Что синтезируется в хлоропластах
Хлоропласты в клетке
Что такое фотосинтез и почему он так важен для нашей планеты
Фотосинтез — один из самых важных биологических процессов на Земле. Благодаря фотосинтезу живые организмы получают кислород, необходимый для дыхания, а сами растения создают полезные органические вещества для своей жизнедеятельности. В этой статье мы поговорим о том, что обозначает фотосинтез, как он происходит и что образуется в процессе фотосинтеза.
Видео
Темновая фаза фотосинтеза
Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.
В нём можно выделить три этапа:
В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.
Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.
Рис.3. Суммарные уравнения и частные реакции фотосинтеза.
Принципы классификации
Пластиды делятся на три вида: лейкопласты (бесцветные), хлоропласты (окрашенные в зеленый цвет), хромопласты (имеют разные оттенки). На протяжении жизни клетки способны превращаться друг в друга. Лейкопластам свойственно переходить в хлоропласты, а последние за счёт появления бурых и прочих пигментов — в хромопласты, пластоглобулы.
Внешне зеленые вещества покрыты липидной и белковой мембранами. Полужидкая строма с тилакоидами (компартменты, ограниченные мембраной) считается основным веществом, в состав которого входят граны с каналами. Первые компоненты представлены в виде плоских круглых мешочков, расположенных перпендикулярно поверхности двухмембранных органоидов (ДО).
Уникальность их структуры заключается в хранении зеленого пигмента (хлорофилл). Главная функция хлоропластов связана с участием в фотосинтетическом явлении. В их состав входят жиры, зерна (митохондрия, пропластида), крахмал.
На долю липидов приходится до 30%. Они представлены тремя группами:
К другим компонентам, входящим в состав хлоропласта, относятся углеводы. Они представлены в виде продуктов фотосинтеза. До 25% приходится на долю минералов. Ферменты могут выполнять двойную функцию: катализацию различных реакций, обеспечение биосинтеза белков.
Внутренняя структурированность хлоропластов зависит от функциональных нагрузок, физиологического состояния. Молодые клетки размножаются за счет деления, а зрелые обладают выраженной системой гран. Если они стареют, происходит разрыв тилакоидов, распадается хлорофилл. Осенью деградация приводит к появлению хромопластов.
Главная роль хлоропластов в фотосинтезе обеспечена их способностью пассивно двигаться в клетках, увлекаемых током цитоплазмы. Веществу свойственно собирать свет и активно перемещаться с одного места на другое. При интенсивном свете оно поворачивается ребром к яркому солнцу, выстраиваясь вдоль стенок, которые параллельны лучам.
Если освещение слабое, схема движения хлоропластов следующая: они перемещаются на стенки, обращённые к солнцу, поворачиваясь наибольшей поверхностью. Когда освещение среднее, клетки занимают соответствующее положение. От условий освещения зависит то, какие пигменты хлоропластов появятся.
Для пластид и митохондрий свойственна полуавтономная степень. Кроме фотосинтеза, в первых компонентах происходит биосинтез белка. Так как они содержат в себе ДНК, поэтому принимают активное участие в наследственном комплексе: передача признаков, цитоплазматические свойства.
Описание хромопластов
К пластидам высших растений относятся хромопласты. Они имеют незначительные размеры. Для внутриклеточных органелл характерен разный окрас: красный, желтый, коричневый. Он придает соответствующий цвет осенью, плодам и цветкам, что необходимо для привлечения опылителей и животных, разносящих семена продолжительные расстояния.
Структура ткани похожа на иные пластиды. Внутренняя оболочка развита слабее внешней. У некоторых представителей она может отсутствовать. В каротиноидах (жирорастворимые пигменты) происходит накапливание кристаллов. Для определения точных функций вещества изучается таблица с формами хромопластов:
Их роль в жизни растений до конца не выяснена. Ученые предполагают, что пигменты участвуют в окислительных и восстановительных процессах, необходимых для размножения и физиологического развития клеток.
Строение лейкопластов
В органоидах этого типа накапливаются питательные компоненты. Лейкопласты имеют 2 оболочки: внутреннюю и внешнюю. На свету им свойственно превращаться в хлоропласты, но в привычном состоянии органоиды бесцветны. Основная их форма — шаровидная. Размещены они в мягких частях растений:
С учетом накапливаемого вещества лейкопласты классифицируются на следующие виды: амилопласты, элайопласты, протеинопласты. В первую группу входят органоиды с крахмалом, находящиеся в каждом растении. Если лейкопласт полностью заполнен крахмалом, он называется крахмальным зерном. Для элайопластов характерно продуцирование и запас жиров, а для протеинопластов — скопление белковых веществ.
Лейкопласты обладают ферментной субстанцией, что способствует ускоренному протеканию химических реакций. В отрицательном жизненном периоде, когда не происходит фотосинтез, они расщепляют полисахариды на простые углеводы. Так как в луковицах содержится много органоидов, поэтому им свойственно переносить длительную засуху, жару, низкую температуру. После выполнения своих функций они становятся хромопластами.
Строение и функции хлоропластов
Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений.
Число их в клетке варьирует в пределах 25-50.
Строение хлоропласта, наблюдаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс, или строма, которую пронизывают мембраны — ламеллы. Ламеллы, соединенные друг с другом, образуют пузырьки — тилакоиды.
Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей — тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов.
Структурной основой хлоропластов являются белки (50-55 % сухой массы), половина из них составляют водорастворимые белки. Такое высокое содержание белков объясняется их многообразными функциями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные). Важнейшей составной частью хлоропластов являются липиды, (30-40%сух. м.).
В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:
Благодаря ксантофиллу фикоксантину хлоропласты бурых водорослей (феопласты) окрашены в коричневый цвет;
Хлоропласт имеет собственную ДНК, то есть собственный геном и собственным аппаратом реализации генетической информации путем синтеза РНК и белка.
Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.
В состав мембран, образующих граны, входит зеленый пигмент — хлорофилл.
Именно здесь происходят световые реакции фотосинтеза — поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.
Ферредоксин затем вновь окисляется, отдавая этот водород веществу-восстановителю, сокращенно обозначаемому НАДФ.
НАДФ переходит в восстановленную форму — НАДФ-H2. Таким образом, итогом световых реакций фотосинтеза является образование АТФ, НАДФ-H2 и кислорода, причем потребляются вода и энергия света.
В АТФ аккумулируется много энергии — она затем используется для синтезов, а также для других нужд клетки. НАДФ-H2 — аккумулятор водорода, причем легко его затем отдающий. Следовательно, НАДФ-H2 является химическим восстановителем.
Большое число биосинтезов связано именно с восстановлением, и в качестве поставщика водорода в этих реакциях выступает НАДФ-H2.
Далее, с помощью ферментов стромы хлоропластов, т. е. вне гран, протекают темновые реакции: водород и энергия, заключенная в АТФ, используются для восстановления атмосферного углекислого газа (CO2) и включения его при этом в состав органических веществ.
Первое органическое вещество, образующееся в результате фотосинтеза, подвергается большому числу перестроек и дает начало всему многообразию органических веществ, синтезирующихся в растении и составляющих его тело. Ряд из этих превращений происходит тут же, в строме хлоропласта, где имеются ферменты для образования Сахаров, жиров, а также все необходимое для синтеза белка.
Сахара могут затем либо перейти из хлоропласта в другие структуры клетки, а оттуда в другие клетки растения, либо образовать крахмал, зерна которого часто можно видеть в хлоропластах. Жиры тоже откладываются в хлоропластах или в виде капель, или в форме более простых веществ, предшественников жиров, выходят из хлоропласта.
Хлоропласты обладают известной автономией в системе клетки. В них имеются собственные рибосомы и набор веществ, определяющих синтез ряда собственных белков хлоропласта.
Имеются также ферменты, работа которых приводит к образованию липидов, входящих в состав ламелл, и хлорофилла. Как мы видели, хлоропласт располагает и автономной системой добывания энергии. Благодаря всему этому хлоропласты способны самостоятельно строить собственные структуры. Существует даже взгляд, что хлоропласты (как и митохондрии) произошли от каких-то низших организмов, поселившихся в растительной клетке и сперва вступивших с нею в симбиоз, а затем ставших ее составной частью, органоидом.
Еще одной очень важной функцией является, усвоение углекислоты в хлоропласте или, как принято говорить, фиксация углекислоты, то есть включение ее углерода в состав органических соединений, происходят в сложном цикле реакций, открытом Кальвином и Бенсоном и получившем их имя.
За это открытие им была присуждена Нобелевская премия. Ключевым ферментом цикла является рибулезобисфосфаткарбоксилаза (РБФК) — оксигеназа, которая обеспечивает присоединение углекислоты к пятиуглеродному соединению — сахару рибулезобисфосфату.
Образующийся при этом короткоживущий шестиуглеродный продукт распадается с образованием двух трехуглеродных молекул фосфоглицериновой кислоты.
Строение хлоропласта типично для пластид. Его оболочка состоит из двух мембран — внешней и внутренней, между которыми находится межмембранное пространство. Внутри хлоропласта, путем отшнуровывания от внутренней мембраны, образуется сложная тилакоидная структура. Гелеобразное содержимое хлоропласта называется стромой.
Каждый тилакоид отделен от стромы одинарной мембраной. Внутреннее пространство тилакоида называется люмен. Тилакоиды в хлоропласте объединяются в стопки — граны.
Количество гран различно. Между собой они связаны особыми удлиненными тилакоидами — ламеллами. Обычный же тилакоид похож на округлый диск.
В строме содержатся собственное ДНК хлоропластов в виде кольцевой молекулы, РНК и рибосомы прокариотического типа. Таким образом, это полуавтономный органоид, способный самостоятельно синтезировать часть своих белков. Считается, что в процессе эволюции хлоропласты произошли от цианобактерий, начавших жить внутри другой клетки.
Строение хлоропласта обусловлено выполняемой функцией фотосинтеза.
Связанные с ним реакции происходят в строме и на мембранах тилакоидов. В строме — реакции темновой фазы фотосинтеза, на мембранах — световой. Поэтому они содержат различные ферментативные системы. В строме содержатся растворимые ферменты, участвующие в цикле Кальвина.
В мембранах тилакоидов содержатся пигменты хлорофиллы и каратиноиды.
Все они участвуют в улавливании солнечного излучения. Однако ловят разные спектры. Преобладание того или иного типа хлорофилла в определенной группе растений обуславливает их оттенок — от зеленого до бурого и красного (у ряда водорослей).
Большинство растений содержат хлорофилл а.
В строении молекулы хлорофилла выделяют головку и хвост. Углеводный хвост погружен в мембрану тилакоида, а головка обращена к строме и находится в ней.
Энергия солнечного света поглощается головкой, приводит к возбуждению электрона, который подхватывается переносчиками. Запускается цепь окислительно-восстановительных реакций, приводящих в конце концов к синтезу молекулы глюкозы. Таким образом энергия светового излучения превращается в энергию химических связей органических соединений.
Синтезируемые органические вещества могут накапливаться в хлоропластах в виде крахмальных зерен, а также выводится из него через оболочку.
Также в строме присутствуют жировые капли. Однако они образуются из липидов разрушенных мембран тилакоидов.
В клетках осенних листьев хлоропласты утрачивают свое типичное строение, превращаясь в хромопласты, у которых внутренняя мембранная система проще. Кроме того происходит разрушение хлорофилла, отчего становятся заметными каротиноиды, придающие листве желто-красные оттенки.
