Чем отличаются транзисторы различных типов
Типы транзисторов
Прежде чем рассматривать типы транзисторов, следует выяснить, что вообще представляет собой транзистор и для чего используется.
Что такое транзистор
Транзистором называется полупроводниковый триод, представляющий собой компонент, используемый в области радиоэлектроники, изготавливаемый из полупроводниковых материалов. Он имеет три вывода, позволяющие управлять в цепи электрическим током с помощью входного сигнала.
Из-за своих качеств применяется в тех случаях, когда необходимо преобразовать, сгенерировать или усилить электрические сигналы. Название транзистора применяется и для других устройств, имитирующих основное качество транзистора – способность изменять сигнал в двух различных состояниях, при одновременном изменении сигнала управляющего электрода.
Виды и характеристика
Все транзисторы подразделяются на два вида – NPN и PNP. В этих на первый взгляд сложных аббревиатурах, нет ничего особо сложного. Данными буквенными обозначениями определяется порядок наложения специфических слоев. Такими слоями являются pn-переходы в полупроводниковых материалах, использованных для их изготовления.
Глядя визуально на любой полупроводник, невозможно определить тип полупроводниковой структуры, расположенной внутри корпуса. Эти данные обозначаются маркировкой, нанесенной на корпус. Тип транзистора необходимо знать заранее, поскольку использование его в схеме может быть самым различным.
Следует помнить о том, что NPN и PNP совершенно разные. Поэтому их нельзя просто так перепутать или заменить между собой. Заменить один на другой возможно при определенных условиях. Основное условие – значительное изменение схемы включения этих транзисторов. Таким образом, для определенных узлов радиотехнических устройств, применяются только свои, конкретные марки, в противном случае, устройство просто выйдет из строя, и не будет работать.
Технологические различия
Помимо типа pn-перехода, все они различаются технологией применяемой для их изготовления.
В связи с этим, можно отметить два видаа транзисторов, различающихся параметрами:
Немного о транзисторах.
Пожалуй, сегодня сложно представить себе современный мир без транзисторов, практически в любой электронике, начиная от радиоприёмников и телевизоров, заканчивая автомобилями, телефонами и компьютерами, так или иначе, они используются.
Различают два вида транзисторов: биполярные и полевые. Биполярные транзисторы управляются током, а не напряжением. Бывают мощные и маломощные, высокочастотные и низкочастотные, p-n-p и n-p-n структуры. Транзисторы выпускаются в разных корпусах и бывают разных размеров, начиная от чип SMD (на самом деле есть намного меньше чем чип) которые предназначены для поверхностного монтажа, заканчивая очень мощными транзисторами. По рассеиваемой мощности различают маломощные до 100 мВт, средней мощности от 0,1 до 1 Вт и мощные транзисторы больше 1 Вт.
Когда говорят о транзисторах, то обычно имеют в виду биполярные транзисторы. Биполярные транзисторы изготавливаются из кремния или германия. Биполярными они названы потому, что их работа основана на использовании в качестве носителей заряда как электронов, так и дырок. Транзисторы на схемах обозначаются следующим образом:
Одну из крайних областей транзисторной структуры называют эмиттером. Промежуточную область называют базой, а другую крайнюю — коллектором. Эти три электрода образуют два p-n перехода: между базой и коллектором — коллекторный, а между базой и эмиттером — эмиттерный. Как и обычный выключатель, транзистор может находиться в двух состояниях — во «включенном» и «выключенном». Но это не значит, что они имеют движущиеся или механические части, переключаются они из выключенного состояния во включенное и обратно с помощью электрических сигналов.
Uкэ = напряжение коллектор-эмиттер
Uбэ = напряжение база-эмиттер
Ic = ток коллектора
Iб = ток базы
При работе транзистора с сигналами высокой частоты время протекания основных процессов (время перемещения носителей от эмиттера к коллектору) становится соизмеримым с периодом изменения входного сигнала. В результате способность транзистора усиливать электрические сигналы с ростом частоты ухудшается.
Некоторые параметры биполярных транзисторов
Постоянное/импульсное напряжение коллектор – эмиттер.
Постоянное напряжение коллектор – база.
Постоянное напряжение эмиттер – база.
Предельная частота коэффициента передачи тока базы
Постоянный/импульсный ток коллектора.
Коэффициент передачи по току
Максимально допустимый ток
Входное сопротивление
Рассеиваемая мощность.
Температура p-n перехода.
Температура окружающей среды и пр…
Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб 0 2
Виды транзисторов и область их применения. Общие сведения.
Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…
Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.
Виды транзисторов
О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.
Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.
Полевые и биполярные транзисторы
По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.
Виды транзисторов, p –n–p и n–p–n проводимость
Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.
2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3
Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.
Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.
КТ315 — легенда среди отечественных биполярных транзисторов малой мощности
Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.
При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.
Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.
КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором
Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.
Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.
irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET
Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.
Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.
FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)
Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.
Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.
Рекомендации по эксплуатации транзисторов
Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.
Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.
Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.
Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.
Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.
Видео, виды транзисторов
Как работают транзисторы: виды и различия
Транзистор — это полупроводниковый прибор с тремя и более электродами. Его сопротивление основного перехода нелинейно зависит от действующего на управляющем электроде напряжения.
Приборы делятся на полевые и биполярные (позже появилось еще несколько видов). На данное время транзисторы выполняют практически все основные усилительные генераторные, а также коммутационные функции.
Первые транзисторы могли работать лишь на невысоких напряжениях в десятки вольт и частоте до сотен МГц. Позже появились маломощные экземпляры — более 1 ГГц. При первом полете в космос корабля «Восток-1», на его борту находилось более 600 транзисторов. Все же, основные функции выполняли электронные радиолампы. Промышленность выпускала их вплоть до 80-х — 90-х годов. Но вакуумные лампы окончательно были вытеснены появлением сверхвысокочастотных, мощных высоковольтных, IGBT, mosfet и других транзисторов.
На данное время существует уже десятки видов транзисторов и число их растет. Давайте рассмотрим некоторые из них.
Это самые распространенные усилительные приборы, имеющие 3 электрода:
При экранировке кристалла иногда применяется 4-й электрод — корпус. Для включения в схему транзистора с двумя цепями (управляющей и управляемой), необходимо общее соединение одного из выводов. Существуют схемы с:
• ОК — усиливается только по току;
• ОЭ — усиливается ток и напряжение;
• ОБ — усиливается напряжение.
Кристалл биполярных приборов изготавливают из кремния, реже германия. У последнего напряжение смещения меньше, примерно на 0,45 В. Оно подается на базу для нормальной работы прибора.
В структурах полупроводников на эмиттер подают p-n-p — плюс и n-p-n — минус. Существуют и другие типы, которые относятся к биполярным транзисторам.
Однопереходные транзисторы с одной стороны перехода имеют эмиттер, со второй — 2 базы, прикрепленные по разным сторонам второго перехода. У этих устройств дифференциальное сопротивление имеет отрицательный участок на вольт-амперной характеристике.
Многоэмиттерные транзисторы используются, в основном, в качестве интегральных компонентов в логических элементах. Однако есть сборки, содержащие биполярные транзисторы с несколькими эмиттерами для реализации эффективной развязки некоторого количества входных либо выходных цепей.
Сверхвысокочастотные транзисторы также используются в составе интегральных микросхем. Однако существуют дискретные элементы, усилительные свойства которых прекращаются, приближаясь к частоте в 100 ГГц.
Выводы полевого транзистора:
Как и биполярные, так и полевые транзисторы имеют 3 типа включения, в которых схема:
• с ОС (общим стоком) усиливает лишь ток;
• ОИ — ток и напряжение;
Работа полевого транзистора основана на сужении/расширении токопроводящего участка, воздействием электрического поля, образованного подачей на управляющий электрод (затвор) определенного напряжения.
Приборы такого класса могут иметь затвор в виде p-n-перехода, а сам его электрод крепится к n-каналу (— на стоке) или p-каналу (+ на стоке). Разработаны также полевые транзисторы с изолированным затвором, которые бывают со встроенным или индукционным каналом. Причем все они разделяются по полярности, имея канал n или p-типа.
Mosfet-транзисторы содержат усложненную, так называемую, МОП-структуру. Благодаря этому, устройства имеют сопротивление основного перехода в пределах от единиц Ом, до нескольких в мОМ. Ток может составлять десятки или даже сотни ампер.
IGBT-транзисторы являются составными приборами, у которых на входе мощного биполярного транзистора, установлен полевой. При этом составное устройство обладает высоким усилением и входным сопротивлением. IGBT-структура может быть образована мощным высоковольтным биполярным транзистором, маломощным биполярным, полевым. Такое устройство используется в выходных каскадах мощных преобразователей напряжения, импульсных источников питания.
В современной электронике транзисторы играют важную роль, используются почти во всех ее каскадах. В каталоге компании «ЗУМ-СМД» есть практически все применяемые в электронике транзисторы от известных брендов.
Tранзисторы (Всё что Вы хотели знать, но боялись спросить)
Полупроводниковые транзисторы делятся на биполярные и полевые. Первые гораздо более распространены в электронике. Поэтому начнем разбираться с работой биполярного транзистора именно с него.
Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод. В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.
А если взять и прикрыть одну любую часть транзистора, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.
Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой. Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.
Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов. С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы. Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя. Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.
В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов. Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.
Работа транзистора в режиме диода при прямом подключении.
Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.
Работа транзистора практический опыт для начинающих.
Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания. А теперь представим эту схему в структурном виде:
Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами. Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок. Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора Iк. И чем он будет выше, тем сильнее будет гореть лампочка накаливания. Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.
Работа транзистора при обратном включении p-n перехода Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.
Работа транзистора в режиме переключения Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.
Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.
Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет. Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.
Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение. Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.
Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась. Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть. Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта. Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.
Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы. Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база. Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи. В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.
Кодовая и цветовая маркировка транзисторов
Отечественные транзисторы с корпусами малых размеров маркируются цветовой или кодовой маркировкой и лишь в редких случаях марка транзистора наносится полностью, как есть. При ремонте бытовой аппаратуры можно столкнуться с цветовой или кодовой маркировкой и для замены транзистора необходимо определить марку транзистора, сделать это можно и с помощью программы кодовой и цветовой маркировки транзисторов, сейчас мы рассмотрим как это сделать с помощью справочника.
Кодово-цветовая маркировка транзисторов в корпусе КТ-27 (ТО-126)
Далее смотрим в таблицу ниже и находим строку которая соответствует кодово-цветовой маркеровке вашего транзистора.
Таблица определения марки транзистора по кодо-цветовой маркировке.
Когда нашли значок который изображен на корпусе определяемся с маркой транзистора, его марка должна быть одной из этих — КТ814(А-Г), КТ815(А-Г),КТ816(А-Г), КТ817(А-Г), КТ638(А,Б), КТ9115(А,Б), КУ112, КТ940(А-В), КТ646А, КТ646Б, КТ972А, КТ972Б, КТ973А, КТ973Б. Обратите внимание, что среди марок транзисторов есть и тиристор КУ112.
Таблица определения года выпуска транзистора по кодовой маркировке.
Таблица определения месяца выпуска транзистора по кодовой маркировке.
Цветовая маркировка транзисторов в корпусе КТ-26
Цветовой маркировкой, как показано на рисунке ниже, обазначаются транзисторы КТ326, КТ337, КТ345, КТ349, КТ350, КТ351, КТ352, КТ363, КТ645, КТ3107. Кроме марки данных транзисторов на корпусе указываются год и месяц выпуска транзистора.
Ниже приведена цветовая маркировка транзисторов КТ203, КТ209, КТ313, КТ336, КТ339, КТ342, КТ502, КТ503, КТ3102. Маркируются транзисторы данных марок всего двумя точками. В данном обозначении месяц и год выпуска отсутствуют.
Нестандартная цветовая маркировка транзисторов.
Иногда транзисторы выпускались с нестандартной цветовой маркировкой, некоторые примеры приведены ниже:
Кодовая маркировка транзисторов в корпусе КТ-26.
Кодовая маркировка применяется к транзисторам в корпусе КТ-26 следующих марок — КТ203, КТ208, КТ209, КТ313, КТ326, КТ339, КТ342, КТ502, КТ503, КТ3102, КТ3107, КТ3157, КТ3166, КТ6127, КТ680, КТ681, КТ698, КП103. Как видите марки транзисторов с кодовой маркировкой включают все марки с цветовой, но не наоборот. Связано это с тем, что кодовая появилась позже и к тому времени некоторые транзисторы уже не выпускались. Маркировка на транзисторы может наносится как с годом и месяцем выпуска так и без них.
Некоторые примеры кодовой маркировки.
Нестандартная кодовая кодировка транзисторов.
Маркировка SMD транзистора BC847A.
Возможны ситуации, когда в один и тот же корпус фирмы-производители под одной и той же маркировкой помещают разные приборы, например, фирма PHILIPS помещает в корпус типа SOT323 NPN-транзистор типа BC818W и маркирует его кодом 6H, а фирма MOTOROLA в такой же корпус с маркировкой 6H помещает PNP-транзистор типа MUN5131T1. Такая же ситуация встречается и внутри одной фирмы. Например, в корпусе типа SOT23 у фирмы SIEMENS под маркировкой 1А выпускаются транзисторы BC846A и SMBT3904, обладающие разными параметрами.
Различить такие приборы установленные на плате можно только по окружающим их компонентам и соответственно – схеме включения.
Программа для определения транзистора по цветовой и символьной маркировке. https://yadi.sk/d/SiubFm9N34VMsY
Больше не уместилось. 🙁
ЗЫ: Взял где взял, обобщил и добавил немного.
Простите за качество некоторых картинок (чем богаты).