Чем отличаются унарная позиционная и непозиционная системы счисления

Чем отличаются унарная позиционная и непозиционная системы счисления

Начнем с некоторых общих замечаний относительно понятия число. Можно считать, что любое число имеет значение (содержание) и форму представления. Значение числа задает его отношение к значениям других чисел («больше», «меньше», «равно») и, следовательно, порядок расположения чисел на числовой оси. Форма представления, как следует из названия, определяет порядок записи числа с помощью предназначенных для этого знаков. При этом значение числа является инвариантом, т.е. не зависит от способа его представления. Это означает также, что число с одним и тем же значением может быть записано по-разному, т.е. отсутствует взаимно однозначное соответствие между представлением числа и его значением. В связи с этим возникают вопросы, во-первых, о формах представления чисел, и, во-вторых, о возможности и способах перехода от одной формы к другой.

Способ представления числа определяется системой счисления.

Система счисления – это правило записи чисел с помощью заданного набора специальных знаков – цифр.

Например, запись XIX соответствует числу 19, MDXLIX – числу 1549. Запись чисел в такой системе громоздка и неудобна, но еще более неудобным оказывается выполнение в ней даже самых простых арифметических операций. Отсутствие нуля и знаков для чисел больше M не позволяют римскими цифрами записать любое число (хотя бы натуральное). По указанным причинам теперь римская система используется лишь для нумерации.

В настоящее время для представления чисел применяют, в основном, позиционные системы счисления.

Позиционными называются системы счисления, в которых значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр.

Наиболее распространенной и привычной является система счисления, в которой для записи чисел используется 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Число представляет собой краткую запись многочлена, в который входят степени некоторого другого числа – основания системы счисления. Например,

В данном числе цифра 2 встречается трижды, однако, значение этих цифр различно и определяется их положением (позицией) в числе. Количество цифр для построения чисел, очевидно, равно основанию системы счисления. Также очевидно, что максимальная цифра на 1 меньше основания. Причина широкого распространения именно десятичной системы счисления понятна – она происходит от унарной системы с пальцами рук в качестве «палочек». Однако в истории человечества имеются свидетельства использования и других систем счисления – пятеричной, шестеричной, двенадцатеричной, двадцатеричной и даже шестидесятеричной.

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления(1)

Из коэффициентов aj при степенях основания строится сокращенная запись числа:

Источник

Система счисления

Содержание:

Задумывались ли вы над тем, почему при сложении тех или иных чисел получается строго определённое число? А почему мы обходимся всего десятью цифрами? Странные вопросы. Дело в том, что мы привыкли проводить вычисления, используя всего одну и ту же систему счисления. Однако это было так не всегда.

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления

Системой счисления принято называть знаковую систему, в которой были приняты определённые правила записи чисел. Знаки, с помощью которых записывают числа, мы называем цифрами, а их совокупность — алфавитом системы счисления.

Для любой системы счисления, цифры которые служат для обозначения чисел, называемые узловыми; остальные числа (алгоритмические) получаются в результате операций над узловыми числами.

В Древнем Вавилоне узловыми числами выступали 1,10,60;

Системы счисления отличаются друг от друга выбором узловых чисел и способами образования алгоритмических чисел. В информатике выделяют такие виды систем счисления, как:

Унарная система

В самой древней и простой унарной системе счисления, для записи любых чисел использовался всего лишь один символ — в виде зарубки, выемки, узелка или камушка.

Если вы думаете, что не пользуетесь этой системой счисления, тогда не считайте на пальцах!

Непозиционная система счисления

Для такой системы счисления количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа.

Примерно в III тысячелетии до н.э. древние египтяне разработали десятичную непозиционную систему счисления, в которой для обозначения узловых чисел 1, 10, 100 использовались символы – иероглифы.

В большинстве непозиционных систем счисления новые числа образуются путём сложения узловых чисел.

Каноническим примером непозиционной системы счисления всегда приводится римская система счисления. В качестве узловых цифр здесь применялись заглавные буквы латинского алфавита:

I = 1,
V = 5,
X = 10,
L = 50,
C = 100,
D = 500,
M = 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает единицу независимо от места в числе.

Однако римская система не может быть полностью непозиционной, так как меньшая цифра, которая стоящая слева перед большей, должна вычитаться из неё:

IV = 4, в то время как:
VI = 6

Непозиционной системой счисления являлась и кириллическая система счисления — система счисления, применяемая на территории Древней Руси до XVIII века, основанная на алфавитной записи чисел с использованием кириллицы.

Позиционная система счисления

В позиционной системе счисления, количественный эквивалент цифры как раз зависит от её положения в записи числа. Основание позиционной системы счисления соответствует количеству цифр, которые составляют её алфавит.

Основным примером позиционной системы счисления является десятичная система записи чисел, к которой мы все так уже привыкли с детства, и в которой производим все основные математические вычисления.

Алфавитом десятичной системы являются цифры от 0 до 9. Образование чисел в ней происходит следующим образом: значения цифр умножаются на их «веса» соответствующих разрядов, а затем все полученные значения складываются.

Числительными русского языка, такое значением хорошо отражается, к примеру: «пять-сот семь-десят два».

Основанием позиционной системы счисления является любое натуральное число q>1. Алфавитом произвольной позиционной системы счисления с основанием q служат числа 0,1. q−1, каждое из которых записывается при помощи одного уникального символа; младшей цифрой всегда выступает 0.

Основными преимуществами любой позиционной системы счисления являются простота выполнения арифметических операций и небольшое количество символов, используемых в записи чисел.

Представление числа в позиционной системе счисления

В позиционной системе счисления с основанием q всякое число может быть представлено по формуле (развёрнутая форма записи):

А — число;
q — основание системы счисления;
ai — цифры, принадлежащие алфавиту данной системы счисления;
n — количество целых разрядов числа;
m — количество дробных разрядов числа;
qi — «вес» i-го разряда.

Свёрнутой формой записи числа называется его представление в виде:

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Найдите дополнительную информацию об унарной, позиционных и непозиционных системах счисления.

Найдите дополнительную информацию об унарной, позицион­ных и непозиционных системах счисления. Чем они различа­ются? Приведите примеры.

Ответ

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

В непозиционных системах счисления величина, обозначающая цифру, не зависит от положения в числе. К тому же, система может накладывать ограничения на расстановку цифр, например, чтобы цифры располагались по убыванию.

Унарная система счисления – это система счисления, в которой для записи чисел используется только один знак – 1 («палочка»). Следующее число получается из предыдущего добавлением новой 1; их количество (сумма) равно самому числу.

Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»).

Другими словами, использование именно унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними.

Источник

Системы исчисления

Память человека удивительная штука, несмотря на все архивы, исторические записи и сводки нам свойственно забывать все — даже имена великих изобретателей. Не один историк не сможет ответить на вопрос, кто был открывателем колеса или гончарного круга. Также никто не сможет вспомнить, кто первый задал вопрос, который мы используем каждый день: «Сколько?», придумав тем самым первую систему исчисления.

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления

Введение

Потребность в счете возникла у людей с давних времен. Ученые археологи нашли много записей времен пещерного человека, с помощью которых они обозначали количество убитых животных, добытых шкур и собранного урожая. Так в 1937 году в Моравии была найдена кость с 55 зарубками. По мнению ученых они обозначали количество бизонов добытых вождем племени.

С развитием технологий, счет находил применение во всех областях социальной жизни человечества – астрономии, налогообложении и промышленности. Сейчас вычисления активно используются в информатике для представления информации в электронно-вычислительных машинах. В этой статье вы узнаете, что такое система исчисления, изучите основные определения, которые помогут вам лучше разобраться в теме, выясните, что такое позиционные и непозиционные системы исчисления и чем они отличаются.

Основные положения

Для того чтобы разобраться что такое системы исчисления ниже приведены главные понятия, которые вам предстоит понять и запомнить. Без них вы просто не сможете двигаться дальше. Итак…

Число – абстрактная мера измерения количества чего-либо.

Цифры — знаки, с помощью которых мы представляем число.

Системой исчисления – называется совокупность правил записи чисел, с помощью набора цифровых знаков.

Теперь я попробую объяснить смысл этого определения для чайников. У вас есть набор символов – необязательно это могут быть числа, которые с помощью неких приемов и правил представляются как «цифровой код».

Алфавит (он же код) – набор знаков, используемых для записи числа.

Числовой разряд – место «позиция» знака (цифры) в числе.

После того как вы разобрались в том, что здесь написано можно перейти к следующему пункту.

Классификация

Системы исчисления можно разделить на три вида – позиционные, непозиционные и смешанные.

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления

Позиционные

Примеры позиционных систем счислений и их использование в математике и информатике:

Непозиционные

Примеры непозиционных нумераций

Смешанные

Этот материал в школьную программу не входит и его достаточно сложно объяснить школьникам, но я все-таки попробую. В смешанной системе исчисления числа с основанием P можно представить числами с основанием Q. Также здесь должно выполняться неравенство Q

Что такое основание

После того как мы разобрали классификацию, можно рассказать про такое понятие как основание.

Основание – количество знаков, которые используются для отображения символов в данной системе счисления.

В математике и информатике записывается так:

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления

Читается как «Двадцать пять по основанию десять» и значит то, что в данном алфавите имеется десять знаков для записи числа. Данное определение используется только в позиционных системах исчисления. Запись с нижним индексом используется для удобства, при работе с числами нескольких видов.

Заключение

На этом всё, теперь вы знакомы с таки понятием как система исчисления в информатике. Знаете, какие они бывают (позиционные и непозиционные), на какие группы делятся, ознакомлены с основными положениями и знаете что такое основание. После освоения этого материала можете смело приступать к другим темам – таким как перевод из одной системы в другую и выполнение арифметических операций. А также, в этом разделе, вы найдете несколько интересных статей. Например, про то, как представляется память в персональном компьютере или историю непозиционных чисел.

Источник

Разница между позиционной и непозиционной системой счисления

Системы счисления классифицируются на 2 основные разновидности — позиционные и непозиционные. В чем заключается специфика тех и других?

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления

Что представляет собой позиционная система счисления?

Рассматриваемая система счисления характеризуется тем, что цифры в ней в зависимости от своей позиции относительно начала числа (при его прочтении слева направо) будут иметь разную силу. Чем правее расположена цифра — тем она слабее. Например, в числе 143 самая сильная цифра — 1, поскольку обозначает сотню, далее по силе — 4, поскольку она обозначает десяток, третья по силе цифра — 3, так как она соответствует единичному числу.

Систем счисления, считающихся позиционными, в мире используется довольно много. В числе самых распространенных — двоичная (применяется в программировании), десятичная (более всего распространена в повседневной жизни), восьмеричная и шестнадцатеричная (в основном они применяются в инженерном деле).

Что представляет собой непозиционная система счисления?

Соответствующая система счисления характеризуется тем, что цифры в ней не всегда делятся по силе в зависимости от позиции относительно начала числа. Разность в их силе, в принципе, возможна, но не всегда является правилом.

Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть фото Чем отличаются унарная позиционная и непозиционная системы счисления. Смотреть картинку Чем отличаются унарная позиционная и непозиционная системы счисления. Картинка про Чем отличаются унарная позиционная и непозиционная системы счисления. Фото Чем отличаются унарная позиционная и непозиционная системы счисления

Например, римское число XX (двадцать) состоит из двух одинаковых по силе цифр X, каждая из которых обозначает десять. В свою очередь, в числе XV (пятнадцать) первая цифра сильнее, поскольку соответствует десятичному основанию, а вторая — единичному числу пять.

Кроме того, в непозиционной системе счисления, в которой используются римские цифры, число, расположенное левее, может быть более слабым. Например, римская цифра IV, то есть 4, состоит из более слабой, расположенной левее I(единицы) и более сильной, расположенной правее V (пять). Цифра 4 образуется, таким образом, посредством вычитания более слабой цифры из более сильной.

Сравнение

Главное отличие позиционной системы счисления от непозиционной заключается в том, что в первой в структуре числа, состоящего более чем из одной цифры, все цифры отличаются по силе (в общем случае сильнее те, что расположены левее). Во второй системе счисления данная закономерность наблюдается только в некоторых случаях. Вполне возможно, что в структуре числа будут присутствовать цифры с одинаковой силой. При этом если сила цифр разная, необязательно, что более сильные будут располагаться левее, может наблюдаться и обратная ситуация.

Определив,в чем разница между позиционной и непозиционной системой счисления, зафиксируем выводы в таблице.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *