Что изучает генетика микроорганизмов
Генетика микроорганизмов
Вы будете перенаправлены на Автор24
Генетика микроорганизмов как наука
Лишь с изобретением электронного микроскопа появилась возможность рассмотреть субмикроскопическую структуру клетки вообще и микроорганизмов в частности.
Генетика микроорганизмов – это раздел общей генетики, в котором предметом изучения служат микроорганизмы (бактерии, вирусы, микроскопические грибы) и особенности их наследственности и изменчивости.
Характерной особенностью микроорганизмов является гаплоидный набор хромосом или кольцевая молекула ДНК. Это дает возможность мутациям проявиться уже в первом поколении потомков.
Начало микробиологических генетических исследований
Но особенно интенсивно стали исследовать микроорганизмы с точки зрения генетики после того, как американскими микробиологами С. Лурия и М. Дельброком на примере кишечной палочки было доказано универсальность закономерностей мутационного процесса. Они доказали, что и бактерии подчиняются мутационным закономерностям.
В науке появился новый принцип изучения изменчивости у бактерий – клональный анализ. Он заключается в тщательном исследовании потомства одной клетки. Эта клетка становится родоначальником клона.
Готовые работы на аналогичную тему
Изучение бактерий
В результате кропотливых исследований американским генетикам Дж. И Э. Ледербергам удалось доказать, что у бактерий мутации возникают независимо от условий их культивирования. Они разработали метод отпечатков, который позволил очень упростить приемы отбора микроорганизмов с желаемыми свойствами для дальнейших исследований. Они доказали, что больших популяциях клеток бактерий мутации происходят неупорядочено – спонтанно.
Существует мнение, что в кольцевой молекуле нуклеиновой кислоты клеток прокариот «прочтение информации» зависит от места начала «считывания». В зависимости от того, с какого нуклеотида начался этот процесс, находится и синтез того или иного белка.
Изучение фагов
Изучая особенности взаимоотношений «бактерия – бактериофаг», американские генетики открыли явление трансдукции (переноса генов между бактериальными клетками с помощью фагов) и обнаружили рекомбинацию у фагов. Это дало возможность изучать вопросы наследственности на уровне молекул (молекулярный уровень организации материи).
Немецкие микробиологи исследовали молекулу РНК. Для каждой из групп микроорганизмов была разработана методика исследований.
Генетика грибов и водорослей
Но вопросы генной инженерии требуют осторожного подхода к изучению и применению полученной информации на практике. Ведь не ясно, к каким последствиям может привести появление генетически модифицированных организмов в природе и в человеческом организме.
Генетика микроорганизмов
Генетическая информация в бактериях может содержаться во внеядерных (внехромосомных) молекулах ДНК, представленных плазмидами, транспозонами и инсерционными (вставочными) последовательностями. Они не являются жизненно необходимыми, так как не кодируют информацию о синтезе ферментов, участвующих в метаболизме бактериальной клетки.
Плазмиды бактерий представляют собой двунитевые молекулы ДНК размером от 10 6 до 10 8 Д, несущие от 40 до 50 генов. Количество плазмид в бактериальной клетке может быть от 1 до 200. Выделяют плазмиды, находящиеся в виде отдельной замкнутой молекулы ДНК ( эписомы ) и встроенные в хромосому бактерии ( интегрированные плазмиды ). Плазмиды выполняют регуляторные и кодирующие функции. Первые направлены на компенсацию метаболических дефектов, вторые вносят в бактерию информацию о новых признаках. Как составляющая часть генетического материала бактерии плазмиды играют важную роль в ее жизнедеятельности, детерминируя такие характеристики, как способность продуцировать экзотоксины, ферменты или бактериоцины, устойчивость к лекарственным препаратам и т.д.
Транспозоны ( Tn ) – это сегменты ДНК, состоящие из вставочных последовательностей и структурных генов, обеспечивающих синтез молекул со специфическими биологическими свойствами (токсичность, устойчивость к антибиотикам и др.). Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы.
Репликация бактериальной ДНК
Две цепи двойной спирали ДНК комплементарны друг другу. На каждой цепи из структурных элементов ДНК – дезоксирибонуклеозидтрифосфатов – синтезируется новая цепь; при этом с каждым из оснований спаривается комплементарное ему основание, так что каждая из двух новых цепей будет комплементарна родительской цепи. Обе новые двойные цепи состоят из одной родительской и одной вновь синтезированной цепи. Такая точная репликация ДНК гарантирует сохранение генетической информации.
Каждый ген представлен определенным участком молекулы ДНК. Специфическая информация, содержащаяся в гене, определяется последовательностью оснований в цепи ДНК. Специфичность ферментных белков, синтез которых контролируют гены, определяются последовательностью аминокислот в полипептидных цепях. Эта же последовательность определяет и пространственную структуру белка – конформацию.
Так растет полипептидная цепь по мере продвижения рибосомы вдоль мРНК. Одновременно происходит закручивание этой цепи и свертывание ее в клубок, определяемое последовательностью аминокислот и природой их боковых цепей (гидрофобные и гидрофильные группы), и в результате возникает структура, обусловливающая специфические свойства и функцию данного белка. К мРНК обычно прикрепляется несколько рибосом, так что на одной и той же матрице одновременно синтезируется несколько полипептидных цепей. На конце мРНК находится кодон, от которого зависит отделение сформированной полипептидной цепи от рибосомы.
Т.о., нуклеотидная последовательность ДНК представляет собой закодированную «инструкцию», определяющую структуру специфического белка. Этот универсальный процесс передачи информации при репликации ДНК, транскрипции и трансляции применим как к эукариотам, так и к прокариотам.
Регуляция выражения генетической информации у бактерий
Бактериальная клетка способна запустить или прекратить синтез того или иного фермента в зависимости от присутствия соответствующего субстрата. Для этого бактериальные гены объединены в группы ( кластеры ) таким образом, что все ферменты, необходимые для осуществления определенного пути биосинтеза, детерминируются генами, сцепленными друг с другом. Вся группа генов может транскрибироваться в одну полицистронную мРНК, которая последовательно транслируется рибосомами с образованием каждого из белков. Такая форма организации позволяет координировано регулировать выражение всех генов одной единицы транскрипции.
Перенос генетического материала бактерий
Обмен генетическим материалом у бактерий осуществляется путем генетических рекомбинаций. Под генетической рекомбинацией подразумевают взаимодействие между двумя геномами, которое приводит к образованию рекомбинаций ДНК и формированию дочернего генома, сочетающего гены обоих родителей. Особенности рекомбинаций у бактерий определяются отсутствием истинного полового процесса и мейоза у прокариот и гаплоидным набором генов. В процессе рекомбинации бактерии условно делятся на клетки-доноры, которые передают генетический материал, и клетки-реципиенты, которые этот материал воспринимают. В клетку-реципиент проникает не вся, а только часть хромосомы клетки-донора, т.е. один или несколько генов. Образуется только один рекомбинант, генотип которого представлен в основном генотипом реципиента с включением фрагментов хромосомы донора.
Биологическая значимость конъюгации хорошо видна на примере распространения резистентности бактерий к антибиотикам. Устойчивость к антибиотикам бактерия может получить в результате мутации, что происходит 1 раз на каждые 10 6 клеточных делений. Однако, однажды изменившись, генетическая информация может быстро распространяться среди сходных бактерий посредством конъюгации, поскольку каждая третья из близкородственных бактерий способна именно к этому типу генетического переноса.
Трансформация – передача генетической информации через выделенную из клетки-донора ДНК. Процесс трансформации может произвольно происходить в природе у некоторых видов бактерий, чаще грамположительных, когда ДНК, выделенная из погибших клеток, захватывается реципиентными клетками. Как правило, любая чужеродная ДНК, попадающая в бактериальную клетку, расщепляется рестрикционными эндонуклеазами; но при некоторых условиях такая ДНК может быть интегрирована в геном бактерии. По происхождению ДНК может быть плазмидной либо хромосомной и нести гены, трансформирующие реципиента. Подобным путем процессы трансформации могут распространять гены, кодирующие факторы вирулентности, среди бактериальных популяций; однако в обмене генетической информацией трансформация играет незначительную роль.
Трансформация служит хорошим инструментом для картирования хромосом, поскольку трансформированные клетки включают различные фрагменты ДНК. Определение частоты одновременного приобретения двух заданных характеристик (чем ближе расположены гены, тем более вероятно, что они оба включатся в один и тот же участок ДНК) дает информацию о взаиморасположении соответствующих генов в хромосоме. Перенос экстрагированной ДНК является основным методом генной инженерии, используемым при конструировании рекомбинантных штаммов с заданным геномом.
Общая (неспецифическая) трансдукция – перенос бактериофагом фрагмента любой части бактериальной хромосомы. В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов может проникнуть фрагмент бактериальной ДНК или плазмиды либо вместе с вирусной ДНК, либо вместо нее. Этот процесс происходит вследствие того, что бактериальная ДНК фрагментируется после фаговой инфекции и кусочек бактериальной ДНК того же размера, что и фаговая ДНК, проникает в вирусную частицу с частотой приблизительно 1 на 1000 фаговых частиц. При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены. Феномен неспецифической трансдукции может быть использован для картирования бактериальной хромосомы.
Специфическая трансдукция наблюдается в том случае, когда фаговая ДНК интегрирует в бактерию с образованием профага. При исключении ДНК фага из бактериальной хромосомы в результате случайного процесса захватывается прилегающий к месту включения фаговой ДНК фрагмент бактериальной хромосомы. Так как большинство умеренных фагов интегрируют в бактериальную ДНК в специфических участках, для таких бактериофагов характерен перенос в клетку-реципиент определенного участка бактериальной ДНК донора. Специфическая трансдукция может служить механизмом переноса вирулентных генов среди бактерий при условии, что эти гены локализованы в непосредственной близости от мест интеграции профага.
Абортивная трансдукция. При абортивной трансдукции внесенный фрагмент ДНК донора не встраивается в хромосому реципиента, а остается в цитоплазме и там самостоятельно функционирует. Впоследствии он передается одной из дочерних клеток (т.е. наследуется однолинейно) и затем теряется в потомстве.
Генетическая изменчивость бактерий
Первичный эффект мутагенного фактора не обязательно ведет к истинной мутации. Новый фенотип проявляется только тогда, когда измененный ген начнет функционировать. С помощью различных методов удается накапливать и выделять мутантов с разного рода дефектами: с нарушением процессов транспорта или использования субстрата, с дефектами промежуточного обмена, с повышенной чувствительностью к температуре и т.д.
Непосредственная реверсия от поврежденной ДНК к исходной структуре;
Эксцизия (`выпадение’) повреждений с последующим восстановлением исходной структуры;
Активация механизмов, обеспечивающих устойчивость к повреждениям.
Фенотипическая изменчивость бактерий
Методы изучения генетики бактерий
Выявление фенотипической изменчивости (модификации). При посеве Proteus mirabilis на питательный агар вырастают колонии протея, окруженные зоной `роения’. При пересеве колоний петлей на поверхность питательного агара с 1% сухой желчью зоны роения исчезают, а при пересеве на обычный питательный агар все колонии вновь окружены зоной роения.
Данный опыт показывает, что антибиотикоустойчивые мутанты возникли спонтанно, до контакта бактерий с селективным агентом – рифампицином. Уже через 6 ч на среде без антибиотика появляются микроколонии антибиотикоустойчивых мутантов. Благодаря перераспределению бактерии мутанты из этих микроколоний распространяются по всей поверхности среды и после посева отпечатками на среду с антибиотиками дадут начало многочисленным колониям мутантов, в то время как отпечатки с чашки без перераспределения выявляют только небольшое число колоний, соответственно исходным микроколониям мутантов.
Индукция мутаций под действием ультрафиолетового (УФ) облучения. В качестве источника УФ-лучей используют бактерицидную лампу ВУФ-15, которую устанавливают на расстоянии 60 см от центра облучаемого объекта.
К 2 мл 3-часовой культуры реципиента добавляют 1 мл бульонной культуры донора и инкубируют 30 мин при
Применение генетических методов в диагностике инфекционных заболеваний
Для диагностики инфекционных заболеваний генетическими методами маркером возбудителя является его геном. Методы индикации нуклеиновых кислот применяют для диагностики вирусных инфекций, для идентификации бактерий (особенно таких, которые трудно выделить) и для определения точного таксономического положения микроорганизмов. Методы позволяют обнаружить микроорганизм в исследуемом материале (воде, продуктах, материале от больного) по наличию ДНК без его выделения в чистую культуру.
Для проведения молекулярной гибридизации молекулу исследуемой ДНК расплетают, одну нить закрепляют на специальном фильтре, который помещают в раствор, содержащий меченый зонд (рис. 4). Создаются условия, благоприятные образованию двойных спиралей. При наличии комплементарности между зондом и исследуемой ДНК они образуют между собой двойную спираль. После окончания гибридизации и отмывания несвязавшихся продуктов проводится детекция образовавшегося комплекса при помощи соответствующей метки.
Полимеразная цепная реакция (ПЦР) основана на многократном увеличении числа копий ( амплификации ) определенного участка ДНК, катализируемое ферментом ДНК-полимеразой (рис. 5). ПЦР – это очень чувствительный метод, теоретически для получения результата достаточно наличие в материале одной молекулы ДНК.
ПЦР состоит из трех основных этапов: подготовки исследуемой пробы (изоляция ДНК или РНК), собственно ПЦР и детекции продукта ПЦР (амплифицированной ДНК). При использовании РНК в качестве матриц для ПЦР предварительно на этой РНК-матрице посредством фермента РНК-зависимой ДНК-полимеразы (обратной транскриптазы или ревертазы) синтезируют комплементарную ДНК, которая затем используется в качестве матрицы в ПЦР. После того, как из бактерий Thermous thermophilis удалось получить ДНК-полимеразу, которая наряду с полимеразной обладает еще и обратно-транскриптазной активностью, удалось совместить эти две реакции. Этот вариант ПЦР широко применяется для детекции РНК-содержащих вирусов, определения экспрессии вирусных, бактериальных и клеточных генов по их РНК.
Параграфы на тему „Генетика микроорганизмов“:
В 1946 г. Дж. Ледерберг и Э. Татум описали феномен конъюгации — передачи генетического материала из клетки в клетку при непосредственном контакте бактерий. Исследования проводились на штамме Е. coli К12. Перенос генетического материала происходил толь1 ко в одном направлении; одна клетка являлась донором, другая — реципиентом.
Трансформация (от transformatio — преобразование) изменение свойств бактериальной клетки в результаате процесса переноса информации, при котором фрагмент ДНК клеткидонора проникает в родственную бактерию.
— Рекомбинация у бактерий
У бактерий, так же как при изучении генетики высших организмов, принято выделять понятия: генотип, фенотип, модификаци
Осуществление переноса генетического материала от клетки донора к бактерииреципиенту с помощью фага получило название трансдукции. Траисдуцирующий фаг переносит фрагмент ДНК из предыдущего хозяина и вводит эту ДНК таким же образом, как и свою собственную молекулу ДНК, в чувствительную к нему бактериальную клетку.
Кроме хромосомы, у некоторых бактерий обнаруживаются дополнительные внехромосомные генетические детерминанты, получившие название плазмид. К настоящему времени обнаружено большое разнообразие плазмид, среди которых наиболее изученными являются половой фактор (F), фактор множественной лекарственной устойчивости (R), факторы бактериоциногений (Col), плазмиды, контролирующие у Е. coli синтез энтеротоксина (Ent), обеспечивающие продукцию гемолизина (Н1у), детерминирующие синтез поверхностных антигенов (К88, К99) и др.
— Что такое генетика. ДНК.
Генетика — наука о наследственности и изменчивости. Наследственность характеризует сохранение постоянства свойств вида в поколении, т. е. воспроизведение себе подобных. Изменчивость — различия в свойствах между особями одного вида.
Под мутацией (от mutatio — изменение) подразумеваются стабильные наследуемые изменения в генотипе, проявляющиеся фенотинически в виде измененного признака. Основу мутации составляют качественные или количественные изменения последовательности нуклеотидов в ДНК, которые могут возникать при жизнедеятельности бактерий под влиянием эндогенных факторов или при действии химических и физических мутагенов.
Генетика микроорганизмов раздел генетики изучающий изменчивость и наследственность микроорганизмов.
Сюда входит генетика бактерий, генетика вирусов, генетика грибов и др.
Обмен генетическим материалом у бактерий осуществляется тремя различными способами: 1) трансформация бактерий; при этом в бактерию-реципиент вносится часть генов бактерии-донора в виде изолированной молекулы ДНК; 2) трансдукция бактерий; в этом случае роль переносчика генетического материала между клетками донора и реципиента выполняют умеренные бактериофаги. В первом и втором способах не требуется непосредственного контакта между донором и реципиентом; 3) конъюгация бактерий; при этом обмен генетическим материалом происходит в момент непосредственного контакта между донором и реципиентом. После попадания генетического материала донора в бактерию-реципиент происходит собственно генетический обмен: рекомбинация между молекулами ДНК. Генетический обмен у вирусов осуществляется при совместном размножении двух или более вирусных частиц внутри одной клетки.
Успехи современной генетики микроорганизмов позволили объяснить ряд явлений и процессов, важных для практики. Выяснены механизмы формирования лекарственной устойчивости бактерий и намечены пути для ее устранения. Получены мутанты — активные продуценты антибиотиков, витаминов и аминокислот, важных для медицинской и хозяйственной практики.
Особенности генетики микроорганизмов: изучение бактерий и микробиологические генетические исследования
Особенности генетики микроорганизмов
Генетика микроорганизмов как наука
До определенного времени ученые полагали, что у микроорганизмов нет ядерного аппарата. Такое мнение бытовало приблизительно до 30-х 20 века. По этой причине не изучались и вопросы наследственности и изменчивости микроорганизмов.
Изобретение электронного микроскопа стало поворотной точкой в изучении микроорганизмов. А в целом появление этого инструмента позволило увидеть субмикроскопическую структуру клетки.
Отличительная характеристика микроорганизмов — наличие гаплоидного набора хромосом или кольцевая молекула ДНК. За счет этого обеспечивается возможность мутаций уже в первом поколении потомков.
Начало микробиологических генетических исследований
Новый всплеск изучения микроорганизмов с точки зрения генетики случился после доказательства универсальности закономерностей мутационного процесса на примере кишечной палочки. Этим занимались американские микробиологи С. Лурия и М. Дельброк. Они сделали вывод, что бактерии подчиняются мутационным закономерностям.
Все это поспособствовало появлению нового принципа изучения изменчивости у бактерий.
Это принцип получил название клонального анализа. В его основе лежит тщательное исследование потомства одной клетки, которая становится родоначальницей клона.
Изучение бактерий
Большие исследования провели американские генетики Джошуа и Эстер Ледерберги. Они доказали, что мутации у бактерий возникают вне зависимости от условий их культивирования.
Также учеными был разработан метод отпечатков, позволяющий сильно упростить приемы отбора микроорганизмов с необходимыми свойствами для последующих изучений. В больших популяциях клеток бактерий наблюдаются неупорядоченные (спонтанные) мутации — к такому выводу пришли ученые.
В 1946 году появилось доказательство того, что бактериям свойственен половой процесс. Также были открыты такие явления как конъюгация хромосом и рекомбинация генов, перенос генетической информации от одной бактериальной клетки к другой с помощью бактериофага.
Есть мнение, что «прочтение информации» в кольцевой молекуле нуклеиновой кислоты прокариотических клеток зависит от места, в котором начинается «считывание».
Синтез того или иного белка зависит от того, с какого нуклеотида начался этот процесс считывания.
Изучение фагов
В процессе изучения особенностей взаимоотношений между бактериями и бактериофагами, американским ученым удалось открыть трансдукцию и рекомбинацию у фагов.
Под трансдукцией понимают перенос генов между бактериальными клетками с помощью фагов.
Все перечисленное выше позволило заниматься изучением вопросом наследственности на уровне молекул — т. н. молекулярный уровень организации материи.
Немецкие микробиологи изучали молекулу РНК. Каждая группа микроорганизмов получила свою методику исследования.
Генетика грибов и водорослей
Половой процесс низших грибов и водорослей отличается от полового процесса прочих организмов. Изучение этих групп организмов привело к разработке нового метода — тетрадного анализа.
В ходе исследования этих организмов ученые занимались разработкой методики объединения ядер генетически различных штаммов микроорганизмов.
В дальнейшем с помощью этих методов ученые смогут:
Тем не менее генная инженерия требует к себе основательного и осторожного подхода. Пока еще не совсем понятно, какие могут появиться в природе и в человеческом организме генетически модифицированные организмы.
Генетика микроорганизмов как наука, специфика исследований в микробиологии
Что изучает генетика микроорганизмов
Способность живых организмов сохранять определенные признаки на протяжении многих поколений называется наследственностью.
В процессе изучения наследственности оказалось, что каждое последующее поколение под влиянием различных факторов может приобретать признаки, отличающие их от предыдущих поколений. Это свойство называется изменчивостью. Таким образом наследственность и изменчивость тесно связаны между собой.
Еще в XIX веке Ч. Дарвин доказал, что все существующие виды живых организмов произошли путем изменчивости от немногих форм, а возникшие изменения, передаваемые по наследству, являются основой эволюционного процесса. Теория Дарвина получила высшую оценку у классиков марксизма-ленинизма. Ф. Энгельс рассматривал ее как одно из величайших открытий XIX века.
Изучение наследственности и изменчивости у высших организмов связано с большими трудностями из-за большой продолжительности их жизни и немногочисленности потомства.
Удобным объектом для этого изучения являются микроорганизмы, для которых характерен короткий жизненный цикл, быстрое размножение и способность давать многочисленное потомство. Кроме того, они обладают выраженной морфологией, которую можно изучать визуально при помощи светового микроскопа. Микроорганизмы биохимически активны, что легко учитывать при использовании специальных питательных сред.
Способность микроорганизмов изменять свои свойства при воздействии различных факторов (температура, ультрафиолетовое и рентгеновское излучение и др.) позволяет широко использовать их в качестве модели при изучении наследственности и изменчивости.
Первым объектом генетических исследований была кишечная палочка, которая хорошо культивируется в лабораторных условиях. Важное значение имело также то, что морфологические, культуральные и биохимические свойства этой бактерии хорошо изучены. В дальнейшем объектом генетических исследований стали и другие бактерии, а также вирусы.
Исследования генетики микроорганизмов показали, что у них роль носителя генетической информации играет ДНК (у некоторых вирусов РНК).
Молекула ДНК в бактериях состоит из двух нитей, каждая из которых спирально закручена относительно другой. При делении клетки нитчатая спираль удваивается- каждая из нитей служит как бы шаблоном или матрицей, на которой строится новая нить. При этом каждая нить, возникшая в процессе деления клеток, содержит вновь образовавшуюся двунитчатую молекулу ДНК.
Функциональной единицей наследственности является ген, который представляет собой участок нити ДНК. В генах записана вся информация, касающаяся свойств клетки.
Полный набор генов, которым обладает клетка, называется генотипом. Гены подразделяются на структурные, несущие информацию о конкретных белках, вырабатываемых клеткой, и гены-регуляторы, регулирующие работу структурных генов. Например, клетка вырабатывает те белки, которые необходимы ей в данных условиях, однако при изменении условий гены-регуляторы изменяют свойства клетки, приспосабливая их к новым условиям.
Изменения морфологических, культуральных, биохимических и других свойств микроорганизмов, возникающие под действием внешних факторов, взаимосвязаны. Например, изменения морфологических свойств сопровождаются обычно изменениями физиологических особенностей клетки.
Колонии, относящиеся к гладкой S-форме, могут при определенных условиях переходить в R-форму и обратно, однако переход R-формы в S-форму происходит труднее.
Диссоциация наблюдается у ряда бактерий, в частности у возбудителей сибирской язвы, чумы и др.
Болезнетворные бактерии чаще бывают в S-форме. Исключением являются возбудители туберкулеза, чумы, сибирской язвы, у которых болезнетворной является R-форма (рис. 26).
Рис. 26. Рост возбудителей туберкулеза на плотной среде (R-форма)
Фенотипическая изменчивость (модификация)
Морфологическая модификация выражается в изменениях формы и величины бактерий. Например, при добавлении пенициллина к питательной среде клетки некоторых бактерий удлиняются. Недостаток в среде солей кальция вызывает у палочки сибирской язвы повышенное спорообразование. При повышенной концентрации солей кальция способность образовывать споры утрачивается и т. д. При длительном росте бактерий в одной и той же среде возникает полиморфизм, обусловленный влиянием накопившихся в ней продуктов их жизнедеятельности.
Культуральная модификация состоит в изменении культуральных свойств бактерий при изменении состава питательной среды. Например, при недостатке кислорода у стафилококка утрачивается способность образовывать пигмент. Чудесная палочка при комнатной температуре образует ярко-красный пигмент, но при 37° С способность образовывать этот пигмент утрачивается и т. д.
Биохимическая (ферментативная) модификация. Каждый вид бактерий имеет определенный набор ферментов, благодаря которым они усваивают питательные вещества. Эти ферменты вырабатываются на определенных питательных субстратах и предопределены генотипом.
В процессе жизнедеятельности бактерий обычно функционируют не все гены, ответственные за синтез соответствующих ферментов. В геноме бактерий всегда имеются запасные возможности, т. е. гены, определяющие выработку адаптивных ферментов. Например, кишечная палочка, растущая на среде, не содержащей углевод лактозу, не вырабатывает фермент лактазу, но если пересеять ее на среду с лактозой, то она начинает вырабатывать этот фермент. Адаптивные ферменты позволяют приспособляться к определенным условиям существования.
Генотипическая (наследуемая) изменчивость
Генотипическая изменчивость может возникать в результате мутаций и генетических рекомбинаций.
Мелкие (точковые) мутации связаны с выпадением или добавлением отдельных оснований ДНК. При этом изменяется лишь небольшое число признаков. Такие измененные бактерии могут полностью возвращаться в исходное состояние (ревертировать).
Бактерии с измененными признаками называются мутантами. Факторы, вызывающие образование мутантов, носят название мутагенов.
Бактериальные мутации делят на спонтанные и индуцированные. Спонтанные (самопроизвольные) мутации возникают под влиянием неконтролируемых факторов, т. е. без вмешательства экспериментатора. Индуцированные (направленные) мутации появляются в результате обработки микроорганизмов специальными мутагенами (химическими веществами, излучением, температурой и др.).
В результате бактериальных мутаций могут отмечаться: а) изменение морфологических свойств; б) изменение культуральных свойств; в) возникновение у микроорганизмов устойчивости к лекарственным препаратам; г) потеря способности синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества; д) ослабление болезнетворных свойств и т. д.
Если мутация приводит к тому, что мутагенные клетки обретают по сравнению с остальными клетками популяций преимущества, то формируется популяция из мутантных клеток и все приобретенные свойства передаются по наследству. Если же мутация не дает клетке преимуществ, то мутантные клетки, как правило, погибают.
Генетические рекомбинации. Трансформация. Клетки, которые способны воспринять ДНК другой клетки в процессе трансформации, называются компетентными. Состояние компетентности часто совпадает с логарифмической фазой роста.
С помощью трансдуцирующих фагов можно передать от одной клетки другой целый ряд свойств, таких как способность образовывать токсин, споры, жгутики, продуцировать дополнительные ферменты, устойчивость к лекарственным препаратам и т. д.
Процесс конъюгации можно прервать механическим способом, например встряхиванием. В этом случае реципиент получает неполную информацию, заключенную в ДНК.
Перенос генетической информации путем конъюгации лучше всего изучен у энтеробактерий.
Конъюгация, как и другие виды рекомбинации, может осуществляться не только между бактериями одного и того же вида, но и между бактериями разных видов. В этих случаях рекомбинация называется межвидовой.
Плазмиды
Типичным признаком плазмид служит их способность к самостоятельному воспроизведению (репликации).
Они могут также переходить из одной клетки в другую и включать в себя новые гены из окружающей среды. К числу плазмид относятся:
Профаги, вызывающие у лизогенной клетки ряд изменений, передающихся по наследству, например способность образовывать токсин (см. трансдукцию).
F-фактор, находящийся в автономном состоянии и принимающий участие в процессе конъюгации (см. конъюгацию).
R-фактор, придающий клетке устойчивость к лекарственным препаратам (впервые R-фактор был выделен из кишечной палочки, затем из шигелл). Исследования показали, что R-фактор может быть удален из клетки, что вообще характерно для плазмид.
R-фактор обладает внутривидовой, межвидовой и даже межродовой трансмиссивностью, что может явиться причиной формирования трудно диагностируемых атипичных штаммов.
В естественных условиях только единичные клетки в популяции (1 на 1000) спонтанно продуцируют колицин. Однако при некоторых воздействиях на культуру (обработка бактерий УФ-лучами) количество колицинпродуцирующих клеток увеличивается.
Практическое значение изменчивости
Еще Пастер искусственным путем получил необратимые изменения у возбудителей бешенства, сибирской язвы и приготовил вакцины, предохраняющие от этих заболеваний. В дальнейшем исследования в области генетики и изменчивости микроорганизмов позволили получить большое число бактериальных и вирусных штаммов, используемых для получения вакцин.
Результаты исследования генетики микроорганизмов с успехом были использованы для выяснения закономерностей наследственности высших организмов.
Методы генной инженерии позволяют изменять структуру генов и включать в хромосому бактерий гены других организмов, ответственных за синтез важных и нужных веществ. В результате микроорганизмы становятся продуцентами таких веществ, получение которых химическим путем представляет очень сложную, а иногда даже невозможную задачу. Этим путем в настоящее время получают такие медицинские препараты, как инсулин, интерферон и др. При использовании мутагенных факторов и селекции были получены мутанты-продуценты антибиотиков, которые в 100-1000 раз активнее исходных.
Контрольные вопросы
1. Что является функциональной единицей наследственности?
2. Какова роль генов-регуляторов?
3. Что такое диссоциация и какие Вы знаете формы диссоциации?
4. Что значит фенотипическая изменчивость и какими свойствами она может быть выражена?
5. Что значит генотипическая изменчивость и какими формами она может быть выражена?
6. Что такое плазмиды?
7. Какое практическое значение имеет изменчивость?