Что измеряют микрометрами с плоскими измерительными поверхностями
Микрометры
Самый распространённый и доступный прибор для измерения линейных размеров — штангенциркуль. Но для точных, ответственных замеров применяется микрометр — инструмент, позволяющий оценивать линейные размеры с точностью до 1 мк или 0.001 мм.
Назначение, область применения
Основная область применения — машиностроение. При изготовлении детали заготовка проходит несколько операций технологического процесса. И на каждом этапе необходим контроль размеров, отбраковка. С помощью микрометров чаще всего контролируют размеры после финишных операций: линейные обхватываемые и обхватывающие размеры, диаметры осей, валов, высоту впадин, размеры шестерней, резьб, различные толщины.
Устройство микрометров 25 мм
Есть несколько видов этого инструмента с некоторыми отличиями в конструкции, но для понимания общего принципа устройства лучше рассмотреть устройство наиболее известного и распространённого — механического, гладкого, он же — аналоговый с максимальным перемещением винта 25 мм, микрометра типа МК25.
Скоба (основание). Это П-образный корпус, в котором закреплены все узлы микрометра. В П-образный зев скобы между губками микрометра зажимается измеряемая деталь.
Губки. Неподвижная губка (пятка) и подвижная (микрометрический винт или шпиндель) имеют полированные твердосплавные измерительные поверхности. При перемещении винт прижимает объект измерения к пятке. Микрометрический винт через гайку связан с барабаном и ручкой быстрого подвода. Винт фиксируется зажимом.
Зажим. Необходим для фиксации винта при снятии замеров по шкале втулки (стебля).
Шкала втулки. Имеет нижнюю и верхнюю шкалы, разделённые горизонтальной линией. По нижней определяется часть размера в целых числах мм, по верхней — в десятых долях мм. Горизонтальная линия служит для определения части размера в микронах по нониусной шкале барабана.
Барабан. При вращении перемещается вместе с микрометрическим винтом вдоль стебля. На барабане нанесена круговая нониусная шкала. Барабан имеет трещоточный узел (трещотка или фрикцион.
В рычажном микрометре есть ещё стрелочный индикатор, определяющий отклонения от размера с точностью до 1 микрона.
Трещоточный узел. Предотвращает повреждение микрометрического винта и деформацию измеряемой детали. При вращении барабана и достижении определённого измерительного усилия трещотка прокручивается с характерным треском без перемещения винта. Это сигнал того, что деталь надёжно зафиксирована и можно снимать показания.
Настройка микрометра 25 мм. Градация измерений
Калибровка. Перед замером нужно проверить, нужна ли настройка, калибровка инструмента:
При проведении измерений, а особенно при калибровке микрометра нельзя браться голыми руками за металлическую часть скобы, т.к. тепло тела может вызвать температурные деформации и исказить результаты измерений. Для этого на скобе имеются теплоизолирующие пластиковые накладки. При калибровке, для уменьшения влияния тепловых деформаций, микрометр желательно закреплять в специальной стойке.
Градации измерений
Для быстрого снятия показаний нескольких деталей микрометр закрепляется в специальные тиски. Деталь помещается между измерительными поверхностями, ручкой быстрого подвода винт перемещается к детали. Последние 1-2 мм губка подводится с помощью трещотки. При первых щелчках можно приступать к снятию показаний.
Виды микрометров
По способу измерения и отображения показаний:
Механические (аналоговые). Самые простые, надёжные, недорогие. Замеры с помощью линейного перемещения подвижного винта. Показания определяются по механическим шкалам, нанесённым с высокой точностью.
Электронные. В сравнении с механическими имеют электронное отсчётное устройство с ЖК-дисплеем, на который выводятся показания с дискретностью до тысячной доли миллиметра. Дороже механических, выпускаются в пылезащищённом и водонепроницаемом исполнении.
Лазерные. Измерение по величине отклонения лазерного луча, в котором располагается измеряемая деталь. Отклонения фиксируют фотоэлементы, обрабатываются и результат выводится на дисплей. Самые точные (тысячные доли миллиметра), но и самые дорогие, сложные в настройке и эксплуатации.
По прикладному назначению:
Гладкий микрометр. Измеряет линейные размеры охватываемых деталей (плоских или круглых).
Зубомерный. Для измерения расстояний между зубьями шестерен, цепей и других размеров с помощью конических насадок.
Трубный. Для измерения толщины стенки труб. Отличается от механического гладкого формой неподвижной губки.
Листовой. Для измерения толщин листовых материалов. Имеет малый диапазон перемещения губки.
