Чем отличаются последовательные и параллельные интерфейсы в чем достоинства и недостатки
Архитектура ЭВМ
Компоненты ПК
Интерфейсы
Мини блог
Самое читаемое
Введение
Параллельные и последовательные интерфейсы
Общая информация параллельных и последовательных интерфейсов
Для компьютеров и связанных с ним устройств наиболее распространенной является задача передачи дискретных данных, и, как правило, в значительных количествах (не один бит). Самый распространенный способ представления данных сигналами — двоичный: например, условно высокому (выше порога) уровню напряжения соответствует логическая единица, низкому — логический ноль (возможно и обратное представление). Для того чтобы передавать группу битов, используются два основных подхода к организации интерфейса:
На первый взгляд организация параллельного интерфейса проще и нагляднее и этот интерфейс обеспечивает более быструю передачу данных, поскольку биты передаются сразу пачками. Очевидный недостаток параллельного интерфейса — большое количество проводов и контактов разъемов в соединительном кабеле (по крайней мере по одному на каждый бит). Отсюда громоздкость и дороговизна кабелей и интерфейсных цепей устройств, с которой мирятся ради вожделенной скорости. У последовательного интерфейса приемопередающие узлы функционально сложнее, зато кабели и разъемы гораздо проще и дешевле. Понятно, что на большие расстояния тянуть многопроводные кабели параллельных интерфейсов неразумно (и невозможно), здесь гораздо уместнее последовательные интерфейсы.
Скорость передачи данных интерфейсов
Теперь подробнее разберемся со скоростью передачи данных. Очевидно, что она равна числу бит, передаваемых за квант времени, деленному на продолжительность кванта. Для простоты можно оперировать тактовой частотой интерфейса — величиной, обратной длительности кванта. Это понятие естественно для синхронных интерфейсов, у которых имеется сигнал синхронизации (clock), определяющий возможные моменты возникновения всех событий (смены состояния). Для асинхронных интерфейсов можно воспользоваться эквивалентной тактовой частотой — величиной, обратной минимальной продолжительности одного состояния интерфейса. Теперь можно сказать, что максимальная (пиковая) скорость передачи данных равна произведению тактовой частоты на разрядность интерфейса. У последовательного интерфейса разрядность 1 бит, у параллельного она соответствует числу параллельных сигнальных цепей передачи битов данных. Остаются вопросы о достижимой тактовой частоте и разрядности. И для последовательного, и для параллельного интерфейсов максимальная тактовая частота определяется достижимым (при разумной цене и затратах энергии) быстродействием приемопередающих цепей устройств и частотными свойствами кабелей. Здесь уже очевидны выгоды последовательного интерфейса: для него, в отличие от параллельного интерфейса, затраты на построение высокоскоростных элементов не приходится умножать на разрядность.
В параллельном интерфейсе существует явление перекоса (skew), существенно влияющее на достижимый предел тактовой частоты. Суть его в том, что сигналы, одновременно выставленные на одной стороне интерфейсного кабеля, доходят до другого конца не одновременно из-за разброса характеристик цепей. На время прохождения влияет длина проводов, свойства изоляции, соединительных элементов и т. п. Очевидно, что перекос (разница во времени прибытия) сигналов разных битов должен быть существенно меньше кванта времени, иначе биты будут искажаться (путаться с одноименными битами предшествующих и последующих посылок). Вполне понятно, что перекос ограничивает и допустимую длину интерфейсных кабелей: при одной и той же относительной погрешности скорости распространения сигналов на большей длине набегает и больший перекос. Перекос сдерживает и увеличение разрядности интерфейса: чем больше используется параллельных цепей, тем труднее добиться их идентичности. Из-за этого даже приходится «широкий» (многоразрядный) интерфейс разбивать на несколько «узких» групп, для каждой из которых используются свои управляющие сигналы. В 90-х годах в схемотехнике приемопередающих узлов стали осваиваться частоты в сотни мегагерц и выше, то есть длительность кванта стала измеряться единицами наносекунд. Достичь соизмеримо малого перекоса можно лишь в пределах жестких компактных конструкций (печатная плата), а для связи отдельных устройств кабелями длиной в десятки сантиметров пришлось остановиться на частотах, не превышающих десятков мегагерц. Для того чтобы ориентироваться в числах, отметим, что за 1 нс сигнал пробегает по электрическому проводнику порядка 20–25 см. Наносекунда — это период сигнала с частотой 1 ГГц.
Повышения пропускной способности параллельных интерфейсов
Для повышения пропускной способности параллельных интерфейсов с середины 90-х годов стали применять двойную синхронизацию DDR (Dual Data Rate). Ее идея заключается в выравнивании частот переключения информационных сигнальных линий и линий стробирования (синхронизации). В «классическом» варианте данные информационных линий воспринимаются только по одному перепаду (фронту или спаду) синхросигнала, что удваивает частоту переключения линии синхросигнала относительно линий данных. При двойной синхронизации данные воспринимаются и по фронту, и по спаду, так что частота смены состояний всех линий выравнивается, что при одних и тех же физических параметрах кабеля и интерфейсных схем позволяет удвоить пропускную способность. Волна этих модернизаций началась с интерфейса ATA (режимы UltraDMA) и прокатилась уже и по SCSI (Ultra160 и выше), и по памяти (DDR SDRAM). Кроме того, на высоких частотах применяется синхронизация от источника данных (Source Synchronous transfer): сигнал синхронизации, по которому определяются моменты переключения или действительности (валидности) данных, вырабатывается самим источником данных. Это позволяет точнее совмещать по времени данные и синхронизующие импульсы, поскольку они распространяются по интерфейсу параллельно в одном направлении. Альтернатива — синхронизация от общего источника (common clock) — не выдерживает высоких частот переключения, поскольку здесь в разных (пространственных) точках временные соотношения между сигналами данных и сигналами синхронизации будут различными.
Повышение частоты переключений интерфейсных сигналов, как правило, сопровождается понижением уровней сигналов, формируемых интерфейсными схемами. Эта тенденция объясняется энергетическими соображениями: повышение частоты означает уменьшение времени, отводимого на переключения сигналов. Чем выше амплитуда сигнала, тем выше должна быть скорость нарастания сигнала и, следовательно, выходной ток передатчика. Повышение выходного тока (импульсного!) нежелательно по разным причинам: большие перекрестные помехи в параллельном интерфейсе, необходимость применения мощных выходных формирователей, повышенное тепловыделение. Тенденцию снижения напряжения можно проследить на примере порта AGP (3,3/1,5/0,8 В), шин PCI/PCI-X (5/3,3/1,5 В), SCSI, шин памяти и процессоров.
Повышения пропускной способности последовательных интерфейсов
В последовательном интерфейсе явления перекоса отсутствуют, так что повышать тактовую частоту можно вплоть до предела возможностей приемопередающих цепей. Конечно, есть ограничения и по частотным свойствам кабеля, но изготовить хороший кабель для одной сигнальной цепи гораздо проще, чем для группы цепей. А когда электрический кабель уже «не тянет» требуемые частоту и дальность, можно перейти на оптический, у которого есть в этом плане огромные, еще не освоенные «запасы прочности». Устраивать же параллельный оптический интерфейс — слишком дорогое удовольствие.
Вышеприведенные соображения объясняют современную тенденцию перехода на последовательный способ передачи данных.
Интерфейсы передачи информации
То что вы видите на мониторе — интерфейс. Клавиатура с мышкой — интерфейс. И даже окно регистратуры в больнице — это тоже интерфейс.
Во встраиваемых системах чаще всего под словом «интерфейс» понимают физический блок МК отвечающий за передачу данных. Они могут быть последовательными или параллельными, синхронными или асинхронными, дифференциальными или обычными.
Параллельные и последовательные интерфейсы
Допустим нам нужно переслать 1 байт (8 бит) информации. Как это сделать? Можно выделить под каждый бит по одной ножке МК (линии), тогда для передачи потребуется 8 ножек, плюс одна, которая будет говорить принимающей стороне что передача закончена и нужно считать входной сигнал. Такой интерфейс называется параллельным (англ. parallel): группа битов передаётся одновременно за один квант времени. К таким интерфейсам относится PCI (32 линии) и её можно встретить в LCD знакогенерирующих индикаторах (например WINSATR).
Можно поступить по другому и передавать данные по одной линии, кодируя, например, 1 как высокий уровень сигнала (3,3 В), а 0 как низкий (0 В). В таком случае потребует всего одна ножка МК для передачи и одна что бы сообщать когда этот сигнал считывать. Такие интерфейсы называют последовательными (англ. serial): N битов передаётся по одному за N-квантов времени. Примером последовательного интерфейса — USART.
Параллельный интерфейс, как не сложно догадаться, быстрее в N-раз, однако требует в N-раз больше линий. В микроконтроллерах чаще всего присутствуют только последовательные интерфейсы (периферийные блоки, которые делают всё автоматически), к ним относятся SPI, I 2 C, I 2 S, CAN, USART и USB. Некоторые из них мы рассмотрим подробнее в этом курсе.
Синхронные и асинхронные интерфейсы
Кодировка битов может быть осуществлена не только как 1 — высокий уровень и 0 — низкий уровень. В интерфейсе 1-Wire 1 и 0 кодируется одновременно и низким и высоким уровнем, отличается лишь их заполнение временного отрезка. Вы увидите это дальше в курсе, когда мы будем разбираться с датчиком температуры.
В интерфейсе SPI напротив, считывание сигнала происходит только по команде тактирующей линии.
Дифференциальные интерфейсы
Опять же вопрос, зачем два провода, когда можно использовать один? UART вроде хорошо работал на одной линии. На самом деле нет. UART хорошо работает на низких скоростях. При повышении частоты передачи начинают влиять паразитные ёмкости и индуктивности и сигнал просто теряется. Дифф-пара позволяет понизить напряжение, уменьшить электро-магнитное излучение, уменьшить потребление и повысить устойчивость приёма сигнала.
Выбирать дифференциальную пару, конечно, нужно не только в тех случаях, где требуется высокая скорость передачи, но и там, где «шумная» среда. В электронике автомобиля используется другой интерфейс, под названием CAN. Скорость передачи данных там не высокая, за-то она обеспечивает хороший приём в условиях жёсткой эксплуатации.
К слову, проводной интернет (Ethernet) так же построен на дифференциальной паре.
Режим работы
Некоторые интерфейсы могут поддерживать несколько режимов работы, другие напротив способны работать только в одном определённом.
Если устройство использует два канала, один для приёма и второй для передачи, и при этом обмен данными может происходить одновременно, то такой режим работы называют полным дуплексом (англ. full duplex). Ваш мобильный телефон работает в таком режиме: вы можете слушать человека и говорить ему что-либо одновременно. Если используется два канала, но передача и приём может производится только одним устройством в один момент времени, то такой режим работы называется полудуплексным (англ. half-duplex). И наконец, если используется один канал, следовательно общение может проходить только разделённое во времени, то такой режим называется симплексным (англ. simplex).
Свойство шины
Каждый интерфейс предъявляет свои требования к шине данных. В таких интерфейсах как UART может быть только два устройства (принимающее и отправляющее). При этом с точки зрения иерархии нет никакой разницы, оба устройства равнозначны. В интерфейсе SPI устройств может быть несколько, но только одно (на самом деле не всегда, но это исключение) является главным, т.е. ведущим или мастером (англ. master). Все остальные устройства являются ведомыми или подчинёнными (англ. slave). При этом SPI требует подводить к каждому устройству линию выбора (англ. chip select). Общение ведётся только с тем устройством, на линии которого присутствует сигнал активации.
То самое чувство, когда микросхема испустила дух, выпустила магический дым.
Сравнение некоторых интерфейсов
Все данные в таблице — ориентировочные, многое зависит от скорости передачи, напряжения, среды распространения и т.д.
Сравнительная характеристика и типы последовательных интерфейсов
Внешние интерфейсы
Применяется для устройств, вынесенных за пределы системного блока.
Параллельные внешние интерфейсы
Имеют шину данных 8 или 16 разрядную. Максимальная длина кабеля от системного блока до внешнего устройства не превышает PRN
Обычно порт принтера LPT1 имеет адрес 378h (278h,3BCh)
Отличие интерфейса EPP (улучшенный параллельный порт).
1. Обмен информации в обоих направлениях.
2. Скорость обмена увеличивается в 6 раз.
Возможности интерфейса ЕСР по сравнению с EPP:
1. Возможность подключения до 128 устройств.
2. Сжатие данных при передаче. Алгоритм сжатия RLE.
Последовательные интерфейсы
Сравнительная характеристика и типы последовательных интерфейсов
Интерфейс | Пропускная способность |
RS-232c | 0.148 Mbit/с |
RS-422/485 | 10 Mbit/с |
USB 1.1 | 12 Mbit/с |
USB2.0 | 480 Mbit/с |
IEEE 1394 | 400 Mbit/с |
IEEE 1394-2 | 1.5 Gbit/c |
Существует 2 принципиально разных способа передачи информации по последовательным интерфейсам:
1.Синхронная передача –передача, при которой каждый передаваемый бит сопровождается синхросигналом (тактовым сигналом)
Достоинства синхронных интерфейсов:
— высокая скорость передачи,
— полная синхронизация приемника и передатчика.
Недостатки синхронных интерфейсов:
— требуется дополнительная линия для тактового сигнала (+ специальный кабель),
— взаимодействие тактового и полезного сигнала в проводах, взаимные помехи,
Достоинства асинхронной передачи:
— высокая помехозащищённость разряда и простота обнаружения начала посылки на приёмной стороне,
— не нужен провод для тактового сигнала.
Недостатки асинхронной передачи:
— низкая информационная скорость,
— необходимо дополнительное оборудование для синхронизации.
Параллельные и последовательные интерфейсы
Дата добавления: 2013-12-23 ; просмотров: 6184 ; Нарушение авторских прав
Виды передаваемой информации
Информация (данные), которую следует передавать по интерфейсам, может быть разной природы:
• Аналоговая информация отображает процесс, непрерывный во времени и произвольный по величине (может принимать любое из бесконечного числа значений, пусть и в ограниченном интервале). Пример: звуки, которые мы слышим (в том числе и речь), представляют собой непрерывное изменение давления. Передача такой информации осуществляется, например, при подключении микрофона (устройства, преобразующего изменения давления в изменения электрического напряжения) к компьютеру.
• Дискретная информация отображает процесс конечным числом значений. Элементарная единица дискретной информации — 1 бит, который может принимать лишь одно из двух логических значений: 1 (истина, «да») или 0 (ложь, «нет»). Одним битом, к примеру, можно отобразить состояние кнопки мыши — нажата или нет. Дискретная двоичная информация является «родной» для большинства компьютеров, поскольку ее проще всего получать, обрабатывать, хранить и передавать. Дискретная информация может быть не только двоичной — интересны, например, и троичные системы; состояние одного трита можно трактовать как «да», «нет», «не знаю».
• Цифровая информация представляет собой последовательность (набор) чисел, имеющих ограниченную разрядность (и соответственно, конечное число возможных значений). Пример — оцифрованный звук, являющийся последовательностью отсчетов мгновенных значений давления, взятых через равные интервалы времени.
• Параллельный интерфейс — для каждого бита передаваемой группы имеется своя сигнальная линия (обычно с двоичным представлением), и все биты группы передаются одновременно за один квант времени, то есть продвигаются по интерфейсным линиям параллельно. Примеры: параллельный порт подключения принтера (LPT-порт, 8 бит), интерфейс ATA/ATAPI (16 бит), SCSI (8 или 16 бит), шина PCI (32 или 64 бита).
• Последовательный интерфейс — используется лишь одна сигнальная линия, и биты группы передаются друг за другом по очереди; на каждый из них отводится свой квант времени (битовый интервал). Примеры: последовательный коммуникационный порт (СОМ-порт), последовательные шины USB и FireWire, интерфейсы локальных и глобальных сетей.
На первый взгляд, организация параллельного интерфейса проще и нагляднее (не надо выстраивать биты в очередь на передачу и собирать байты из принятой последовательности битов). Также, на первый взгляд, параллельный интерфейс обеспечивает более быструю передачу данных, поскольку биты передаются сразу пачками. Очевидный недостаток параллельного интерфейса — большое количество проводов и контактов разъемов в соединительном кабеле (по крайней мере, по одному на каждый бит). Отсюда громоздкость и дороговизна кабелей и интерфейсных цепей устройств, но с этим мирятся ради вожделенной скорости. У последовательного интерфейса приемно-передающие узлы функционально сложнее, зато кабели и разъемы гораздо проще и дешевле. Понятно, что на большие расстояния тянуть многопроводные кабели параллельных интерфейсов неразумно (и невозможно), здесь гораздо уместнее последовательные интерфейсы. Эти рассуждения были основополагающими при выборе типа интерфейса примерно до начала 1990-х годов. Тогда выбор был прост: на ближних расстояниях (максимум — до пары десятков метров) при требованиях к высокой скорости использовали параллельные интерфейсы, а на дальних расстояниях или в случае неприемлемости параллельных кабелей — последовательные, жертвуя скоростью передачи.
Теперь точнее рассмотрим скорость передачи данных. Очевидно, что она равна числу бит, передаваемых за квант времени, деленному на длительность кванта. Для простоты можно оперировать тактовой частотой интерфейса — величиной, обратной длительности кванта. Это понятие естественно для синхронных интерфейсов, у которых имеется сигнал синхронизации (clock), определяющий возможные моменты возникновения всех событий (смены состояния). Для асинхронных интерфейсов можно пользоваться эквивалентной тактовой частотой — величиной, обратной минимальной длительности одного состояния интерфейса. Теперь можно сказать, что максимальная (пиковая) скорость передачи данных равна произведению тактовой частоты на разрядность интерфейса. У последовательного интерфейса разрядность 1 бит, у параллельного — столько, сколько имеется параллельных сигнальных цепей для передачи битов данных. Остаются вопросы о достижимых тактовой частоте и разрядности. И для последовательного, и для параллельного интерфейсов максимальная тактовая частота определяется достижимым (при разумных цене и затратах энергии) быстродействием приемопередающих цепей устройств и частотными свойствами кабелей. Здесь уже проглядывают преимущества последовательного интерфейса: для него затраты на построение высокоскоростных элементов не приходится умножать на разрядность интерфейса, как в случае параллельного интерфейса.
В параллельном интерфейсе есть явление перекоса (skew), существенно влияющее на достижимый предел тактовой частоты. Суть его в том, что сигналы, одновременно переданные с одного конца интерфейсного кабеля, доходят до другого конца не одновременно из-за отклонений характеристик цепей. На время прохождения влияют длина проводов, свойства изоляции, соединительных элементов и т. п. Очевидно, что перекос (разница во времени прибытия) сигналов разных битов должен быть явно меньше кванта времени, иначе биты будут искажаться (путаться с одноименными битами предшествующих и последующих посылок). Вполне понятно, что перекос ограничивает и допустимую длину интерфейсных кабелей: при одной и той же относительной погрешности скорости распространения сигналов на большей длине «набегает» и больший перекос. Перекос сдерживает и увеличение разрядности интерфейса: чем больше параллельных цепей, тем труднее добиться их идентичности. Из-за этого даже приходится «широкий» (многоразрядный) интерфейс разбивать на несколько «узких» групп и для каждой группы использовать свои управляющие сигналы. В 90-х годах в схемотехнике приемно-передающих узлов стали осваиваться частоты в сотни мегагерц и выше, то есть длительность кванта стала измеряться единицами и долями наносекунд. Достичь соизмеримо малого перекоса можно лишь в пределах жестких компактных конструкций (печатная плата), а для связи отдельных устройств кабелями длиной в десятки сантиметров пришлось остановиться на частотах до десятков мегагерц. Для того чтобы ориентироваться в числах, отметим, что за 1 наносекунду сигнал пробегает по электрическому проводнику порядка 20-25 сантиметров.
Для повышения пропускной способности параллельных интерфейсов с середины 90-х годов стали применять двойную синхронизацию (Dual Data Rate, DDR). Ее идея заключается в выравнивании частот переключения информационных сигнальных линий и линий стробирования (синхронизации). В «классическом» варианте данные информационных линий воспринимаются только по одному перепаду (фронту или спаду) синхросигнала, что удваивает частоту переключения линии синхросигнала относительно линий данных. При двойной синхронизации данные воспринимаются и по фронту, и по спаду, так что частота смены состояний всех линий выравнивается, что при одних тех же физических параметрах кабеля и интерфейсных схем позволяет удвоить пропускную способность. Волна этих модернизаций началась с интерфейса АТА (режимы U1-traDMA) и прошла уже и по SCSI (Ultra160 и выше), и по памяти (DDR SDRAM). Кроме того, на высоких частотах применяется синхронизация от источника данных (source synchronous transfer): сигнал синхронизации, по которому определяются моменты переключения или действительности данных, вырабатывается самим источником данных. Это позволяет точнее совмещать по времени данные и синхронизирующие импульсы, поскольку они распространяются по интерфейсу параллельно в одном направлении. Альтернатива — синхронизация от общего источника (common clock) — не выдерживает высоких частот переключения, поскольку здесь в разных (географически) точках временные соотношения между сигналами данных и синхронизации будут различными.
Повышение частоты переключений интерфейсных сигналов, как правило, сопровождается понижением уровней сигналов, формируемых интерфейсными схемами. Эта тенденция объясняется энергетическими соображениями: повышение частоты означает уменьшение времени, отводимого на переключения сигналов. Чем больше амплитуда сигнала, тем большие требуются скорость нарастания сигнала и, следовательно, выходной ток передатчика. Повышение выходного тока (импульсного!) нежелательно по разным причинам: большие перекрестные помехи в параллельном интерфейсе, необходимость применения мощных выходных формирователей, повышенное тепловыделение. Тенденцию снижения напряжения можно проследить на примере порта AGP (3,3/1,5/0,8 В), шин PCI/PCI-X (5/3,3/1,5 В), SCSI, шин памяти и процессоров.
Приведенные соображения объясняют тенденцию перехода на последовательный способ передачи данных.