Что синтезируется в ядрышке

Размер имеет значение

Размер имеет значение

Ядрышко (Nucleolus) под электронным микроскопом

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Функционирование любого компонента живой клетки контролируется обширной и сложной регуляторной сетью. Не является исключением и ядрышко. Однако механизмы, приводящие к его гипертрофии, были плохо изучены до недавнего времени. Исследование на данную тему представила группа учёных из США и Канады: им удалось выяснить, какие гены влияют на изменение размеров ядрышка.

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке

Конкурс «био/мол/текст»-2013

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Лучшее новостное сообщение».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Что такое ядрышко

Ядрышко — это небольшой субкомпартмент, расположенный в ядре клетки, который осуществляет транскрипцию и процессинг рРНК, а также сборку рибосом. Важность роли, исполняемой ядрышком, можно осознать, обратившись к следующему примеру: активно растущие клетки млекопитающих содержат от 5 до 10 миллионов рибосом каждая, и они должны быть синтезированы всякий раз, как клетка делится [1].

Ядрышки расположены вокруг особых регионов хромосом, гены которых кодируют различные по длине и массе рРНК (5,8S, 18S и 28S рРНК). Эти участки хромосом, пространственно ассоциированные с ядрышком, называют ядрышковыми организаторами. Каждый ядрышковый организатор представляет собой кластер тандемно повторяющихся генов рРНК. Сосредоточенность таких генов в определённом месте ядра, а также интенсивность их транскрипции, обусловливает характерную морфологию ядрышка [2]. ДНК, кодирующую различные варианты рибосомальной РНК, принято называть рДНК. Стоить отметить, что 5,8S, 18S и 28S рРНК транскрибируются в виде единого длинного предшественника, который затем подвергается «разрезанию» на более мелкие (уже функциональные) молекулы, из которых в дальнейшем и собираются сами рибосомы. Реакция эта катализируется ферментом РНК-полимеразой I. 5S же рРНК транскрибируется за пределами ядрышка, а реакция катализируется другим ферментом — РНК-полимеразой III [1].

Однако ядрышко — это не просто транскрибирующаяся рРНК; это рибонуклеопротеиновая частица. Проще говоря, в его состав входят как РНК, так и белок. В структуре ядрышка можно выделить три основные части: гранулярный компонент — это созревающие субъединицы рибосом; фибриллярный компонент — здесь происходит инициация процессинга рРНК; и плотный фибриллярный компонент, где и происходит транскрипция рРНК.

То, что ядрышко способно варьировать в размерах, было известно достаточно давно. К примеру, оно увеличивается в быстрорастущих клетках дрожжей. Что более интересно, гипертрофия ядрышка наблюдается и в раковых клетках человека — это стало одним из основных признаков, характеризующих злокачественную опухоль [3].

Но наблюдаемый размер ядрышка — это лишь вершина айсберга; на деле он прямо зависит от концентрации пре-рРНК в клетке, которая, в свою очередь, положительно коррелирует с активностью РНК-полимеразы I. Синтез рРНК требует больших затрат энергии, и когда клетка испытывает недостаток питания, транскрипция генов рДНК тормозится, и ядрышко уменьшается в размерах. Напротив, в благоприятных условиях клетка начинает активный синтез белка, готовясь к последующему делению, и ей требуется большее число рибосом [4]. Из-за этого она усиливает продукцию рРНК, и ядрышко увеличивает размер. Если мы хотим ответить на вопрос «что влияет на размер ядрышка?», нам стоит понять, что же контролирует активность полимеразы I.

Механизмы регуляции размеров ядрышка

Этим же вопросом задались и биологи из США и Канады, и, чтобы ответить на него, они провели ряд экспериментов. В качестве модельных организмов учёные использовали дрожжи и дрозофилу. Методики исследования для каждого объекта были индивидуальны. Так, для дрожжей была создана генно-инженерная линия, отличная от дикого типа по множеству генов. Гены, не являющиеся жизненно важными, содержали делеции — т.е. они были нерабочими. Жизненно важные же гены состояли из температурно-чувствительных аллелей, и при повышении температуры функционирование их белковых продуктов нарушалось. Для дрозофилы была использована другая методика — здесь гены «глушились» путём РНК-интерференции [5], [6]. Регистрация изменений размера ядрышек производилась схожим образом: в оба организма вводились флуоресцентные белки (посредством репортерных генов), каждый из которых окрашивал цитоплазму, ядро и ядрышко в определённый цвет. Получение и обработка данных осуществлялись посредством автоматизированной конфокальной микроскопии [4].

В ходе эксперимента у дрожжей было выявлено 113 генов, мутации в которых вызывали значимые изменения фенотипа ядрышка. И целых 78 из них оказались жизненно важными! Это свидетельствует о том, что корректная регуляция активности полимеразы I крайне важна для жизнеспособности клетки. Если говорить о мухе, то у неё ответственными за изменение размеров ядрышка оказались целых 757 генов. С функциональной точки зрения, белки, кодируемые этими генами, оказались схожими у обоих видов. Более того, белки со схожими функциями, будучи «выключенными», оказывали схожее воздействие на фенотип ядрышка как у дрозофилы, так и у дрожжей (рис. 1).

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке

Рисунок 1. Сравнение мутаций в белках дрожжей (квадраты) и дрозофилы (круги) и их воздействие на фенотип ядрышка. poly(A)+ mRNA export from the nucleus — полиаденилирование и экспорт мРНК из ядра; Histone acetyltransferase activity — ацетилирование гистонов; ER—to—Golgi vesicle—mediated transport — везикулярный транспорт из ЭПР в аппарат Гольджи; TRAMP complex — белковый комплекс, участвующий в процессинге 3′-конца рРНК.
Синим цветом обозначены белки, «выключение» которых уменьшало ядрышко; красным — увеличивало. Интенсивность цвета соответствует степени изменения размеров.
Хорошо заметно, что белки, ответственные за полиаденилирование, экспорт мРНК, ацетилирование гистонов и транспорт, в большинстве случаев вызывают уменьшение размеров ядрышка, в то время как TRAMP увеличивает его. Из этого можно сделать вывод, что TRAMP играет роль супрессора транскрипции рРНК.

К примеру, к увеличению размеров ядрышка приводили мутации в генах, ответственных за регуляцию клеточного цикла, процессинг рибосомальной и матричной РНК и репликацию ДНК. Утрата же функций белками, участвующими в таких фундаментальных процессах, как везикулярный транспорт из ЭР в Гольджи, синтез рРНК, сборка нуклеосом, регуляция транскрипции и ацетилирование гистонов, приводила к фенотипу с уменьшенным ядрышком. Основываясь на этих фактах, можно сделать вывод о том, что регуляция активности полимеразы I — высоко консервативный процесс, который регулируется функционально идентичными белками даже у эволюционно удаленных организмов.

Однако исследователей не удовлетворил этот ответ, и они решили выяснить, имеются ли видоспецифичные регуляторы ядрышкового размера. Таким кандидатом стал белковый комплекс HIR, чьи ортологи содержатся в большинстве эукариотических организмов: от дрожжей до человека. Данный комплекс участвует в целом ряде процессов: сборке нуклеосом, регуляции транскрипции, элонгации, сайленсинге генов и даже старении. Но участие этого белка в транскрипции именно рДНК ранее не было доказано, и исследователи предположили, что HIR в дрожжах обладает такой функцией, и она является видоспецифичной. Учёным удалось найти доказательства своим предположениям: мутации в генах, кодирующих субъединицы комплекса, приводили к повышению концентрации пре-РНК и увеличению ядрышка. Подобный опыт был проведён и для дрозофилы, где мишенью стал HIRA — аналог HIR. Однако в этом случае никакого влияния на размер ядрышка обнаружено не было [4]. Несмотря на высокую консервативность механизмов регуляции активности РНК-полимеразы I, за этот процесс могут быть ответственны и белковые комплексы, часть функций которых специфична для конкретного вида.

Помимо выяснения функций белков, связанных с активностью полимеразы I, учёные попытались выяснить и их внутриклеточную локализацию. Как оказалось, бóльшая часть из тех, что связана с размером ядрышка, локализована в ядре, ядрышке, эндоплазматическом ретикулуме и аппарате Гольджи (рис. 2), — значит, деятельность этих органелл связана с корректной работой РНК-полимеразы I.

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке

Рисунок 2. Регуляторы транскрипции рДНК у S. cerevisiae. а — Внутриклеточное распределение белков, влияющих на размер ядрышка (на примере дрожжей). Такие белки располагаются во многих органеллах, но больше всего их в ядре и ядрышке. Это согласуется с идеей о том, что варьирование размеров ядрышка вызвано изменением активности РНК-полимеразы I. б — Некоторые белки дрожжей, мутации в которых влияют на фенотип ядрышка. HIR complex — мультифункциональный белковый комплекс, регулирующий транскрипцию, опосредованную полимеразой I. Covalent chromatin modification — белки, ответственные за модификацию хроматина. RNA polymerase II transcriptional preinitiation complex assembly — белки, участвующие в сборке комплекса, необходимого для инициации транскрипции РНК-полимеразой II. FACT—NEK9 complex — белковый комплекс, взаимодействующий с гистонами и влияющий на транскрипцию, осуществляемую РНК-полимеразой II [7].
Легко заметить, что к увеличению ядрышка приводят мутации в тех белках, чьи функции связаны с регуляцией состояния хроматина. В то же время «выключение» белков, влияющих на активность РНК-полимеразы II и, как следствие, на уровень биосинтеза белка, вызывают уменьшение размеров ядрышка.

Как уже отмечалось, для быстрорастущих и делящихся клеток характерно гипертрофированное ядрышко. Здесь учёные и решили выяснить: а всегда ли увеличение размеров ядрышка означает заодно и возрастание скорости роста и деления клеток до аномальных значений? Чтобы ответить на этот вопрос, учёные взяли 50 линий дрожжей с мутациями по не жизненно важным генам, и одну контрольную линию дикого типа. Во время наблюдения не удалось установить никаких значимых различий в скоростях роста и деления между мутантами и диким типом. Из этого можно сделать следующий вывод: увеличенное ядрышко и повышенная активность полимеразы I не являются достаточными факторами для перерождения клетки в раковую.

Фундаментальные исследования — это хорошо, но большинству людей интересно прикладное применение знаний. Так каким же образом данная замечательная работа поможет на практике? Прежде всего, стоит помнить, что не всякое повышение активности РНК-полимеразы I приводит к злокачественному фенотипу, но каждый злокачественный фенотип содержит гиперактивный фермент. Значит, мишенью может служить как сама полимераза, так и гены, контролирующие её работу. К примеру, посредством всё той же РНК-интерференции можно заглушить гены, которые после утраты функций приводят к уменьшению размеров ядрышка, а значит, и к ослаблению синтеза рРНК. Другой путь — непосредственное ингибирование работы РНК-полимеразы I. И такой ингибитор был найден: это препарат CX-3543, обладающий противоопухолевой активностью и проходящий в настоящее время клинические испытания. Действительно, описанная нами работа американских и канадских учёных имеет ценность не только в области фундаментальных исследований, но и помогает найти новые способы терапии рака.

Источник

ЯДРЫШКО

Ядрышко (nucleolus) — составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

Ядрышко впервые описано в 1838— 1839 годы М. Шлейденом в растительных и Т. Шванном — в животных клетках.

Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) — так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) — кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом — РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рРНК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками — рибонуклеопротеидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклеопротеид.

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке

Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150— 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4—8 нм. На срезах нуклеолонемы видны относительно светлые участки — так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопротеидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке — так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны — так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю. Ультраструктура клеточного ядра, с. 50, М., 1974; Воuteille М. a. Dupuy-Goin А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a. Smetana K. The nucleolus, N. Y.— L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien — N. Y., 1985, bibliogr.

Источник

Нуклеиновые кислоты

Дезоксирибонуклеиновая кислота (ДНК) – полимер, состоит из нуклеотидов.

Нуклеотид ДНК состоит из

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получается полинуклеотидная цепь.

Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями по правилу комплементарности: напротив аденина всегда стоит тимин, напротив цитозина – гуанин (они подходят друг другу по форме и числу водородных связей – между А и Т две связи, между Ц и Г – 3). Получается двойная цепь ДНК, она скручивается в двойную спираль.

Функция ДНК

ДНК входит в состав хромосом, хранит наследственную информацию (о признаках организма, о первичной структуре белков).

ДНК способна к самоудвоению (репликации, редупликации). Самоудвоение происходит в интерфазе перед делением. После удвоения каждая хромосома состоит из двух хроматид, которые во время будущего деления превратятся в дочерние хромосомы. Благодаря самоудвоению каждая из будущих дочерних клеток получит одинаковую наследственную информацию.

Отличия РНК от ДНК по строению

Виды РНК

Задачи на правило комплементарности

Тимина в ДНК столько же, сколько аденина, остальное (до 100%) приходится на цитозин и гуанин, их тоже поровну. Например: если гуанина 15%, значит цитозина тоже 15%, итого 30%, значит, на аденин и тимин приходится 100-30=70%, следовательно аденина 70/2=35% и тимина тоже 35%

Еще можно почитать

Задания части 1

Выберите один, наиболее правильный вариант. Благодаря какому процессу в ходе митоза образуются дочерние клетки с набором хромосом, равным материнскому
1) образования хроматид
2) спирализации хромосом
3) растворения ядерной оболочки
4) деления цитоплазмы

Выберите один, наиболее правильный вариант. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК
1) ионная
2) пептидная
3) водородная
4) ковалентная полярная

Выберите один, наиболее правильный вариант. К биологическим полимерам относят молекулу
1) рибозы
2) глюкозы
3) аминокислоты
4) ДНК

Выберите один, наиболее правильный вариант. Соединение двух цепей в молекуле ДНК происходит за счет
1) гидрофобных взаимодействий нуклеотидов
2) пептидных связей между азотистыми основаниями
3) взаимодействий комплементарных азотистых оснований
4) ионных взаимодействий нуклеотидов

Выберите один, наиболее правильный вариант. Копией одного или группы генов, несущих информацию о структуре белков, выполняющих одну функцию, является молекула
1) ДНК
2) тРНК
3) АТФ
4) иРНК

ДНК
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Выберите особенности строения молекулы ДНК.

1) одноцепочная молекула
2) содержит урациловый нуклеотид
3) двуцепочная молекула
4) спиралевидная молекула
5) содержит рибозу
6) цепи удерживаются водородными связями

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
ДНК КРОМЕ
1. Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) выполняет ферментативную функцию
2) хранит и передает наследственную информацию
3) состоит из двух нуклеотидных цепей
4) в комплексе с белками образует хромосомы
5) участвует в процессе трансляции

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
2. Все перечисленные ниже характеристики, кроме двух, используют для описания изображенной на рисунке молекулы органического вещества клетки. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) трансляция
2) урацил
3) нуклеотиды
4) репликация
5) водородные связи

ДНК УДВОЕНИЕ
Установите, в какой последовательности происходит процесс репликации ДНК. Запишите соответствующую последовательность цифр.

1) образование двух молекул ДНК из одной
2) присоединение к каждой цепи ДНК комплементарных нуклеотидов
3) воздействие фермента ДНК-полимеразы на нуклеотиды
4) раскручивание молекулы ДНК

Все перечисленные ниже признаки, кроме двух, можно использовать для описания репликации ДНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуется молекула, содержащая рибозу
2) молекула ДНК служит матрицей
3) у эукариот синтез происходит в ядре
4) мономерами для синтеза служат аминокислоты
5) образуется молекула, содержащая тимин

2. Установите соответствие между характеристикой и нуклеиновой кислотой: 1) ДНК, 2) РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) состоит из одной полинуклеотидной цепи
Б) образуется в результате обратной транскрипции
В) участвует в трансляции
Г) способна к репликации
Д) содержит углевод рибозу
Е) содержит азотистое основание урацил

3. Установите соответствие между признаками и видами нуклеиновых кислот: 1) ДНК, 2) РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) цепи молекулы антипараллельны
Б) входит в состав рибосом
В) содержит нуклеотид с урацилом
Г) может транспортировать аминокислоты
Д) хранит наследственную информацию в клетке
Е) способна к репликации

РНК КРОМЕ
1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) состоит из двух полинуклеотидных цепей, закрученных в спираль
2) состоит из одной полинуклеотидной неспирализованной цепи
3) передает наследственную информацию из ядра к рибосоме
4) имеет самые большие размеры из нуклеиновых кислот
5) состоит из нуклеотидов АУГЦ

2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) содержит азотистое основание тимин
2) переносит информацию к месту синтеза белка
3) в комплексе с белками строит тело рибосомы
4) способна образовывать химическую связь с аминокислотами
5) не способна образовывать вторичную структуру

3. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) состоит из нуклеотидов
2) содержит рибозу
3) содержит аденин, тимин, гуанин и урацил
4) образуется в ядре
5) имеет форму альфа-спирали

иРНК КРОМЕ
1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы иРНК. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) синтезируется на ДНК
2) транспортирует аминокислоты
3) входит в состав рибосом
4) отсутствуют комплементарные участки
5) одноцепочная молекула

2. Все перечисленные ниже признаки, кроме трёх, используются для описания молекулы информационной РНК. Определите три признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) включает нуклеотиды с рибозой
2) содержит азотистое основание тимин
3) служит матрицей для синтеза белка
4) способна к репликации
5) входит в комплекс с рибосомой при трансляции
6) имеет четвертичную структуру

2. Установите соответствие между характеристиками нуклеиновых кислот и их видами: 1) иРНК, 2) тРНК, 3) рРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) синтезируется в ядрышке
Б) кодирует последовательность аминокислот
В) формирует каркас рибосомы
Г) переносит аминокислоты к месту синтеза
Д) присоединяет к себе аминокислоту

3. Установите соответствие между функциями и видами РНК: 1) иРНК, 2) тРНК, 3) рРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) присоединяет к себе аминокислоту
Б) является копией кодирующей части гена
В) служит матрицей для синтеза полипептида
Г) входит в состав субъединиц рибосомы
Д) связывается с кодоном
Е) катализирует образование пептидной связи

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
тРНК РИСУНОК
Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке схемы строения молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) имеет антикодон
2) осуществляет денатурацию
3) транспортирует аминокислоты
4) выполняет ферментативную функцию
5) состоит из нуклеотидов

НУКЛ.КИСЛОТЫ ФУНКЦИИ
Все приведенные ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите три признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) осуществляют гомеостаз
2) переносят наследственную информацию от ядра к рибосоме
3) участвуют в биосинтезе белка
4) входят в состав клеточной мембраны
5) транспортируют аминокислоты

6) выполняют сигнальную функцию

НУКЛЕОТИД ИЗ ДРУГОЙ ПАРЫ ПРОЦЕНТЫ
1. В ДНК на долю нуклеотидов с тимином приходится 23%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите соответствующее число.

2. В ДНК на долю нуклеотидов с цитозином приходится 13%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

3. В ДНК на долю нуклеотидов с аденином приходится 18%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав молекулы. В ответе запишите только соответствующее число.

4. В ДНК на долю нуклеотидов с тимином приходится 36%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

5. В ДНК на долю нуклеотидов с тимином приходится 28%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

НУКЛЕОТИД ИЗ ДРУГОЙ ПАРЫ ШТУКИ
1. Участок двойной цепочки ДНК бактериофага лямбда содержит 23 нуклеотида с тимином, сколько нуклеотидов с цитозином в этом участке, если его протяженность 100 нуклеотидов? В ответ запишите только количество нуклеотидов.

2. Фрагмент двуцепочечной молекулы ДНК содержит 60 нуклеотидов. Из них 12 нуклеотидов приходится на тимин. Сколько гуаниновых нуклеотидов содержится в этом фрагменте? В ответе запишите только число.

3. Двуцепочечный фрагмент молекулы ДНК содержит 340 нуклеотидов, из которых 87 в качестве азотистого основания имеют тимин. Определите количество нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

НУКЛЕОТИД ИЗ ЭТОЙ ЖЕ ПАРЫ (СЛИШКОМ ПРОСТО)
1. В некоторой молекуле ДНК на долю нуклеотидов с гуанином приходится 28%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

2. В некоторой молекуле ДНК на долю нуклеотидов с аденином приходится 37%. Определите процентное содержание нуклеотидов с тимином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

2. В ДНК на долю нуклеотидов с цитозином приходится 15%. Определите процентное содержание нуклеотидов с тимином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

3. Какую долю нуклеотидов с гуанином и цитозином в сумме содержит молекула ДНК, если доля нуклеотидов с тимином составляет 14%? В ответе запишите только соответствующее число.

2. В ДНК на долю нуклеотидов с гуанином и цитозином приходится 36%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

3. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 26%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

4. В некоторой молекуле ДНК на долю нуклеотидов с цитозином и гуанином в сумме приходится 42%. Определите процентное содержание нуклеотидов с аденином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

5. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 54%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

СУММА РАЗНЫХ ПАР
1. Фрагмент молекулы ДНК содержит 10% тимина. Сколько аденина и гуанина в сумме в этом фрагменте ДНК? В ответ запишите только количество аденина и гуанина в сумме.

2. В ДНК на долю нуклеотидов с тимином приходится 35%. Определите процентное содержание нуклеотидов с цитозином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

ВСЁ СРАЗУ (УСЛОЖНЯЕМ)
1. Фрагмент молекулы ДНК содержит 15% аденина. Сколько тимина и сколько цитозина в этом фрагменте ДНК? Запишите два числа (количество процентов) в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

МАТЕМАТИКААА
Сколько нуклеотидов с цитозином содержит молекула ДНК, если количество нуклеотидов с тимином 120, что составляет 15% от общего числа? В ответе запишите соответствующее число.

В РНК на долю нуклеотидов с урацилом и аденином приходится по 10%. Определите процентное содержание нуклеотидов с тимином входящих в состав комплементарной, двуспиральной цепи ДНК. В ответе запишите только соответствующее число.

В молекуле и-РНК содержится 200 нуклеотидов с урацилом, что составляет 10% от общего числа нуклеотидов. Сколько нуклеотидов (в %) с аденином содержит одна из цепей молекулы ДНК? В ответе запишите соответствующее число.

Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Сколько нуклеотидов содержится в двух цепях ДНК? Ответ запишите в виде числа.

1. Сколько нуклеотидов включает фрагмент двуцепочечной молекулы ДНК, содержащий 14 нуклеотидов с аденином и 20 нуклеотидов с гуанином? В ответе запишите только соответствующее число.

2. Сколько нуклеотидов включает в себя фрагмент двуцепочечной молекулы ДНК, если в нём содержится 16 нуклеотидов с тимином и 16 нуклеотидов с цитозином? В ответе запишите только соответствующее число.

В организме здорового человека живет примерно 60 триллионов бактерий (в основном – в толстом кишечнике). Длина ДНК одной бактерии составляет около 1,2 мм. Какова общая длина всей бактериальной ДНК в организме человека? В ответ запишите только длину в километрах.

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
1. Проанализируйте таблицу. Наполните пустые ячейки таблицы, используя понятия и термины, приведенные и списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) урацил
2) построение тела рибосомы
3) перенос информации о первичной структуре белка
4) рРНК
5) ДНК
6) тимин

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
2. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) рРНК
2) образование в комплексе с белками тела рибосомы
3) хранение и передача наследственной информации
4) урацил
5) тРНК
6) аминокислота
7) ДНК
8) синтез иРНК

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
3. Проанализируйте таблицу «Виды РНК». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из приведенного списка.
1) мРНК
2) тРНК
3) комплементарна участку молекулы ДНК, несущему информацию о первичной структуре одного белка
4) содержит тимин и дезоксирибозу
5) способна к репликации
6) входит в состав рибосом, участвует в синтезе белка
7) состоит из двух нитей, спирально обвивающих друг друга

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
4. Проанализируйте таблицу «Строение и функции нуклеиновых кислот». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин или характеристику из предложенного списка.
1) двойная спираль
2) мономер
3) состоит из аминокислот
4) белок
5) иРНК
6) АТФ
7) транспорт аминокислот

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
5. Проанализируйте таблицу «Строение и функции нуклеиновых кислот». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин или характеристику из предложенного списка.
1) имеет форму глобулы
2) содержит кодоны
3) синтезируется в ядрышке
4) доставляет аминокислоту к месту синтеза белка
5) переносит наследственную информацию
6) полинуклеотид
7) информационная
8) вирусная

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
Рассмотрите рисунок с изображением фрагмента молекулы биополимера. Определите, (А) что служит ее мономером, (Б) в результате какого процесса увеличивается число этих молекул в клетке, (В) какой принцип лежит в основе ее копирования. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) комплементарность
2) репликация
3) нуклеотид
4) денатурация
5) углевод
6) трансляция
7) транскрипция

Что синтезируется в ядрышке. Смотреть фото Что синтезируется в ядрышке. Смотреть картинку Что синтезируется в ядрышке. Картинка про Что синтезируется в ядрышке. Фото Что синтезируется в ядрышке
Рассмотрите рисунок с изображением молекулы органического вещества и определите (А) класс органического вещества, (Б) мономеры этого вещества и (В) функцию, выполняемую этим веществом. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
1) транспортная
2) энергетическая
3) белки
4) нуклеотиды
5) нуклеиновые кислоты
6) моносахариды
7) аминокислоты
8) хранение наследственной информации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *