Что измеряет объем жидкости прибор
Что измеряет объем жидкости прибор
Объём кусочков льда правильной формы можно оценить с помощью измерений обычной линейкой. Но как определить объём воды? И любой другой жидкости?
Для измерения объёма жидкостей существует прибор, называемый мензуркой или измерительным цилиндром. Рассмотрев рисунки, Вы сразу поймёте, в каком случае применяется то, или иное название.
Мензурка – стеклянный сосуд с делениями для измерения объёма жидкостей.
Мензурка – не только прибор из школьной или научной лаборатории. В быту мы пользуемся мерной кружкой для измерения объёмов и масс жидких и сыпучих продуктов. В каждой домашней аптечке необходимо наличие мензурок для дозирования жидких лекарственных форм.
Правила пользования мензуркой. Обратите внимание на правильное положение глаза при отсчете объема жидкости.
1. Мензурку располагают таким образом, чтобы поверхность жидкости в ней находилась на уровне глаз.
2. Поверхность жидкости в мензурке должна быть строго горизонтальной.
3. Вода у стенок сосуда немного приподнимается (краевой эффект объясняется явлением смачивания), в средней же части сосуда поверхность жидкости почти плоская. Глаз следует направить на деление, совпадающее с плоской частью поверхности.
Современные способы измерения объема жидкости
Одной из важнейших задач молочной промышленности всегда был учет объема продукта: поступившего на обработку, расходуемого в течение технологического процесса, полученного на выходе. Причем эти измерения требуются как для технологических задач, так и для экономического учета.
О современных способах произведения этих измерений и пойдет речь.Существует несколько подходов к измерению объема жидкости, находящейся в емкости. Все они, однако, имеют одну общую исходную величину, требуемую для расчета. Эта величина – высота столба жидкости.Известна формула, устанавливающая математическую связь между плотностью жидкости, высотой ее столба относительно точки измерения, ускорением свободного падения и давлением, оказываемым на дно и стенки сосуда:
где Р – давление, ρ – плотность жидкости, h – высота столба жидкости, g – ускорение свободного падения (9,8 м/c 2 ).
Итак, зная давление и плотность жидкости, нетрудно рассчитать высоту, до которой она доходит относительно точки измерения. Такой способ измерения называется гидростатическим.Для того, чтобы узнать давление жидкости используются соответствующие датчики. В пищевой промышленности, как правило, это датчики с мембраной, имеющие относительно большую плоскость контакта со средой, что позволяет легко отмывать их от остатков продукта.
Среди датчиков давления наиболее распространены датчики с выходным сигналом 4…20 мА, являющимся общемировым стандартом в системах автоматического управления. Например, интеллектуальный датчик давления 4000-SAN.Сам чувствительный элемент датчика обычно представляет собой тензорезистор – элемент, изменяющий свое сопротивление в зависимости от приложенного к нему усилия. Зависимость сопротивления этих элементов от давления известна. Далее изменение сопротивления электроника датчика приводит к сигналу 4…20 мА.Современные датчики давления часто делаются цифровыми – то есть роль преобразователя играет микроконтроллер, встроенный в датчик. Такие датчики легче настраивать, они обладают более высокой точностью и могут оснащаться дисплеями, модулями коммуникации и дополнительными функциональными возможностями.
Итак, после того, как получено значение высоты, можно переходить к расчету объема жидкости. Выделяются два основных практических подхода:
1. Первый способ измерения объема жидкости: вычисление высоты
Первый способ подразумевает возможность выражения зависимости высота – объем известной формулой. Он актуален для емкостей, имеющих несложную форму и построенных из таких стандартных геометрических фигур, как, например, полусфера, конус и цилиндр. Например, для широко распространенных емкостей в форме цилиндра с коническим дном (Рисунок 2), вычисление будет производиться следующим образом: до тех пор, пока жидкость не достигла края конуса зависимость ее объема от высоты такова:
Где V – объем, Нж – высота столба жидкости, K – конусность
как только высота жидкости достигает края конуса и начинает заполнять цилиндр достаточно взять заранее вычисленный полный объем конической части:
и прибавлять к нему объем жидкости, находящейся в цилиндрической части:
С учетом степени развития микроконтроллеров, подобный алгоритм возможно реализовать непосредственно в датчике. Не нужно никакое внешнее устройство – датчик сам вычислит объем жидкости, если ввести ее плотность и геометрию емкости.Этот способ, однако, имеет определенные недостатки и ограничения. Они будут рассмотрены далее.
2. Точность измерения давления, производимого датчиком
Отдельно нужно отметить требования к точности измерения давления, производимого датчиком. Нетрудно посчитать, что общепромышленный датчик давления, имеющий погрешность в 0,5 % для емкости высотой в 3 метра даст ошибку измерения в:
Значение не кажется столь большим. Однако, если емкость при этом имеет диаметр, скажем, в 2 метра, погрешность вычисления объема составит:
Достаточно большое значение, с учетом того, что в течение рабочего дня могут производиться десятки циклов наполнения/опустошения емкости. При этом данное значение не учитывает дополнительную погрешность, вызываемую перепадами температуры.Именно поэтому датчики для решения задач вычисления объема обычно имеют погрешность не более 0,1 %. При тех же условиях, такой датчик даст ошибку измерения всего в 9,42 литра, то есть в 5 раз меньшую.
3. Второй способ вычисления: аппроксимация
На практике часто встречаются емкости, имеющие искажения формы внутренней поверхности, к которым неприменим геометрический метод вычисления объема емкости.Например, для емкости, установленной под углом (Рисунок 2), наклон в 2…3 градуса, кажущийся незначительным, сильно нарушит точность измерений – в горизонтальной емкости поверхность жидкости вместо прямоугольника будет иметь гораздо более сложную форму, что значительно меняет зависимость объема от уровня.
Емкость может иметь утопленный в стенку люк. В этом случае нужно производить вычисления уже по трем разным формулам, вместо двух. К тому же, зависимость объема на участке с люком будет куда более сложной, чем для прямого цилиндра. Также, геометрический метод на практике неприменим к емкостям, в которых производится перемешивание продукта.
Массивное устройство внутри емкости значительно исказит результаты вычислений – датчик будет показывать объем, больший, чем реальный. Предусмотреть готовые алгоритмы для каждой подобной ситуации и внести их в датчик – задача практически невыполнимая. Тут на помощь приходит более трудоемкий, но и значительно более гибкий способ измерения. Если начать заливать в емкость, допустим, по 100 литров жидкости и при этом на каждом шаге отмечать высоту, соответствующую залитому объему, мы получим так называемую «тарировочную таблицу». Суть в следующем: нестандартная форма емкости моделируется с использованием некоторого количества прямых отрезков. Чем их больше, тем точнее будут производиться вычисления. Таким образом, можно высоте столба жидкости поставить в соответствие ее объем.
Рисунок 3 — Реальная и аппроксимированная зависимости объема жидкости от высоты
Если жидкость, например, находится посередине между двумя точками, то и объем вычисляется, как среднее значение объемов в этих точках (Рисунок 3). Очевидно, что от количества точек, используемых при тарировании, значительно зависит точность результата. Если для участка с линейной зависимостью объем/высота достаточно двух точек, до для нелинейных участков их требуется гораздо больше. Тарирование на нелинейном участке можно производить шагами, в два раза большими, чем допустимая погрешность на данном участке. Например, если в конусной части емкости необходимо получить точность не ниже 20 литров, шаги тарирования должны быть не более 40 литров. Тут следует помнить простое правило – чем меньше шаги и больше точек, тем выше итоговая точность работы. Недостаток метода в том, что датчик, перенесенный на другую емкость, снова потребует тарирования. Однако, единожды оттарированный на одной емкости датчик будет не только давать максимально высокую точность вычислений, но и позволит подсчитывать объем для жидкостей с различными плотностями – достаточно будет лишь ввести в него это значение.
Это значит, что можно произвести тарирование с использованием обычной воды, а затем, предварительно поменяв значение плотности жидкости в памяти датчика, заливать продукт, имеющий плотность, отличную от плотности воды. Таким образом, мы получаем гибкий и точный метод, позволяющий работать с емкостями любой формы и жидкостями любой плотности.
Инженер отдела проектирования ООО «КИП-Сервис»
Горбоносов М.А.
Приборы для измерения объема тел
Объем жидкости определяется мензуркой и другими мерными сосудами. В частности, для измерения очень малых объемов жидкости используют градуированную пипетку – бюретку. Форма мензурки и других мерных сосудов желательна коническая, с тем чтобы при малых объемах деления были крупнее. Это несколько выравнивает относительную погрешность при малых и больших количествах жидкости.
Объем твердого тела в случаях, когда из-за сложности формы его нельзя измерить геометрически, определяют, опуская в мензурку с жидкостью, не растворяющей и не разрушающей тело. Если такую жидкость подобрать нельзя, применяют газовые объемомеры. Принцип действия газового объемомера основан на законе Бойля–Мариотта. Пусть имеется колпак, плотно примыкающий к тарелке с отводной трубкой (рис. 21). Трубка соединена с U-образным манометром гибким шлангом. Поднимая и опуская свободное колено манометра, можно менять объем газа и измерять при этом его давление. Сечение трубки S известно, так что из соотношения
(5)
можно найти V0 – объем сосуда без тела. Затем из соотношения
(6)
находится объем тела Vх.
Рис. 10. Газовый объемомер.
При непрерывном течении жидкости или газа по трубопроводу необходимо измерять р а с х о д, т. е. объем вещества, протекающего через поперечное сечение в единицу времени. Эту задачу решают расходомеры различных конструкций. На рисунке 11, а, б приведены схемы расходомеров чашечного типа, применяемых для небольших расходов. Чашки, укрепленные на вертушке, по мере наполнения поворачиваются, переливая определенные порции жидкости или пропуская порции газа. С осью скрепляется механический счетчик оборотов.
Существуют также весовые расходомеры, расходомеры типа поворотное крыло, а также тахометрические (с вертушкой-пропеллером). При больших расходах применяется ротаметр (рис. 11, в) – пробка в коническом трубопроводе, которая приподнимается потоком жидкости или газа.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Измерение объема жидкости в резервуаре с помощью поплавкового рычажного уровнемера
Рубрика: Технические науки
Статья просмотрена: 2088 раз
Библиографическое описание:
Ершов, М. Н. Измерение объема жидкости в резервуаре с помощью поплавкового рычажного уровнемера / М. Н. Ершов. — Текст : непосредственный // Молодой ученый. — 2011. — № 5 (28). — Т. 1. — С. 50-54. — URL: https://moluch.ru/archive/28/3137/ (дата обращения: 29.12.2021).
Для решения ряда задач высокоточного измерения уровня и объема жидких продуктов, существующих на транспорте, целесообразно использовать информационно-измерительные системы (ИИС) на основе поплавковых рычажных уровнемеров [1; 2].
Уровнемер состоит из сферического или цилиндрического поплавка, жестко закрепленного на рычаге, второй конец которого вставлен в подвижное шарнирное соединение и может свободно поворачиваться. Угол отклонения от направления вектора ускорения свободного падения ( &#; L ) определяется расчетным путем по показаниям микромеханического (MEMS) акселерометра, входящего в состав жестко закрепленного на рычаге инклинометрического узла (ИУ).
В минимальной конфигурации, ИИС высокоточного измерения уровня и объема жидкости на транспорте должна содержать уровнемер, ИУ для измерения угла наклона резервуара ( &#; T ), вычислительное устройство, устройства электропитания и отображения информации.
В разработанных математических моделях точный расчет объема жидкости производится в следующем порядке:
1. Определяется расстояние от точки подвеса до поверхности жидкости:
2. Определяется уровень в точке пересечения поверхности жидкости и перпендикуляра, опущенного из точки подвеса уровнемера (О / ):
Рис. 1. Схема измерения уровня жидкости в наклоненном резервуаре
5. Вычисляется уровень жидкости в точке N 0 :
6. Определяется искомый объем жидкости [4] в резервуаре при условии, что дно покрыто полностью:
Для проверки математических моделей измерения уровня и объема жидкости создана экспериментальная установка, состоящая из резервуара и упрощенной ИИС. Установка обеспечивает проведение измерений уровня и объема:
при углах наклона резервуара &#; T от 0 до 20 о и различном направлении наклона;
при различном сорте жидкости и её количестве, позволяя имитировать обнажение дна, перелив и другие нештатные ситуации.
Структурная схема используемой ИИС приведена на рис. 2.
Рис. 2. Структурная схема экспериментальной ИИС измерения объема
ИИС содержит два идентичных ИУ с интерфейсами связи RS485, источник питания 12 В, преобразователь интерфейсов RS232/RS485 (D5), персональную ЭВМ D6, стабилизатор напряжения питания А7. В состав ИУ входят акселерометры ММА7368 фирмы Freescale (США) с тремя чувствительными осями (А1, А2), микроконтроллеры (D1, D2), измерители температуры (A3, А4), аналого-цифровые преобразователи (А5, А6) и формирователи интерфейса RS485 (D3, D4).
Эскиз экспериментальной установки приведен на рис. 3. Цифрами обозначены: 1 – резервуар с прямоугольным отсеком для жидкости, 2 – поплавковый рычажный уровнемер, 3 – ИУ на рычаге поплавкового рычажного уровнемера, 4 – ИУ измерения угла &#; T и направления наклона резервуара, 5 – преобразователь интерфейсов RS232/RS485, 6 – стабилизатор напряжения питания ИУ, 7 – опорная рама. Связь между ИУ 3, источником питания и преобразователем 5 осуществляется посредством кабеля с малой жесткостью.
Рис. 3. Общий вид резервуара с установленной ИИС
Рис. 4. Направления наклона резервуара и ИИС при экспериментах
Словарь измерительных приборов
Измеритель солнечного излучения (люксметр)
В помощь техническим и научным сотрудникам разработано немало измерительных приборов, призванных обеспечить точность, удобство и эффективность работы. Вместе с тем, для большинства людей названия этих приборов, а тем более принцип их работы, зачастую незнакомы. В этой статье мы в краткой форме раскроем предназначение самых распространенных измерительных приборов. Информацией и изображениями приборов с нами поделился сайт одного из поставщиков измерительных приборов.
Анализатор спектра — это измерительный прибор, который служит для наблюдения и измерения относительного распределения энергии электрических (электромагнитных) колебаний в полосе частот.
Анемометр – прибор, предназначенный для измерения скорости, объема воздушного потока в помещении. Анемометр применяют для санитарно-гигиенического анализа территорий.
Балометр – измерительный прибор для прямого измерения объёмного расхода воздуха на крупных приточных и вытяжных вентиляционных решетках.
Вольтметр — это прибор, которым измеряют напряжение.
Газоанализатор — измерительный прибор для определения качественного и количественного состава смесей газов. Газоанализаторы бывают ручного действия или автоматические. Примеры газоанализаторов: течеискатель фреонов, течеискатель углеводородного топлива, анализатор сажевого числа, анализатор дымовых газов, кислородомер, водородомер.
Гигрометр – это измерительный прибор, который служит для измерения и контроля влажности воздуха.
Дальномер – прибор, измеряющий расстояние. Дальномер позволяет также вычислять площадь и объем объекта.
Дозиметр – прибор, предназначенный для обнаружения и измерения радиоактивных излучений.
Измеритель RLC – радиоизмерительный прибор, используемый для определения полной проводимости электрической цепи и параметров полного сопротивления. RLC в названии является абревиатурой схемных названий элементов, параметры которых могут измеряться этим прибором: R — Сопротивление, С — Ёмкость, L — Индуктивность.
Измеритель мощности – прибор, который используется для измерения мощности электромагнитных колебаний генераторов, усилителей, радиопередатчиков и других устройств, работающих в высокочастотном, СВЧ и оптическом диапазонах. Виды измерителей: измерители поглощаемой мощности и измерители проходящей мощности.
Измеритель нелинейных искажений – прибор, предназначенный для измерения коэффициента нелинейных искажений (коэффициента гармоник) сигналов в радиотехнических устройствах.
Калибратор – специальная эталонная мера, которую используют для поверки, калибровки или градуировки измерительных приборов.
Омметр, или измеритель сопротивления – это прибор, используемый для измерения сопротивления электрическому току в омах. Разновидности омметров в зависимости от чувствительности: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры.
Токовые клещи – инструмент, который предназначен для измерения величины протекающего тока в проводнике. Токовые клещи позволяют проводить измерения без разрыва электрической цепи и без нарушения ее работы.
Толщиномер — это прибор, при помощи которого можно с высокой точностью и без нарушения целостности покрытия, измерить его толщину на металлической поверхности (например, слоя краски или лака, слоя ржавчины, грунтовки, или любого другого неметаллического покрытия, нанесенного на металлическую поверхность).
Люксметр – это прибор для измерения степени освещенности в видимой области спектра. Измерители освещения представляют собой цифровые, высокочувствительные приборы, такие как люксметр, яркомер, пульсметр, УФ-радиометр.
Манометр – прибор, измеряющий давление жидкостей и газов. Виды манометров: общетехнические, коррозионностойкие, напоромеры, электроконтактные.
Мультиметр – это портативный вольтметр, который выполняет одновременно несколько функций. Мультиметр предназначен для измерения постоянного и переменного напряжения, силы тока, сопротивления, частоты, температуры, а также позволяет осуществлять прозвонку цепи и тестирование диодов.
Осциллограф – это измерительный прибор, позволяющий осуществлять наблюдение и запись, измерения амплитудных и временны́х параметров электрического сигнала. Виды осциллографов: аналоговые и цифровые, портативные и настольные
Пирометр — это прибор для бесконтактного измерения температуры объекта. Принцип действия пирометра основан на измерении мощности теплового излучения объекта измерения в диапазоне инфракрасного излучения и видимого света. От оптического разрешения зависит точность измерения температуры на расстоянии.
Тахометр – это прибор, позволяющий измерять скорость вращения и количество оборотов вращающихся механизмов. Виды тахометров: контактные и бесконтактные.
Тепловизор – это устройство, предназначенное для наблюдения нагретых объектов по их собственному тепловому излучению. Тепловизор позволяет преобразовывать инфракрасное излучение в электрические сигналы, которые затем в свою очередь после усиления и автоматической обработки преобразуются в видимое изображение объектов.
Термогигрометр – это измерительный прибор, выполняющий одновременно функции измерения температуры и влажности.
Трассодефектоискатель – это универсальный измерительный прибор, который позволяет на местности определять местоположение и направление кабельных линий и металлических трубопроводов, а также определять место и характер их повреждения.
pH-метр – это измерительный прибор, предназначенный для измерения водородного показателя (показателя pH).
Частотомер – измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала.
Шумомер – прибор для измерения звуковых колебаний.
Таблица: Единицы измерения и обозначения некоторых физических величин.