Чем отличаются полевые и биполярные транзисторы

Ток или поле

Большинству людей, так или иначе сталкивающемуся с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле — различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Полевые транзисторы быстрее

Какие транзисторы лучше полевые или биполярные? Достоинство полевых транзисторов, по сравнению с биполярными, налицо: полевые транзисторы обладают высоким входным сопротивлением по постоянному току, и даже управление на высокой частоте не приводит к значительным затратам энергии.

Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.

Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.

Разная реакция на нагрев

Если биполярный транзистор в процессе работы устройства нагревается, то ток коллектор-эмиттер увеличивается, то есть температурный коэффициент сопротивления у биполярных транзисторов отрицательный.

У полевых же все наоборот — температурный коэффициент сток-исток положительный, то есть с ростом температуры растет и сопротивление канала, то есть ток сток-исток уменьшается. Это обстоятельство дает полевым транзистором еще одно преимущество перед биполярными: полевые транзисторы можно без опаски соединять параллельно, и не потребуются выравнивающие резисторы в цепах их стоков, поскольку в соответствии с ростом нагрузки станет автоматически расти и сопротивление каналов.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Полевые побеждают

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.

Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.

Источник

Отличие полевого транзистора от биполярного. Сфера их применения.

Здравствуйте, дорогие читатели. В данной статье рассмотрим отличие полевого транзистора от биполярного, узнаем в каких сферах применяются и те, и другие транзисторы.

Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Отличие полевого транзистора от биполярного

Биполярные транзисторы

Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.

Общая часть транзисторного кристалла, контактирующая с двумя другими, называется «база». Две другие – «коллектор» и «эмиттер». Степень насыщенности базы носителями заряда (электронами или электронными вакансиями «дырками») определяет степень проводимости всего кристалла транзистора. Таким образом, осуществляется управление проводимостью переходов транзистора, что позволяет использовать его в качестве элемента усиления мощности сигнала, или ключа.

Полевые транзисторы

Проводящая часть конструкции представляет собой полупроводниковый канал p- или n-типа в металле. Ток нагрузки протекает по каналу через электроды, называемые «стоком» и «истоком». Величина сечения проводящего канала и его сопротивление зависит от обратного напряжения на p-n переходе границы металла и полупроводника канала. Управляющий электрод, соединённый с металлической областью называется «затвор».

Канал полевого транзистора может иметь электрическую связь с металлом затвора — неизолированный затвор, а может быть и отделён от него тонким слоем диэлектрика — изолированный затвор.

Какие транзисторы лучше полевые или биполярные?

И так, мы узнали, что главное отличие этих двух видов транзисторов в управление. Давайте рассмотрим прочие преимущества полевых транзисторов по сравнению с биполярными:

Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Отличие полевого транзистора от биполярного

Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.

Ток или поле, управление транзисторами

Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Разная реакция на нагрев

У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).

Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа. По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.

Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Полевые побеждают, почему?

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.

Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.

В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.

Видео, отличие полевого транзистора от биполярного

Источник

Транзисторы: принцип работы и​ чем они отличаются

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

N-Channel и P-Channel

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Источник

Tранзисторы (Всё что Вы хотели знать, но боялись спросить)

Полупроводниковые транзисторы делятся на биполярные и полевые. Первые гораздо более распространены в электронике. Поэтому начнем разбираться с работой биполярного транзистора именно с него.

Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод. В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

А если взять и прикрыть одну любую часть транзистора, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой. Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов. С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы. Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя. Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов. Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.

Работа транзистора в режиме диода при прямом подключении.

Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Работа транзистора практический опыт для начинающих.

Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания. А теперь представим эту схему в структурном виде:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами. Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок. Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора Iк. И чем он будет выше, тем сильнее будет гореть лампочка накаливания. Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Работа транзистора при обратном включении p-n перехода Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Работа транзистора в режиме переключения Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет. Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение. Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась. Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть. Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта. Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы. Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база. Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи. В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.

Кодовая и цветовая маркировка транзисторов

Отечественные транзисторы с корпусами малых размеров маркируются цветовой или кодовой маркировкой и лишь в редких случаях марка транзистора наносится полностью, как есть. При ремонте бытовой аппаратуры можно столкнуться с цветовой или кодовой маркировкой и для замены транзистора необходимо определить марку транзистора, сделать это можно и с помощью программы кодовой и цветовой маркировки транзисторов, сейчас мы рассмотрим как это сделать с помощью справочника.

Кодово-цветовая маркировка транзисторов в корпусе КТ-27 (ТО-126)

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Далее смотрим в таблицу ниже и находим строку которая соответствует кодово-цветовой маркеровке вашего транзистора.

Таблица определения марки транзистора по кодо-цветовой маркировке.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Когда нашли значок который изображен на корпусе определяемся с маркой транзистора, его марка должна быть одной из этих — КТ814(А-Г), КТ815(А-Г),КТ816(А-Г), КТ817(А-Г), КТ638(А,Б), КТ9115(А,Б), КУ112, КТ940(А-В), КТ646А, КТ646Б, КТ972А, КТ972Б, КТ973А, КТ973Б. Обратите внимание, что среди марок транзисторов есть и тиристор КУ112.

Таблица определения года выпуска транзистора по кодовой маркировке.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Таблица определения месяца выпуска транзистора по кодовой маркировке.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Цветовая маркировка транзисторов в корпусе КТ-26

Цветовой маркировкой, как показано на рисунке ниже, обазначаются транзисторы КТ326, КТ337, КТ345, КТ349, КТ350, КТ351, КТ352, КТ363, КТ645, КТ3107. Кроме марки данных транзисторов на корпусе указываются год и месяц выпуска транзистора.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Ниже приведена цветовая маркировка транзисторов КТ203, КТ209, КТ313, КТ336, КТ339, КТ342, КТ502, КТ503, КТ3102. Маркируются транзисторы данных марок всего двумя точками. В данном обозначении месяц и год выпуска отсутствуют.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Нестандартная цветовая маркировка транзисторов.

Иногда транзисторы выпускались с нестандартной цветовой маркировкой, некоторые примеры приведены ниже:

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Кодовая маркировка транзисторов в корпусе КТ-26.

Кодовая маркировка применяется к транзисторам в корпусе КТ-26 следующих марок — КТ203, КТ208, КТ209, КТ313, КТ326, КТ339, КТ342, КТ502, КТ503, КТ3102, КТ3107, КТ3157, КТ3166, КТ6127, КТ680, КТ681, КТ698, КП103. Как видите марки транзисторов с кодовой маркировкой включают все марки с цветовой, но не наоборот. Связано это с тем, что кодовая появилась позже и к тому времени некоторые транзисторы уже не выпускались. Маркировка на транзисторы может наносится как с годом и месяцем выпуска так и без них.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Некоторые примеры кодовой маркировки.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Нестандартная кодовая кодировка транзисторов.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Маркировка SMD транзистора BC847A.

Чем отличаются полевые и биполярные транзисторы. Смотреть фото Чем отличаются полевые и биполярные транзисторы. Смотреть картинку Чем отличаются полевые и биполярные транзисторы. Картинка про Чем отличаются полевые и биполярные транзисторы. Фото Чем отличаются полевые и биполярные транзисторы

Возможны ситуации, когда в один и тот же корпус фирмы-производители под одной и той же маркировкой помещают разные приборы, например, фирма PHILIPS помещает в корпус типа SOT323 NPN-транзистор типа BC818W и маркирует его кодом 6H, а фирма MOTOROLA в такой же корпус с маркировкой 6H помещает PNP-транзистор типа MUN5131T1. Такая же ситуация встречается и внутри одной фирмы. Например, в корпусе типа SOT23 у фирмы SIEMENS под маркировкой 1А выпускаются транзисторы BC846A и SMBT3904, обладающие разными параметрами.

Различить такие приборы установленные на плате можно только по окружающим их компонентам и соответственно – схеме включения.

Программа для определения транзистора по цветовой и символьной маркировке. https://yadi.sk/d/SiubFm9N34VMsY

Больше не уместилось. 🙁

ЗЫ: Взял где взял, обобщил и добавил немного.

Простите за качество некоторых картинок (чем богаты).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *