаментальных свойств – теория, одним из разработчиков которой был Глэшоу. Если теория верна, экспериментаторы должны были отметить небольшое различие в том, как электроны, поляризованные в разных направлениях, рикошетировали от протонных мишеней, что свидетельствовало бы о присутствии того, что ученые называли «нейтральными токами, нарушающими четность». Различие крайне незначительное – примерно одно на десять тысяч электронов. Подобное наблюдение требовало такой степени точности – а для убедительности эксперимента ученым предстояло отследить десять миллиардов электронов, – что многие считали: либо осуществить его невозможно, либо результаты будут лишены научной убедительности.
Идея о красоте эксперимента заставила меня задаться вопросом – а что, в принципе, может считаться «красивым» экспериментом? А этот вопрос, в свою очередь, породил другие, которые выводили на оба полюса моей двойной профессии – философа и историка науки: что означает красота в контексте эксперимента? И как красота научного эксперимента может повлиять на саму концепцию прекрасного?
Когда я заговариваю о красоте научного эксперимента с людьми, непричастными к естественным наукам, они часто воспринимают мои слова довольно скептически. Три фактора, по моему мнению, порождают этот скептицизм. Один из них социальный: когда ученые выступают перед публикой – рассказывают о своей работе или отвечают на вопросы журналистов, – они очень редко используют слово «красота». Сложившиеся социальные условности таковы, что от исследователя ожидают объективного взгляда на природу, а не каких-то личных субъективных мнений и точек зрения. Чтобы соответствовать упомянутому образу, ученые обычно представляют эксперимент как нечто абсолютно функциональное, как некие манипуляции с набором инструментов, почти автоматически выдающие верные данные.
Второй фактор – культурный. Здесь скептицизм обусловлен методом, которым преподаются естественные науки в средней школе. В школьных учебниках эксперименты представлены как часть плана урока, как инструмент, всего лишь помогающий школьникам лучше усвоить материал. Воспринимая эксперимент таким образом, школьник даже не задумывается о его красоте.
Третьим фактором является чисто философский предрассудок, что истинно прекрасное можно найти лишь в абстрактном. «Евклид узрел нагую Красоту», – писала поэтесса Эдна Сент-Винсент Миллей, и действительно – прекрасное в науке, как правило, усматривают в гипотезах и теоретическом объяснении фактов. Такие абстракции, как уравнения, модели или другие теоретические построения, которым свойственны простота, стройность, ясность, глубина, вечность и тому подобные достоинства, мы скорее склонны отождествлять с красотой. Эксперименты, которые чаще всего связаны с не слишком эстетичной на первый взгляд возней с механизмами, оборудованием, химическими веществами и биологическими организмами, никто с этой точки зрения не оценивает.
Ученым-экспериментаторам хорошо известно, что лабораторные эксперименты за редким исключением представляют собой достаточно однообразное и утомительное занятие. Бо́льшая часть времени ученого уходит на выверку данных, планирование, подготовку, сглаживание шероховатостей, решение рутинных проблем, поиск денег и поддержки. Наука большей частью состоит в медленном, постепенном, микроскопическом приращении наших знаний и наших возможностей. Но время от времени происходит некое непредсказуемое, но совершенно неизбежное событие, которое кристаллизует накопленную до того информацию и изменяет наше представление об окружающем мире. Оно выводит нас из состояния недоумения и демонстрирует – непосредственно, не оставляя места ни для каких дальнейших сомнений – самое важное и существенное, порой кардинальным образом перестраивая наш взгляд на мир. Именно такие мгновения ученые и называют «прекрасными».
Что скинул галилей с падающей башни
Согласно биографии Галилео Галилея, написанной его учеником Винченцо Вивиани, в 1589 году Галилей провёл эксперимент, сбросив два шара различной массы со знаменитой падающей башни в Пизе, чтобы продемонстрировать, что время падения не зависит от массы шара. С помощью этого эксперимента Галилей якобы обнаружил, что тела упали практически одновременно, опровергнув теорию Аристотеля, которая утверждала, что скорость падения пропорциональна массе тела. В то время, когда, по описанию Вивиани, Галилей проводил свой эксперимент, он ещё не сформулировал окончательный вариант своего закона свободного падения.
Хотя история об экспериментах Галилея на Пизанской башне вошла в научный фольклор, в трудах самого Галилея нет упоминания об этих экспериментах, и большинство историков науки склонны считать, что это был лишь мысленный эксперимент, который на самом деле не осуществлялся. Исключение составляет лишь позиция Дрейка, который считает, что эксперимент Галилея имел место в действительности примерно в том виде, как это описал Вивиани.
Опыты по падению тел
Одним из первых опровергнуть утверждение Аристотеля попытался нидерландский учёный Симон Стевин. Можно предположить, что его результаты были известны Галилею.
Галилей так описывает знаменитый мысленный эксперимент в своей книге «О движении».
Представьте себе два предмета, один из которых тяжелее другого, соединённых верёвкой друг с другом, и сбросьте эту связку с башни. Если мы предположим, что тяжёлые предметы действительно падают быстрее, чем лёгкие и наоборот, то лёгкий предмет должен будет замедлять падение тяжёлого. Но поскольку рассматриваемая система в целом тяжелее, чем один тяжёлый предмет, то она должна падать быстрее него. Таким образом мы приходим к противоречию, из которого следует, что изначальное предположение (тяжёлые предметы падают быстрее лёгких) — неверно.
Опыты с качением тел по наклонной плоскости
Из-за несовершенства измерительного оборудования того времени свободное падение тел изучать было почти невозможно. В поисках способа уменьшения скорости движения Галилей заменил свободное падение на качение по наклонной поверхности, где были значительно меньшие скорости и сопротивление воздуха. Было замечено, что со временем скорость движения растет — тела движутся с ускорением. Был сделан вывод, что скорость и ускорение не зависят ни от массы, ни от материала шара.
Предположив, что произошло бы в случае свободного падения тел в вакууме, Галилей вывел следующие законы падения тел для идеального случая:
Ученый также отметил: если соединить две наклонные поверхности так, чтобы скатившись по одной из них, шар поднимался по другой, он поднимется на ту же высоту, с которой начал движение, независимо от наклона каждой из поверхностей.
Галилей проверил, что полученные им законы скатывания качественно не зависят от угла наклона плоскости, и, следовательно, их можно распространить на случай падения. Окончательный вывод Галилея из последней его книги: скорость падения нарастает пропорционально времени, а путь — пропорционально квадрату времени.
Что скинул галилей с падающей башни
Я не помню, когда впервые услышал, как ученые называют эксперимент «красивым», но очень хорошо помню, когда впервые понял, что они имеют в виду.
Однажды, много лет назад, я сидел в сумрачном кабинете в здании физического факультета Гарвардского университета в окружении вороха книг и бумаг. Напротив меня расположился Шелдон Глэшоу, энергичный физик; его лицо, включая и очки с толстенными стеклами, было скрыто за таинственной пеленой сигарного дыма.
– Это был очень красивый эксперимент, – говорил он. – Прекрасный эксперимент!
Что-то в манере, с которой Шелдон произнес приведенную фразу, в особом ударении, которое он поставил на словах «красивый» и «прекрасный», свидетельствовало о неслучайном выборе слов. В его понимании эксперимент, который он описывал, действительно являлся в самом буквальном смысле воплощением красоты.
Глэшоу – весьма эрудированный и культурный человек. Подобно многим ученым-естественникам, он знает о гуманитарных науках и искусствах значительно больше, чем гуманитариям известно о его специальности – физике высоких энергий. Более того, он не какой-то рядовой физик, а выдающийся ученый: за несколько лет до того, как состоялся наш разговор, в 1979 году, он был удостоен Нобелевской премии по физике. В тот момент, сидя у Глэшоу в кабинете, я впервые задумался над тем, можно ли научный эксперимент в прямом смысле слова воспринять как красивый и назвать его таковым – точно так же, как мы называем красивым пейзаж, человека или картину.
Мне захотелось больше узнать об эксперименте, который Глэшоу – по привычке к научной краткости – именовал экспериментом с «нейтральными токами SLAC». Оказалось, что это было довольно сложное предприятие, потребовавшее усилий многих ученых, инженеров и технологов на протяжении нескольких лет. Планирование и подготовка заняли почти десять лет, и эксперимент был проведен весной 1978 года на ускорителе элементарных частиц в две мили длиной в Стэнфордском центре линейного ускорителя (SLAC), расположенном к югу от Сан-Франциско в горах Санта-Клара. Эксперимент заключался в создании поляризованных электронов – электронов со спином, ориентированном в одном направлении, – и прогоне их через ускоритель со скоростью, близкой к скорости света. Мишенью для электронов служила группа протонов и нейтронов. Нужно было отследить результат такого столкновения. Испытанию в ходе описываемого эксперимента подвергалась новая, достаточно всеобъемлющая теория строения материи и ее фундаментальных свойств – теория, одним из разработчиков которой был Глэшоу. Если теория верна, экспериментаторы должны были отметить небольшое различие в том, как электроны, поляризованные в разных направлениях, рикошетировали от протонных мишеней, что свидетельствовало бы о присутствии того, что ученые называли «нейтральными токами, нарушающими четность». Различие крайне незначительное – примерно одно на десять тысяч электронов. Подобное наблюдение требовало такой степени точности – а для убедительности эксперимента ученым предстояло отследить десять миллиардов электронов, – что многие считали: либо осуществить его невозможно, либо результаты будут лишены научной убедительности.
Идея о красоте эксперимента заставила меня задаться вопросом – а что, в принципе, может считаться «красивым» экспериментом? А этот вопрос, в свою очередь, породил другие, которые выводили на оба полюса моей двойной профессии – философа и историка науки: что означает красота в контексте эксперимента? И как красота научного эксперимента может повлиять на саму концепцию прекрасного?
Когда я заговариваю о красоте научного эксперимента с людьми, непричастными к естественным наукам, они часто воспринимают мои слова довольно скептически. Три фактора, по моему мнению, порождают этот скептицизм. Один из них социальный: когда ученые выступают перед публикой – рассказывают о своей работе или отвечают на вопросы журналистов, – они очень редко используют слово «красота». Сложившиеся социальные условности таковы, что от исследователя ожидают объективного взгляда на природу, а не каких-то личных субъективных мнений и точек зрения. Чтобы соответствовать упомянутому образу, ученые обычно представляют эксперимент как нечто абсолютно функциональное, как некие манипуляции с набором инструментов, почти автоматически выдающие верные данные.
Второй фактор – культурный. Здесь скептицизм обусловлен методом, которым преподаются естественные науки в средней школе. В школьных учебниках эксперименты представлены как часть плана урока, как инструмент, всего лишь помогающий школьникам лучше усвоить материал. Воспринимая эксперимент таким образом, школьник даже не задумывается о его красоте.
Третьим фактором является чисто философский предрассудок, что истинно прекрасное можно найти лишь в абстрактном. «Евклид узрел нагую Красоту», – писала поэтесса Эдна Сент-Винсент Миллей, и действительно – прекрасное в науке, как правило, усматривают в гипотезах и теоретическом объяснении фактов. Такие абстракции, как уравнения, модели или другие теоретические построения, которым свойственны простота, стройность, ясность, глубина, вечность и тому подобные достоинства, мы скорее склонны отождествлять с красотой. Эксперименты, которые чаще всего связаны с не слишком эстетичной на первый взгляд возней с механизмами, оборудованием, химическими веществами и биологическими организмами, никто с этой точки зрения не оценивает.
Ученым-экспериментаторам хорошо известно, что лабораторные эксперименты за редким исключением представляют собой достаточно однообразное и утомительное занятие. Бо́льшая часть времени ученого уходит на выверку данных, планирование, подготовку, сглаживание шероховатостей, решение рутинных проблем, поиск денег и поддержки. Наука большей частью состоит в медленном, постепенном, микроскопическом приращении наших знаний и наших возможностей. Но время от времени происходит некое непредсказуемое, но совершенно неизбежное событие, которое кристаллизует накопленную до того информацию и изменяет наше представление об окружающем мире. Оно выводит нас из состояния недоумения и демонстрирует – непосредственно, не оставляя места ни для каких дальнейших сомнений – самое важное и существенное, порой кардинальным образом перестраивая наш взгляд на мир. Именно такие мгновения ученые и называют «прекрасными».
Галилео Галилей, Пизанская башня и маятниковые часы
Новый физический прибор — сердце
Всем хорошо знакома по многочисленным картинам и фотографиям стройная башня, расположенная в итальянском городе Пиза. Знакома не только своими пропорциями и изяществом, но и нависшей над ней бедой. Башня медленно, но заметно отклоняется от вертикали, будто кланяясь.
«Падающая» Пизанская башня расположена в городе, где родился и выполнил многие научные исследования современник Кеплера великий итальянский ученый Галилео Галилей. В родном городе Галилей стал профессором университета. Профессором математики, хотя занимался он не только математикой, но и оптикой, астрономией, механикой.
Вообразим, что в один из прекрасных летних дней в те далекие годы мы стоим около Пизанской башни, поднимаем голову и видим на верхней галерее… Галилея. Ученый любуется прекрасным видом на город? Нет, он, как шаловливый школьник, бросает вниз разнообразные предметы!
Ажурная Пизанская башня была невольным свидетелем опытов Галилео Галилея.
Вероятно, наше удивление еще больше возрастет, если кто-нибудь в это время скажет, что мы присутствуем при одном из важнейших физических экспериментов в истории науки.
Аристотель, мыслитель широчайшего кругозора, живший в IV веке до нашей эры, утверждал, что легкое тело падает с высоты медленнее тяжелого. Авторитет ученого был так велик, что это утверждение в течение тысячелетий считалось совершенно верным. Наши повседневные наблюдения к тому же часто, казалось бы, подтверждают мысль Аристотеля — медленно и плавно слетают легкие листья с деревьев в осеннем лесу, тяжело и быстро стучит крупный град по крыше…
Но Галилей недаром однажды сказал: «…в науках тысячи авторитетов не стоят одного скромного и верного утверждения». Он усомнился в правоте Аристотеля.
Внимательное наблюдение за раскачиванием светильников в соборе помогло Галилею установить закономерности движения маятников.
Как будут вести себя оба тела — легкое и тяжелое, если их скрепить вместе? Задав себе этот вопрос, Галилей рассуждал далее: легкое тело должно замедлять движение тяжелого, но вместе они составляют еще более тяжелое тело и, следовательно, обязаны (по Аристотелю) падать еще быстрее.
Где выход из этого логического тупика? Остается только предположить, что оба тела должны падать с одинаковой скоростью.
На эксперименты заметно влияет воздух — сухой лист дерева медленно опускается на землю благодаря ласковым дуновениям ветра.
Эксперимент надо поставить с телами разного веса, но примерно одинаковой обтекаемой формы, чтобы воздух не вносил своих «поправок» в изучаемое явление.
И Галилей сбрасывает с Пизанской башни в один и тот же момент пушечное ядро массой 80 килограммов и значительно более легкую мушкетную пулю — массой всего 200 граммов. Оба тела достигают земли одновременно!
Галилео Галилей. В нем гармонично сочетались таланты физика-теоретика и экспериментатора.
Галилею хотелось изучить поведение тел, когда они двигаются не так быстро. Он смастерил из длинных деревянных брусков прямоугольный желоб с хорошо отполированными стенками, поставил его наклонно и пускал вниз по нему (осторожно, без толчка) тяжелые шары.
Хороших часов тогда еще не существовало, и Галилей судил о времени, которое уходило на каждый опыт, взвешивая количество воды, вытекавшей через тонкую трубку из большой бочки.
С помощью таких «научных» приборов Галилей установил важную закономерность: пройденное шаром расстояние пропорционально квадрату времени, что подтвердило созревшую у него мысль о возможности движения тела с постоянным ускорением.
Однажды в соборе, наблюдая, как раскачиваются светильники разного размера и длины, Галилей пришел к выводу, что у всех светильников, подвешенных на нитях одинаковой длины, период раскачивания от одной верхней точки до другой и высота подъемов одинаковы и постоянны — независимо от веса! Как подтвердить необычный и, как выяснилось затем, совершенно верный вывод? С чем сопоставить колебания маятников, где взять эталон времени? И Галилей пришел к решению, которое для многих поколений ученых будет служить образцом блеска и остроумия физической мысли: он сравнил колебания маятника с частотой биения собственного сердца!
Внешний вид и устройство первых маятниковых часов, изобретенных Христианом Гюйгенсом.
Лишь триста с лишним лет спустя, в середине XX века, другой великий итальянец — Энрико Ферми поставит эксперимент, напоминающий достижения Галилея по простоте и точности. Ферми определит силу взрыва первой опытной атомной бомбы по расстоянию, на которое взрывная волна отнесет с его ладони лепестки бумаги…
Постоянство колебаний светильников и маятников одинаковой длины было доказано Галилеем, и на основе этого замечательного свойства колеблющихся тел Христиан Гюйгенс в 1657 году создал первые маятниковые часы с регулярным ходом.
Всем нам хорошо известны уютные часы с живущей в них «говорящей» кукушкой, возникшие благодаря наблюдательности Галилея, не покидавшей его даже во время богослужения в соборе.