В зеленых клетках большинства растений обычно содержится много хлоропластов по форме похожих на немного вытянутый в одном направлении шар (объемный эллипс).
Однако у ряда водорослей в клетке может содержаться один огромный хлоропласт причудливой формы: в виде ленты, звездчатый и др.
Хлоропласты: роль в процессе фотосинтеза и структура
Фотосинтез происходит в эукариотических клеточных структурах, называемых хлоропластами. Хлоропласт – это тип органеллы растительных клеток, известный как зеленые пластиды. Пластиды помогают хранить и собирать необходимые вещества для производства энергии. Хлоропласт содержит зеленый пигмент, называемый хлорофиллом, который поглощает световую энергию для процесса фотосинтеза. Следовательно, название хлоропласт указывает на то, что эти органеллы представляют собой хлорофиллсодержащие пластиды.
Подобно митохондриям, хлоропласты имеют свою собственную ДНК, ответственны за производство энергии и воспроизводятся независимо от остальной части клетки посредством процесса деления, подобного бактериальному бинарному делению. Они также ответственны за производство аминокислот и липидных компонентов, необходимых для производства хлоропластов. Хлоропласты также встречаются в клетках других фотосинтезирующих организмах, таких как водоросли.
Хлоропласт: структура
Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:
Хлоропласт: фотосинтез
При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.
Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).
И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.
Хлоропласты: строение и функции
Содержание:
Хлоропласты – двухмембранные органоиды растительных клеток, именно они играют ключевую роль в одном из самых важных биологических процессов в природе – фотосинтезе. В частности именно хлоропласты в процессе фотосинтеза выделяют зеленый пигмент хлорофилл, благодаря которому листья деревьев приобретают зеленый цвет (впрочем, не только листья, но и многие другие представители растительного мира, например водоросли). Какое строение хлоропластов, какие функции и процессы они осуществляются в жизнедеятельности клетки, об этом читайте далее.
Количество хлоропластов в растительной клетке может быть разным, у некоторых водорослей в клетке содержится лишь один большой хлоропласт, часто причудливой формы, в то время как в клетках некоторых высших растений находится множество хлоропластов. Особенно их много в так званных мезофильных тканях листьев, там одна клетка может иметь в себе до сотни хлоропластов.
Строение
Устройство хлоропласта включает в себя внутреннюю и внешнюю мембрану, (как и в клетке, они играют роль защитного барьера), межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.
Вот так строение хлоропласта выглядит на картинке.
Как видим с картинки внутри хлоропласта имеется полужидкое пространство, именуемое стромой и приплюснутые диски – это тилакоиды. Последние объединены в стопки, названные гранамы, и сами граны соединены друг с другом при помощи длинных тилакоид, которые называют ламеллами. Именно в тилакоидах находится важный зеленый пигмент – хлорофилл.
В полужидкой строме хлоропласта находятся его молекулы ДНК и РНК, а также рибосомы, обеспечивающие этому важному органоиду некую автономность внутри клетки. Помимо этого в строме хлоропласта есть зерна крахмала, которые образуются при избытке углеводов, образованных при фотосинтетической активности.
Функции
Самая важная функция хлоропласта – это, конечно же, осуществление фотосинтеза. Об этом удивительном процессе на нашем сайте есть отдельная большая статья. Тем не менее, напомним, что при фотосинтезе хлоропластами растительных клеток при помощи солнечного света осуществляется синтез глюкозы из углекислого газа и воды. При этом в качестве важного «побочного продукта» выделяется кислород.
Основным фотосинтезирующим пигментом в этом процессе является хлорофилл, локализированный в мембранах тилакоидов, именно здесь проходят световые реакции фотосинтеза. Кроме хлорофилла тут же присутствуют ферменты и переносчики электронов.
Интересный факт: хлоропласты стараются расположиться в клетке таким образом, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету. Или говоря простым языком, хлоропласты в клетке всегда тянутся на свет.
Строение хлорофилла
Что же касается строения самого хлорофилла, то он состоит из длинного углеводного хвоста и порфириновой головки. Хвост его гидрофобен, то есть боится влаги, поэтому погружен в тилакоид, головка наоборот любит влагу и находится в жидкой субстанции хлоропласта – строме. Поглощение солнечного света осуществляется именно головкой хлорофилла.
К слову биологами различается несколько разных видов хлорофилла: хлорофилл a, хлорофилл b, хлорофилл c1, хлорофилл c2 и так далее, все они обладают разным спектром поглощения солнечного света. Но больше всего в растениях именно хлорофилла а.
Рекомендованная литература и полезные ссылки
Видео
И в завершение образовательное видео по теме нашей статьи.
Хлоропласт
Что такое хлоропласт
Хлоропласты (греч. «хлоро» – зеленый, «пластос» – вылепленный) – это пластиды, которые содержатся в растительных клетках. Пластидами называют мембранные органоиды растительных клеток, в которых осуществляется синтез различных веществ. Под органоидами, или органеллами подразумевают маленькие клеточные структуры.
Выделяют три вида пластид: лейкопласты, хромопласты и хлоропласты. Лейкопласты содержатся в семенах и клубнях растений и не имеют окраса, хромопласты – в клетках цветов, плодов и листьев, придают им яркую окраску, привлекающую насекомых-опылителей. Хлоропласты содержатся в зеленых органах растений. Хлоропласты, хромопласты и лейкопласты способны переходить друг в друга. В конце вегетации растения разрушается хлорофилл и хлоропласты утрачивают свой зеленый цвет, затем переходят в хромопласты. При позеленении клубней картофеля лейкопласты переходят в хлоропласты.
С помощью хлоропластов солнечный свет преобразуется в энергию. Этот процесс называют фотосинтезом. При фотосинтезе хлоропласты растительных клеток с помощью солнечного света из воды и углекислого газа синтезируют глюкозу.
Хлоропласты являются органеллами в клетках растений и представляют собой особые структуры в клетках с определенным набором функций. Так, главная функция хлоропластов – важнейший биологический процесс фотосинтез.
Клетки животных и человека не нуждаются в хлоропластах, так как эти организмы получают энергию от употребляемой пищи, а не от солнечного света.
Характеристика хлоропластов
Для хлоропластов характерна овальная форма, реже – форма лент, чаши даже звезд. Также они отличаются и размерами. Некоторые хлоропласты занимают большую часть клетки, в то время как другие ничтожно малы по сравнению с размерами самой клетки. В основном этот показатель составляет 20-30 %.
Доказано, что в 1 кв. мм листа сосредоточено около полумиллиона хлоропластов.
Цвет хлоропластам и растениям придают пигменты. В частности, такой пигмент как хлорофилл придает зеленый цвет растениям. В процессе фотосинтеза именно хлоропласты выделяют хлорофилл, благодаря которому листья и стебли растений, а также водоросли имеют зеленый цвет.
Хлорофилл, упакованный белковыми и фосфолипидными молекулами, обладает способностью эффективно поглощать солнечную энергию, а затем передавать ее другим молекулам. Крое хлорофилла не существует других структур, способных обеспечивать протекание фотосинтеза.
Хлоропластам присущи собственная ДНК и рибосомы для изготовления белков с РНК.
Помимо хлорофилла хлоропласты содержат еще и каратиноиды. Чаще всего хлоропласты имеют форму выпуклой двухсторонней линзы диаметром 4-5 мкм и толщину 2-4 мкм. Длина хлоропластов достигает 10 мкм. Примечательно, что у некоторых видов зеленых водорослей длина хлоропластов составляет 50 мкм.
Особенности хлоропластов
Численность хлоропластов в клетках живых организмов различна. Например, в клетках водорослей может содержаться всего 1-2 крупных хлоропласта, а клетках сложных растений – до нескольких сотен. Среднее количество хлоропластов в клетке составляет 30-60 шт.
Хлоропласты способны передвигаться внутри клетки, выбирая наиболее удобное положение для максимального поглощения солнечного света. Другими словами, хлоропласты в клетке всегда тянутся к свету.
Хлоропластам собственно воспроизведение независимо от остальной части клетки.
Днем хлоропласты выстраиваются вдоль стенок, а ночью перемещаются к низу клетки.
В хлоропластах содержатся различные пигменты хлорофилла. В зависимости от растений выделяют:
Строение хлоропласта
Строение хлоропласта довольно-таки сложное. Оно одинаково для всех зрелых хлоропластов высших растений. В зависимости от нагрузки клеток, возраста хлоропластов, их физиологического состояния различна их структурированность.
Внешняя часть хлоропласта покрыта защитной гладкой внешней мембраной. Во внешней мембране располагается внутренняя мембрана, которая осуществляет контроль над молекулами, проходящими в хлоропласт и наружу. Мембраны играют роль защитного барьера в клетках от воздействия неблагоприятных факторов. Внешняя и внутренняя мембраны с жидкостью между ними представляют собой оболочку хлоропласта.
Тело хлоропласта состоит из стромы, или матрикса – белковой гидрофильной полужидкой массы, в которой плавают различные структуры, например, тилакоиды, ламеллы, граны, люмел. При слиянии парных ламелей образуется диск в виде круглого мешочка – тилакоида. Тилакоиды объединяются в граны. Через строму проходят параллельными рядами особые двухмембранные пластины – ламеллы, или длинные тилакоиды. Хлорофилл содержится в тилакоидах. Ламелла стромы напоминает полый плоский мешок или сеть разветвленных каналов. Именно в строме, или матриксе хлоропласта, заполняющей собой его внутреннее пространство, находятся такие важные молекулы, как ДНК и РНК (рибосомальная молекула), и рибосомы, а также зерна крахмала. Зерна крахмала являются временным хранилищем продуктов фотосинтеза.
Хлорофилл представляет собой длинный углеводный хвост и порфириновую головку. Солнечный свет поглощается именно головкой хлорофилла. При его поступлении к головке происходит возбуждение электронов и их отделение от хлорофиллов.
Оболочка хлоропласта
Наружная мембрана хлоропласта гладкая, в то время как внутренняя мембрана имеет складчатую структуру с гранами внутри. Мембранами названы липопротеиновые структуры, состоящие из липидов и белков. Мембраны отделяют содержимое клетки от внешней среды и регулируют обмен веществ между окружающей средой и клеткой. Пространство между мембранами заполнено стромой.
Хлорофилл, пигменты и ферменты, находящиеся в мембранах, образуют мембранную систему. Она состоит из множества мешочков, названных тилакоидами.
Функции и роль хлоропластов
Бесспорно, что самая важная и первоочередная функция хлоропластов – это осуществление фотосинтеза. Фотосинтез возможен только при наличии хлоропласта в клетках и тканях растения.
Процесс синтезирования глюкозы из воды и углекислого газа сопровождается выделением жизненно необходимого кислорода. Хлоропласты способный усваивать углекислоту. Немаловажно, что в процессе фотосинтеза кислород выступает его побочным продуктом.
Кроме хлорофилла в мембранах тилакоидов содержатся ферменты и переносчики электронов.
Хлоропласты одновременно с фотосинтезом участвуют и в других важных процессах. Один из них – сбор и накопление нужных веществ для производства необходимой растениям энергии. Так, в хлоропластах в виде капель откладываются жиры.
Очень важно, что хлоропласты имеют собственную ДНК.
Кроме того, хлоропласты связаны с производством веществ, которые устраняют патогенны, попадающие в растение.
Cодержимое хлоропласта
Внутри хлоропласта содержатся молекулы ДНК, граны и рибосомы. Гранами названы складчатые образования, которые состоят из тилакоидов. Внешне они похожи на моменты, сложенные в стопку толщиной 0,5 мкм. Граны располагаются в шахматном порядке и соединены друг с другом мостиками. Они увеличивают площадь внутренней мембраны для того, чтобы расположить на ней максимальное количество ферментов фотосинтеза.
В мембранах тилакоидов между слоями молекул липидов и белков находится важный зеленый пигмент – хлорофилл. Мембранные тилакоиды напоминают по форме плоские замкнутые мешки в форме диска. Число тилакоидов на одну грану неодинаковое. Тилакоиды в гране тесно сближены друг с другом. Полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.
Рибосомы ответственны за биосинтез белка из аминокислот. Это микроскопические круглые органеллы, в состав которых входят две субчастицы, не имеющие мембранного строения. Рибосомы содержатся как в клетках растений, так и в клетках животных.
Признаки хлоропластов
Образование хлоропластов
Хлоропласты образуются из пропластид – маленьких бесцветных частиц в виде небольших пузырьков, отделенных от ядра. Пропластиды окружены двойной мембраной и молекулой ДНК.У пропластид отсутствует внутренняя мембранная система. Они способны делиться и передаваться от клетки к клетке.
В процессе образования хлоропласта из пропластиды внутренняя мембрана ее оболочки врастает внутрь пластиды. Начинают развиваться мембраны тилакоидов, которые, в свою очередь, создают граны и ламеллы стромы.
Так в темноте формируется этиопласт со структурой в виде кристаллической решетки. Под воздействие света она разрушается и формируется структура, состоящая из ламелл стромы и тилакоидов гран.
При формировании зеленого листа пропластиды путем деления преобразуются в хлоропласты.
Фотосинтез в хлоропластах
Фотосинтез – один из важнейших биологических процессов, лежащий в основе всей жизни нашей планеты. Именно благодаря этому процессу все живые организмы могут получать кислород, а значит – могут и дышать. Растения способны самостоятельно создавать полезные органически вещества, которые необходимы им для осуществления жизнедеятельности. Бесспорно, органические вещества, которые создают растения, это единственный источник жизни растений и животных, которые перерабатывают готовые органические вещества. Благодаря кислороду, который выделяется в процессе фотосинтеза, дышат все живые организмы на Земле.
Процесс фотосинтеза состоит из световой и темновой фаз.
С помощью фотосинтеза клетки, содержащие хлорофилл, под воздействием солнечной энергии образуют из неорганических веществ органические. Хлорофилл накапливает солнечную энергию в специальной молекуле аденозинтрифосфате, или АТФ. Именно АТФ аккумулирует энергию, необходимую для различных нужд клетки. Световая фаза может протекать только на мембранах тилакоидов и только на свету. В результате фоторазложения воды выделяется кислород.
Затем АТФ в сочетании с углекислым газом и водой вырабатывает глюкозу, необходимую для пищи растений. Темновая фаза протекает в строме хлоропластов, причем как на свету, так и в темноте. Поглощенный углерод восстанавливается, что сопровождается образованием углеводов и прочих органических соединений.
Интенсивность фотосинтеза прямо пропорциональна поглощению света хлорофиллом.
Таким образом, биологическая роль фотосинтеза заключается в преобразовании солнечной энергии в химическую энергию, присущую органическим соединениям.
Благодаря фотосинтезу из производимого кислорода образуется озоновый слой. Он защищает все живое на нашей планете от ультрафиолетовой радиации. Кислород поддерживает состав атмосферы и предотвращает рост объема углекислого газа. Доказано, что без фотосинтеза запасы кислорода на Земле хватило бы примерно на 3000 лет.