Чем покрыта клетка человека
Клетка (биология)
Содержание
Строение клеток
Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (предъядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.
Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам.
Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.
Прокариотическая клетка
Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.
Эукариотическая клетка
Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, Аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.
Строение эукариотической клетки
Поверхностный комплекс животной клетки
Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет из себя «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в нее молекулами белков, в частности, поверхностных антигенов и рецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образом актиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращение псевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличие микроворсинок).
Структура цитоплазмы
Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.
Эндоплазматический ретикулум
В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.
Аппарат Гольджи
Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах Аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен — цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.
Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра — кариотека — образован за счет расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счет окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.
Цитоскелет
К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.
Центриоли
Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.
Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.
Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.
Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.
Митохондрии
Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических систем митохондрий.
Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.
Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответсвующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов (97) из изученных организмов имеет простейшее Reclinomonas americana.
Сопоставление про- и эукариотической клеток
Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970—1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.
Анаплазия
Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии.
История открытия клеток
Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1663 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632—1723) с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Одним из её основоположников был Рудольф Вирхов, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.
Чем покрыта клетка человека
1. Изучить строение клетки человека, функции ее органоидов;
2. Научиться распознавать органоиды клетки человека;
3. Доказать родство человека и животных на основании сходства строения их клеток.
Клеточное строение организма
Кости, мышцы, кожа – все они построены из клеток. Клетки активно реагируют на раздражение, участвуют в обмене веществ, растут, размножаются, обладают способностью к регенерации и передаче наследственной информации.
Клетки нашего организма очень разнообразны. Они могут быть плоскими, круглыми, веретенообразными, иметь отростки. Форма зависит от положения клеток в организме и выполняемых функций. Размеры клеток тоже различны: от нескольких микрометров (малый лейкоцит) до 200 мкм (яйцеклетка). При этом, несмотря на такое многообразие, большинство клеток имеют единый план строения: состоят из ядра и цитоплазмы, которые снаружи покрыты клеточной мембраной (оболочкой). Клетка человека имеет те же органоиды, что и клетка животных, что служит доказательством родства этих групп организмов.
Ядро есть в каждой клетке, кроме эритроцитов. Оно несёт наследственную информацию и регулирует образование белков. Наследственная информация обо всех признаках организма хранится в молекулах дезоксирибонуклеиновой кислоты (ДНК).
ДНК является основным компонентом хромосом. У человека в каждой неполовой (соматической) клетке их 46, а в половой клетке 23 хромосомы. Хромосомы хорошо видны только в период деления клетки. При делении клетки наследственная информация в равных количествах передаётся дочерним клеткам.
Снаружи ядро окружает ядерная оболочка, а внутри него находится одно или несколько ядрышек, в которых образуются рибосомы – органоиды, обеспечивающие сборку белков клетки.
Ядро погружено в цитоплазму, состоящую из гиалоплазмы (от греч. «гиалинос» – прозрачный) и находящихся в ней органоидов и включений. Гиалоплазма образует внутреннюю среду клетки, она объединяет все части клетки между собой, обеспечивает их взаимодействие.
Органоиды клетки – это постоянные клеточные структуры, выполняющие определённые функции. Познакомимся с некоторыми из них.
Эндоплазматическая сеть напоминает сложный лабиринт, образованный множеством мельчайших канальцев, пузырьков, мешочков (цистерн). В некоторых участках на её мембранах расположены рибосомы, такую сеть называют гранулярной (зернистой). Эндоплазматическая сеть участвует в транспорте веществ в клетке. В гранулярной эндоплазматической сети образуются белки, а в гладкой (без рибосом) – животный крахмал (гликоген) и жиры.
Комплекс Гольджи представляет собой систему плоских мешочков (цистерн) и многочисленных пузырьков. Он принимает участие в накоплении и транспортировке веществ, которые образовались в других органоидах. Здесь также синтезируются сложные углеводы.