Проволочный. Для измерения диаметра проволоки, подшипников. Малые габариты из-за небольших размеров П-образной скобы.
Универсальный. Может заменить несколько микрометров различного назначения благодаря сменным насадкам.
Глубиномер. Измеряет глубину канавок, уступов и пр. с высокой точностью.
Нутромер. Измеряет с высокой точностью внутренние размеры (диаметры отверстий, ширину пазов и т.п.).
Резьбовый. Измеряет размеры метрической и дюймовой резьбы с высокой точностью.
Двойной. Конструктивно — это два микрометра, собранных на одной скобе. Служит для одновременного измерения двух размеров. Например, при выбраковывании деталей, размер которых не соответствует диапазону допустимых отклонений.
В интернет-магазине Техноберинг Вы можете найти широкий спектр микрометров различного типа от ведущих мировых производителей.
Виды микрометрических инструментов
Микрометрические инструменты используются для точного измерения толщины, глубины и длины очень маленьких объектов. Измерения которые они показывают, являются более точными, нежели другие измерительные устройства, такие как штангенциркуль и сильно зависят от работы пользователя. Они широко используются в машиностроении для точного замера компонентов.
Микрометрические инструменты используются для точного измерения
Что такое микрометр
Микрометр — это прецизионный измерительный прибор, который используется в механических мастерских по всему миру. Проверка показала, что механические, а также инструменты с цифровой индикацией, легко проводят высокоточные замеры.
Слово «микрометр» относится к двум терминологиям:
Используется прибор для замера меньших значений размеров, таких как длина, ширина и глубина точных деталей машин и объектов с точностью до 0,01 мм в случае метрической шкалы и до 1/1000 дюйма, если шкала в дюймах, выгравированная на микрометрической головке.
Огромное количество микрометров используется в промышленности, для таких условий, как линейные длины, угловые расстояния и глубина отверстий.
Конструкция микрометрического инструмента
Микрометрическая головка — это сердце микрометра, но его не видно из-за расположения внутри ствола прибора. Точность формы резьбы винта определяет точность микрометра. Винтовая резьба — это просто гребни, которые ощущаются при касании винта. Резьба — это спиральная структура, движущаяся вверх по винту и преобразующая крутящий момент в линейную силу.
Винт микрометра
Микрометрический винт впервые изобретен Уильямом Гаскойном в Англии 17 века. Это использовалось для измерения угловых расстояний между звездами в телескопах. Первая коммерческая версия, выпущена в 1867 году и до сих пор применяется в каждой области науки и техники.
Перед началом работы всегда проверьте микрометр на наличие повреждений, т.к, он, является важным инструментом. Стоит потратить немного времени чтобы откалибровать прибор. Калибровка ваших микрометров, необходима для точного измерения деталей и должна проводиться строго в соответствии техническим условиям производителя.
Измерительные грани
Измеряемые объекты размещаются между измерительными гранями; наковальня и шпиндель.
Наковальня и шпиндель
Наковальня — это неподвижная измерительная поверхность, на которой держатся детали, пока шпиндель не соприкоснется с предметом.
Резьбовой шпиндель — это движущейся измерительная поверхность механического микрометра.
Шкала микрометра
Шкала на гильзе является основным измерением на приборе.
Соединение линии наперстка и муфты, отображает результат замера.
Первая значимая цифра
Рукавная шкала, считывающая значение со шкалы микрометра. Первая значимая цифра измерения взята из этой шкалы. Эта часть замера является первым значением непосредственно слева от наперстка.
Наперсток
Вторичная шкала замера, наперсток, обеспечивает две оставшиеся значимые цифры измерения.
Эта часть замера является значением на шкале, которое выравнивается по линии индекса на шкале рукава.
Индексная линия
Индексная линия, которая проходит вдоль гильзы, используется для указания значения, показанного на шкале наперстка.
Движение наперстка
Когда наперсток поворачивается, шпиндель вращается и изменяет расстояние между измерительными гранями.
Некоторые наперстки содержат фрикционный привод., что дает точно прочитать размер, при использовании неопытным пользователем.
Храповик
Храповик увеличивает скорость вращения шпинделя, поэтому пространство между наковальней и шпинделем уменьшается быстрее, чем если бы использовался наперсток.
Использование трещотки сокращает время, необходимое для использования прибора.
Предотвращает натяжение
Храповик наружного инструмента имеет механизм скользящей муфты, который предотвращает чрезмерное натяжение и помогает пользователю прикладывать постоянную измерительную силу к шпинделю, помогая обеспечить надежные измерения.
Запирающее устройство
Запирающее устройство сохраняет замер и заготовку можно убрать, прежде чем прочитать размер.
Некоторые микрометры содержат стопорную гайку, в то время как другие могут иметь стопорный рычаг.
Скоба
U-образная рамка должна быть жесткая и устойчивая. Она поддерживает наковальню и гильзу.
Микрометрическая скоба удерживается пользователем во время измерений.
В зависимости от типа доступного прибора, микрометрические инструменты могут измерять различные расстояния.
Стандартные микрометры будут измерять объекты длиной менее одного дюйма.
Для измерения требуется правильный тип инструмента
Типы и назначения микрометрических инструментов
Для измерения расстояния требуется правильный тип инструмента и исправный микрометрический винт. С целью замера толщины предмета применяется внешний вид. Эти распространенные инструменты также известны как микрометрические суппорты. Снаружи инструмент измеряет провода, сферы и блоки. Внутренние микрометры делают противоположное измерение, расстояние внутри предмета, например, диаметр отверстия. Микрометры трубки измеряют толщину трубки, а микрометры глубины измеряют глубину прорези или шага.
Каждый тип оснащен специализированным оборудованием для конкретных задач. Поскольку захватывают измеряемый объект то наковальня и наконечник шпинделя являются деталями которые настраиваются для уникальных применений. Некоторые микрометры имеют несколько наковален для более точного замера. Наковальня может быть сформирована в виде диска, v-образной формы или образовать часть винтовой резьбы. Некоторые микрометры поставляются со сменными наковальнями, что позволяет проводить различные виды измерений. Рассмотрим наиболее известные и распространенные микрометрические инструменты их типы и назначения.
Наружный
Распространенным и постоянно применяемым видом, является наружный вид.
Его действие применяется с целью замера внешнего диаметра объекта.
Применяется для измерения внешнего диаметра объекта
Внутренний
Внутренний вид применяется в целях замера внутреннего диаметра отверстия или трубки.
Два вида внутреннего микрометра:
Вариант штангенциркуля
Внутренние разновидности имеют измерительные губки, подобные тем, которые имеются на штангенциркуле.
Челюсти вставляются в измеряемое пространство и регулируются поворотом наперстка или храповика.
Внутренние разновидности имеют измерительные губки, подобные тем, которые имеются на штангенциркуле
Трубчатые и стержневые
Трубчатые микрометры и стержневые помещаются в измеряемое пространство и расширяются до тех пор, пока измерительная поверхность не коснутся края измеряемого пространства.
Помещаются в измеряемое пространство
Стержневой инструмент поставляется с набором измерительных стержней, которые прикрепляются к микрометру, там самым расширяют измерительные возможности прибора.
Некоторые стержневые микрометры имеют рукоятку, которая соединяется с инструментом и помогает пользователю измерять в труднодоступных местах.
Глубинный
Глубинные применяются, с целью замера глубины отверстий, пазов и ступеней.
Они поставляются с различными сменными стержнями разной длины, так что их можно использовать для измерения диапазона глубин.
Применяются для измерения глубины отверстий, пазов и ступеней
Инструменты для конкретных измерительных задач
Клинок
Наковальня и шпиндель микрометров фигурой лезвия, позволяет измерять труднодоступные размеры, такие как диаметр узкой внешней канавки.
Позволяет измерять труднодоступные размеры
Дисковый (вращающийся)
Измерительные поверхности дисковых микрометров выглядят в форме диска, то что дает измерять скрытые элементы, такие как зубья шестерни.
Этот инструмент подходит для измерения и показания длины касательно корней цилиндрических и винтовых зубчатых колес.
Дает возможность измерять скрытые элементы, такие как зубья шестерни
Трубный
Трубные нужны с целью замера толщины стенок труб.
Измерительная плоскость наковальни сферически изогнута, а не плоская, что позволяет осуществлять точечный контакт с измеряемым предметом.
Также доступен инструмент со сферическими наковальнями и измерительными поверхностями шпинделя.
Трубные измеряют толщину стенок труб
С винтовой резьбой
Микрометрическая головка с винтовой резьбой используются для замера диаметра шага винта.
Заостренный шпиндель и двойная наковальня предназначены для контакта с резьбой винта.
Используются для измерения диаметра шага винта
V-образной наковальней
Микрометры с V-образной наковальней полезны для замера наружного диаметра режущих головок с помощью трех канавок, таких как спиральные сверла или развертки.
Для замера наружного диаметра режущих головок
Для листового металла
Горловина делает инструмент идеальным для измерения толщины большого куска листового металла от края.
Для измерения толщины листового металла
Для измерения бумаги
Инструмент для измерения бумаги представляет собой дисковый вид не вращающегося типа, предназначенный для точного измерения толщины бумажного, картонного, резинового или пластикового листа.
Также включает в себя диски и шпиндель который не вращается. Это снижает риск сжатия измеряемого предмета.
Для измерения толщины бумажного, картонного, резинового или пластикового листа
Заключение
Микрометрические инструменты — это деликатное устройство, поэтому при обращении с ним следует соблюдать особую осторожность. Кроме того, важно, он должен быть откалиброван, чтобы не было погрешности при измерении и предотвратить ошибку в конечном показании.
Смотреть видео
Микрометр – измерительный прибор с бескомпромиссной точностью
Содержание:
Название микрометра пошло от единицы измерения, которая была взята за основу при проведении замеров этим прибором. В метрической системе мер значение микрона равно одной миллионной доли метра (толщина человеческого волоса равна примерно 40 микронам). В конце XX века эта единица измерения была отменена, и сегодня ею практически не пользуются, а название прибора осталось и оно говорит само за себя – микрометр измеряет с высокой точностью очень мелкие детали.
Где же может пригодиться такой измерительный инструмент? Везде, где требуется получить максимально точные измерения. Его используют в машиностроении, слесарном, токарном и авторемонтном деле. С его помощью можно измерять толщину листов, проводов, проволоки, деталей, стенок цилиндрических элементов, длину уступов, глубину пазов и многое другое. Уже более 100 лет он является незаменимым измерительным прибором на производстве и в частных мастерских.
Отличная альтернатива линейке
Способы линейных измерений всегда заботили людей. Когда более 4000 лет назад перед человеком встал вопрос проведения измерений изделий, подручным средством стала примитивная линейка. Долгие годы именно она использовалась при необходимости линейных измерений в мастерских и строительстве. В 1570 году в устройстве пушечного механизма была использована микропара «винт-гайка», а в 1848 году это изобретение было взято за основу создания первого микрометра, который создал Жан Пальмер. Фамилия французского ученого легла в основу названия этого устройства – микрометр еще называют «пальмером». В 1877 году американской фирмой «Браун и Шарп» устройство микрометра Пальмера было усовершенствовано и вскоре открылось серийное производство этих инструментов. Точность измерений до 0,01 мм – это большой прорыв для промышленности XIX века, который был возможен благодаря появлению микрометра. В том виде, в котором выпускались эти измерительные приборы, они сохранились и до наших дней.
Устройство состоит из D-образной скобы, с одной стороны которой находится пятка, а с другой – шпиндель и микрометрический винт с гайкой. Деталь помещается в пространство между пяткой и шпинделем, зажимается между ними при вращении винта и фиксируется гайкой. Устройство имеет две шкалы делений: главная находится на «стебле» (как правило, цена деления микрометра на ней составляет 0,5 или 1 мм), а вторая – расположена в виде насечек по кругу барабана (50 или 100 насечек). Полные обороты винта отсчитывают по главной шкале, а доли оборота – по круговой. Таким образом, удается определить значение толщины детали с точностью в 0,01 или 0,001 мм. Точность микрометра в 10 раз может превосходить точность измерений штангенциркуля и в 100 раз – обычной линейки. Это позволяет использовать его для получения размеров мелких деталей, которые используются в механизмах, автомобильных двигателях и других изделиях, где все элементы строго подгоняются под установленный размер.
Современные разновидности микрометров
Технический прогресс заставляет предприятия следовать все более жестким нормативам изготовления деталей, а значит и средства измерений тоже должны идти в ногу со временем. Поэтому сегодня классическое устройство микрометра дополняется и всячески усовершенствуется, чтобы этот инструмент соответствовал самым строгим требованиям и позволял проводить максимально точные измерения.
В конструкции появился такой элемент, как трещотка. Она расположена на конце рукоятки и позволяет точно контролировать необходимое давление на винт при проведении измерений. Ведь при соприкосновении детали со шпинделем возникает усилие и если оно будет слишком сильным, то это может сказаться на точности измерений. Трещотка позволяет избежать этого – ее вращают до тех пор, пока шпиндель не соприкоснется с деталью настолько, чтобы давление не превысило допустимое. Характерные щелчки трещотки говорят о том, что достигнуто правильное положение измерительных плоскостей относительно шпинделя и пятки и вращение следует прекратить. Трещотка присутствует практически во всех современных микрометрах, модификаций которых существует очень много, например, трубные, проволочные, листовые, призматические, канавочные и т.д. Мы же перечислим основные виды, которые наиболее широко применяются в различных отраслях производства.
Название |