Митохондрии – органоиды, основной функцией которых является окисление органических соединений, сопровождающееся высвобождением энергии. Эта энергия идёт на синтез молекул аденозинтрифосфорной кислоты (АТФ), которая служит как бы универсальным клеточным аккумулятором. Энергию, заключённую в АТФ, клетки затем используют на различные процессы своей жизнедеятельности: выработку тепла, передачу нервных импульсов, мышечные сокращения и многое другое.
Лизосомы, небольшие шарообразные структуры, содержат вещества, которые разрушают ненужные, утратившие своё значение или повреждённые части клетки, а также участвуют во внутриклеточном пищеварении.
Снаружи клетка покрыта тонкой (около 0,002 мкм) клеточной мембраной, которая отграничивает содержимое клетки от окружающей среды. Основная функция мембраны – защитная, но она воспринимает также и воздействия внешней для клетки среды. Мембрана не сплошная, она полупроницаема, через неё свободно проходят некоторые вещества, т. е. она выполняет и транспортную функцию. Через мембрану осуществляется и связь с соседними клетками.
Вы видите, что функции органоидов сложны и многообразны. Они играют для клетки туже роль, что и органы для целостного организма.
Продолжительность жизни клеток нашего организма различна. Так, некоторые клетки кожи живут 7 дней, эритроциты – д о 4 месяцев, а вот костные клетки – от 10 до 30 лет.
Биология
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Впервые клетку увидел Роберт Гук ещё в XVII веке. Считалось, что эта частица, наполненная жидкостью, нужна лишь для заполнения ткани веществом.
Лишь в середине XIX века Рудольф Вирхов ввёл принцип «клетка происходит только из клетки». Стало ясно, что жизнь не самозарождается, а развивается и продолжается согласно строгим биологическим законам. И ведущую роль в этом играет деление клетки. В конце XIX века были открыты органеллы – компоненты клетки, которые выполняют определённые функции подобно органам в целом организме.
Клетка – это основа строения и функции любой ткани. Знания о том, как она устроена и работает, позволяют понять, как живёт и болеет организм.Тело человека состоит из нескольких триллионов клеток, которые подразделяют на несколько десятков типов. Но почти все они имеют общие черты строения.
Мембрана клетки
Синонимы: плазмолемма, цитолемма, плазматическая мембрана.
Роль липидов в клеточной мембране
Основа строения мембраны клетки – это липидный бислой (его также называют билипидный слой). Приставка «би» означает «два», «двойной», «липид» означает «жир». То есть это структура, состоящая из двойной слоя липидов (жиров).
В основном бислой образуют фосфолипиды – молекулы жиров, в которые встроена молекула фосфорной кислоты. Фосфолипид состоит из фосфорной головки и липидного хвостика. Липидный хвостик избегает контакта с водой, фосфорная головка «стремится» к молекулам воды.
В водной среде фосфолипидные молекулы ориентируются так, что образуется двойной слой с головками снаружи и хвостиками внутри.
Роль белков в клеточной мембране
Более половины массы мембраны приходится на белковые молекулы – протеины. Одни белки проходят липидный бислой насквозь, другие белки находятся лишь на поверхности бислоя. Белки, которые пронзают липидный бислой, создают в нём каналы. Благодаря им клетка не просто так, а очень избирательно обменивается молекулами с окружающей средой. Поэтому в клетку проходят только нужные молекулы.
Белки выполняют разные функции в клетке.
Роль углеводных молекул
Углеводные молекулы встроены в состав некоторых жиров (гликолипидов) и белков (гликопротеинов). Они придают поверхности клетки отрицательный заряд. Благодаря этому, например, эритроциты отталкиваются друг от друга и не склеиваются.
Углеводы образуют особый слой на поверхности клетки – гликокаликс. Благодаря ему клетки распознают друг друга. В гликокаликсе есть ферменты для переваривания различных молекул. Например, гликокаликс клеток тонкой кишки содержит ферменты для переваривания пищи.
Эндоцитоз и экзоцитоз
Если клетке нужно избавиться от непереваренных или вредных веществ, она использует экзоцитоз. Лишние молекулы упаковываются в пузырёк, он перемещается к клеточной мембране, встраивается в неё и выбрасывает содержимое наружу.
Таким образом мембрана клетки не только защищает клетку, но и выполняет другие функции:
Ядро и наследственная информация
Основная функция ядра клетки – хранение и передача наследственной (генетической) информации обо всех белках организма. Один из видов белков – ферменты, отвечают за биохимические реакции. Поэтому можно сказать, что в ядре запрограмированы все процессы организма.
Наследственная информация содержится в 46 хромосомах. Одна хромосома образована молекулой ДНК (дезоксирибонуклеиновой кислоты) примерно 5 см длиной. Такая огромная ДНК умещается внутри ядра благодаря плотной упаковке. Она как бы намотана на специальные белки, которые называются гистоновыми белками. Комплекс белков и ДНК также называется хроматином. Другими словами, хроматин – это генетический материал, который виден в световой микроскоп.
Наследственная информация дополнительно защищена мощной оболочкой. Оболочка ядра клетки состоит из двух слоёв – внутренней мембраны и внешней мембраны. В ядерной оболочке есть поры, через которые ядро обменивается с цитоплазмой различными молекулами. Чем активнее работает клетка, тем интенсивнее идёт обмен. А значит ядерных пор всё больше, они даже могут занимать треть площади оболочки.
Если рассматривать клетки в световой микроскоп, то у активных клеток ясно видно светлое пятно в ядре. Это ядрышко – участки хромосом, в которых синтезируется рибосомальная РНК (рибонуклеиновая кислота, рРНК).рРНК– это основная молекула рибосом. Рибосомы – это органеллы, которые синтезируют белок.
Митохондрии и энергия
В строении митохондрии есть общие с клеткой черты, например, свои ДНК и рибосомы. Дело в том, что когда-то митохондрия была самостоятельным организмом, бактерией, поселившейся в клетке. Со временем она стала незаменимой энергетической станцией для клетки.
Стенка митохондрии состоит из внешней и внутренней мембран. Внутренняя мембрана образует складки – кристы. На внутренней мембране митохондрий происходит сложный процесс запасания энергии в виде фосфатных связей молекулы аденозинтрифосфорной кислоты (АТФ). Молекулы АТФ – это маленькие батарейки. Если для какого-то действия нужна энергия, происходит разрыв связей между остатками фосфорной кислоты и выделяется энергия.
Шероховатая эндоплазматическая сеть и синтез белка
Шероховатую эндоплазматическую сеть (шЭПС) также называют гранулярной ЭПС. Это место синтеза белка, любого, какой понадобится клетке. На наружной поверхности шЭПС находится много рибосом, которые синтезируют белковые молекулы.
Строение шероховатой эндоплазматической сети
В ДНК закодирована информация о строении всех белков организма. Участок, несущий информацию о строении белка, называется «ген». Белки – это молекулы, состоящие из нескольких аминокислот. Для того, чтобы создать любой белок, клетка должна «прочитать» ген и собрать цепочку из нужных аминокислот.
Для чтения и сборки существуют молекулы рибонуклеиновой кислоты (РНК) – информационная РНК (иРНК), транспортная РНК (тРНК) и рибосомальная РНК (рРНК). иРНК – это копия гена, тРНК – это переносчик аминокислот, рРНК – это основа рибосомы.
Сначала на основе гена строится молекула информационной РНК – иРНК. Затем иРНК через ядерные поры выходит из ядра. На неё садятся рибосомы – органеллы, состоящие из рРНК. Пока иРНК проходит сквозь рибосому, к ней подходят тРНК с нужными аминокислотами. В рибосоме происходит сборка молекулы белка
Гладкая эндоплазматическая сеть (глЭПС)
Гладкая (агранулярная) эндоплазматическая сеть состоит из канальцев, трубочек и пузырьков. В глЭПС происходят важные для клетки события:
Комплекс Гольджи
Если клетка синтезирует гормоны, то их надо сначала упаковать в оболочку, а потом уже выделить в кровоток для других клеток. Упаковкой тоже занимается комплекс Гольджи. Также в нём синтезируются углеводные молекулы.
Молекулы, которые будет редактировать комплекс Гольджи поступают в него в виде пузырьков. Молекулы, которые комплекс Гольджи отдаёт клетке тоже отделяются от него в форме пузырьков (вакуолей).
Эндосомы, лизосомы и внутриклеточное переваривание
Эндосома – это мембранный пузырёк, который переносит молекулы с поверхности клетки в лизосомы и по пути частично их разрушает (переваривает). Лизосомы переваривают молекулы в клетке дальше. За переваривание отвечают ферменты, которых в лизосоме очень много.
С помощью эндосом и лизосом клетки иммунной системы (нейтрофилы, макрофаги) поглощают и уничтожают микроорганизмы. Есть и такой интересный пример. В костях одновременно происходит разрушение и создание костной ткани, то есть кости постоянно перестраиваются. Образуют костную ткань клетки остеобласты, а разрушают её клетки остеокласты. Для того, чтобы разрушить костную ткань, остеокласты выбрасывают наружу содержимое своих лизосом, которое «растворяет» вещество костной ткани.
Клетка иммунной системы нейтрофил захватывает бактерию и уничтожает её с помощью ферментов, которые содержатся в лизосомах
Остеокласт разрушает костную ткань, выбрасывая ферменты лизосом за пределы клетки. Для этого процесса нужна энергия молекул АТФ, о которой говорили выше.
Цитоплазма и цитоскелет
Цитоплазма – это жидкая среда, которая заполняет собой клетку. В ней находятся органеллы, необходимые химические вещества, протекают биохимические реакции.
Цитоскелет клетки состоит из двух основных структур – белковых микротрубочек и белковых нитей. Само название «цитоскелет» подсказывает, что это опорный каркас клетки, но на самом деле этим его значение не исчерпывается.
Микротрубочки перемещают вещества по отросткам нервных клеток (нейронов)
Из микротрубочек состоит клеточный центр, который участвует в делении клетки
На некоторых клетках есть выросты цитоплазмы с каркасом из микротрубочек. Это реснички и жгутики. В человеческом организме жгутик есть только у сперматозоида. Реснички выстилают дыхательные пути. Когда реснички движутся, они выталкивают слизь с налипшими микробами и частицами пыли. Таким образом дыхательная система освобождается от возбудителей инфекционных заболеваний и вредных веществ.
Реснички на клетках, выстилающих полость носа с прилипшими частицами. Изображение получено с помощью электронного микроскопа
Микрофиламенты – это тонкие белковые нити. Они участвуют в эндоцитозе и экзоцитозе, перемещении органелл и самой клетки. Также они образуют соединения между клетками.
Есть клетки, у которых выросты цитоплазмы укреплены микрофиламентами. Такие выросты увеличивают площадь поверхности клетки и называются микроворсинками. Например, это важно для клеток тонкой кишки, где переваривается и всасывается огромное количество питательных веществ.
Промежуточные филаменты – это прочные канаты, сплетённые из белковых молекул. Из них построен трёхмерный каркас для клетки. Также они образуют соединения между клетками, так из клеток получается своеобразное полотно – ткань.
Если клетка повреждается, то сеть промежуточных филаментов окружает ядро и связывает повреждённые органеллы. После этого повреждённые структуры будут уничтожены. По мере восстановления клетки сеть промежуточных филаментов расправляется и снова занимает всю цитоплазму.
Основные функции цитоскелета:
Включения в цитоплазме
Включения цитоплазмы – это вещества, которые появляются в клетке время от времени. Некоторые примеры включений:
Меланоцит с гранулами меланина. Меланин определяет цвет кожи, волос, глаз