Чем отличаются по составу ядра изотопов бериллия 74ве и 94ве
Чем отличаются по составу ядра изотопов бериллия 7 4Ве и 9 4 Ве?
В 17:32 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.
Вопрос вызвавший трудности
Ответ подготовленный экспертами Учись.Ru
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «ЕГЭ (школьный)». Ваш вопрос звучал следующим образом: Чем отличаются по составу ядра изотопов бериллия 7 4Ве и 9 4 Ве?
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
ответ к заданию по физике
НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:
Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.
Чем отличаются по составу ядра изотопов бериллия 74ве и 94ве
УРОК 5/54
Тема. Атомное ядро
Цель урока: ознакомить учащихся с моделью ядра атома и с историей открытия протона и нейтрона.
Тип урока: комбинированный урок.
Самостоятельная работа № 12 «Строение атома. Постулаты Бора. Атомные спектры»
Видео-фрагменты фильма «Открытие нейтрона»
Изучение нового материала
1. Открытие протона.
2. Открытие нейтрона.
3. Протонно-нейтронная модель ядра.
Закрепление изученного материала
1. Учимся решать задачи.
2. Контрольные вопросы
ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА
в 1925 году П. Блекетт получил в камере Вильсона первые фотографии следов протона, одновременно подтвердив открытие искусственного превращения элементов.
Замеры показали, что протон имеет положительный заряд, равный по модулю заряду электрона, а масса протона примерно в 1800 раз больше массы электрона. Протоны встречаются в земных условиях в свободном состоянии как ядра атома Водорода.
в 1930 году два немецких физики Боте и Беккер сообщили, что им удалось зафиксировать новый странный вид ядерного излучения, что мало невероятную проникающую способность. Возникало оно в результате бомбардировки атомов Бериллия альфа-частицами. Через два года за этой публикацией появилось новое открытие, сделанное Фредериком и Ирен Жолио-Кюри. Супруги использовало новое излучения для бомбардировки парафина, восковидной вещества, состоящего из водорода и углерода. Оказалось, что при этом из парафина вылетают протоны.
Английский физик Д. Чедвик сразу выдвинул идею, что новое излучение состоит из неизвестных частиц. Чтобы определить их размер, он обстреливал ими мишень из бора и за увеличением массы ядер вычислил, что частицы имеют массу, близкую к массе протона. Кроме того, выяснилось, что они не оставляют следов в камере Вильсона. Чедвик решил, что это обусловлено тем, что частицы не имеют заряда (нейтральные частицы не вызывают ионизации и соответственно не приводят к конденсации пересыщенного пара).
Нейтроны в свободном виде в земных условиях практически не встречаются из-за их неустойчивости. Нейтрон довольно быстро самопроизвольно распадается: среднее время жизни нейтрона около 15,3 минуты.
Гипотезу протон-нейтронного состава ядер высказал вскоре после открытия нейтрона Чедвик, окончательно же ее подтвердили уже в начале становления современной ядерной физики. Как сейчас понятно, протон-нейтронная модель оказалась одним из необходимых отправных пунктов всего развития ядерной физики наряду с другими фундаментальными открытиями.
Ø Число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов и называется зарядовым числом.
Ø Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А:
Как единицу массы в атомной и ядерной физике используют атомную единицу массы (а. е. м.).
Ø Атомная единица массы равна 1/12 массы атома Карбона атомной массой 12:1 а. е. м. = 1,66057·10-27 кг.
Ø Поскольку массовое число А представляет собой общее число протонов и нейтронов в ядре, то число нейтронов в ядре можно найти следующим образом:
Сотрудник Резерфорда Фредерик Содди обнаружили, что существуют ядра с тем же электрическим зарядом, но разной массой (их назвали изотопами).
ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА
1. Во сколько раз примерно размер атома больше размера атомного ядра?
2. Существуют ли атомные ядра с зарядом меньшим, чем у протона?
3. В ядре любого атома нет нейтронов?
4. Какие основные свойства нейтрона? Почему эту частичку трудно было открыть?
1. Предположения (относительно состава ядер) позволяли сделать результаты опытов по взаимодействию α-частиц с ядром атомов разных элементов?
2. Почему пришлось отказаться от предположения о том, что ядра атомов состоят только из протонов?
3. Для которого атома массовое число равно зарядовому?
ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА
1. Чем отличаются по составу ядра изотопов Бериллия 7 4 Ве и 9 4 Ве?
2. Определите с помощью таблицы Д. Ы. Менделеева, атом какого химического элемента имеет: а) 3 протона в ядре; б) 9 электронов.
3. Используя Периодическую систему химических элементов Д. Ы. Менделеева, определите количество протонов, нейтронов и электронов в атомах Азота, Фосфора и Кадмия.
1. В ядре атома химического элемента 22 протоны и 26 нейтронов. Назовите этот элемент.
2. В ядре атомов серебра 108 частиц. Вокруг ядра вращается 47 электронов. Сколько в ядре этого атома нейтронов и протонов?
3. На рисунках схематично показаны некоторые ядра. Какие из них относятся ізотопам того же химического элемента? Назовите соответствующие изотопы.
ЧТО МЫ УЗНАЛИ НА УРОКЕ
· Состав атомного ядра: протонно-нейтронная модель.
· Ядра с тем же электрическим зарядом, но разной массой называют изотопами.
· Число Z протонов в ядре называют зарядовым числом.
Бериллий, свойства атома, химические и физические свойства
Бериллий, свойства атома, химические и физические свойства.
9,012182(3) 1s 2 2s 2
Бериллий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 4. Расположен во 2-й группе (по старой классификации — главной подгруппе второй группы), втором периоде периодической системы.
Физические свойства бериллия
Атом и молекула бериллия. Формула бериллия. Строение атома бериллия:
Бериллий – амфотерный, щёлочноземельный металл.
Бериллий обозначается символом Be.
Как простое вещество бериллий при нормальных условиях представляет собой относительно твёрдый, хрупкий металл светло-серого цвета.
Молекула бериллия одноатомна.
Химическая формула бериллия Be.
Строение атома бериллия. Атом бериллия состоит из положительно заряженного ядра (+4), вокруг которого по двум оболочкам движутся 4 электрона. При этом 2 электрона находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку бериллий расположен во втором периоде, оболочек всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка также представлена s-орбиталью. На внешнем энергетическом уровне атома бериллия – на 2s-орбитали находятся два спаренных электрона. В свою очередь ядро атома бериллия состоит из 4 протонов и 5 нейтронов. Бериллий относится к элементам s-семейства.
Радиус атома бериллия (вычисленный) составляет 112 пм.
Атомная масса атома бериллия составляет 9,012182(3) а. е. м.
Изотопы и модификации бериллия:
Свойства бериллия (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Бериллий |
102 | Прежнее название | |
103 | Латинское название | Beryllium |
104 | Английское название | Beryllium |
105 | Символ | Be |
106 | Атомный номер (номер в таблице) | 4 |
107 | Тип | Металл |
108 | Группа | Амфотерный, щёлочноземельный металл |
109 | Открыт | Луи-Николя Воклен, Франция, 1798 г. |
110 | Год открытия | 1798 г. |
111 | Внешний вид и пр. | Относительно твёрдый, хрупкий металл светло-серого цвета |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | 2 аллотропные модификации: – α-бериллий с гексагональной плотноупакованной кристаллической решёткой, |
204 | Радиус атома (вычисленный) | 112 пм |
205 | Эмпирический радиус атома | 105 пм |
206 | Ковалентный радиус* | 96 пм |
207 | Радиус иона (кристаллический) | Be 2+ 1,98 Дж/г·K (при 25 °C) |
410 | Молярная теплоёмкость* | 16,443 Дж/(K·моль) |
411 | Молярный объём | 4,8767 см³/моль |
412 | Теплопроводность | 200 Вт/(м·К) (при стандартных условиях ), 201 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | α-бериллий |
512 | Структура решётки | Гексагональная плотноупакованная |
513 | Параметры решётки | a = 2,286 Å, c = 3,584 Å |
514 | Отношение c/a | 1,567 |
515 | Температура Дебая | 1000 K |
516 | Название пространственной группы симметрии | P63/mmc |
517 | Номер пространственной группы симметрии | 194 |
521 | Кристаллическая решётка #2 | β-бериллий |
522 | Структура решётки | Кубическая объёмно-центрированная |
523 | Параметры решётки | 2,5515 Å |
524 | Отношение c/a | |
525 | Температура Дебая | |
526 | Название пространственной группы симметрии | |
527 | Номер пространственной группы симметрии | |
900 | Дополнительные сведения | |
901 | Номер CAS | 7440-41-7 |
206* Ковалентный радиус бериллия согласно [1] и [3] составляет 96±3 пм и 90 пм соответственно.
401* Плотность бериллия согласно [3] составляет 1,848 г/см 3 (при 0 °C и иных стандартных условиях , состояние вещества – твердое тело).
402* Температура плавления бериллия согласно [3] составляет 1278 °C (1551 K, 2332 °F).
403* Температура кипения бериллия согласно [3] составляет 2970 °C (3243 K, 5378 °F).
407* Удельная теплота плавления (энтальпия плавления ΔHпл) бериллия согласно [3] и [4] составляет 12,21 кДж/моль и 14,7 кДж/моль соответственно.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) бериллия согласно [3] составляет 309 кДж/моль.
410* Молярная теплоемкость бериллия согласно [3] составляет 16,44 Дж/(K·моль).
Развитие конструкций ядерных зарядов
Использование ядерных устройств в военных целях основано на свойстве атомов тяжелых химических элементов распадаться на атомы более легких элементов с выделением энергии в виде электромагнитного излучения (гама- и рентгеновского диапазона), а также в виде кинетической энергии разлетающихся элементарных частиц (нейтронов, протонов и электронов) и ядер атомов более легких элементов (цезия, стронция, иода и других)
Наиболее востребованными тяжелыми элементами являются уран и плутоний. Их изотопы при делении своего ядра выделяют от 2 до 3 нейтронов, которые в свою очередь вызывают деление ядер соседних атомов и т.д. В веществе возникает самораспространяющаяся (т.н. цепная) реакция с выделением большого количества энергии. Для запуска реакции требуется определенная критическая масса, объем которой будет достаточен для захвата нейтронов ядрами атомов без вылета нейтронов за пределы вещества. Критическая масса может быть уменьшена с помощью отражателя нейтронов и инициирующего источника нейтронов
Запуск реакции деления производится путем соединения двух подкритических масс в одну надкритическую или путем обжатия сферической оболочки надкритической массы в сферу, увеличивая тем самым концентрацию делящегося вещества в заданном объеме. Соединение или обжатие делящегося вещества осуществляется с помощью направленного взрыва химического взрывчатого вещества.
Кроме реакции деления тяжелых элементов, в ядерных зарядах применяется реакция синтеза легких элементов. Термоядерный синтез требует нагрева и сжатия вещества до нескольких десятков миллионов градусов и атмосфер, что можно обеспечить только за счет энергии, выделяющейся при реакции деления. Поэтому термоядерные заряды конструируются по двухступенчатой схеме. В качестве легких элементов используют изотопы водорода тритий и дейтерий (требующие минимальных значений температуры и давления для запуска реакции синтеза) или химическое соединение — дейтерид лития (последний под действием нейтронов от взрыва первой ступени делится на тритий и гелий). Энергия в реакции синтеза выделяется в виде электромагнитного излучения и кинетической энергии нейтронов, электронов и ядер атомов гелия (т.н. альфа-частиц). Энерговыделение реакции синтеза в расчете на единицу массы в четыре раза превышает подобный показатель реакции деления
Тритий и продукт его самораспада дейтерий используют также в качестве источника нейтронов для инициации реакции деления. Тритий или смесь изотопов водорода под действием сжатия плутониевой оболочки частично вступает в реакцию синтеза с выделением нейтронов, которые переводят плутоний в надкритичное состояние.
Основными компонентами современных ядерных зарядов являются следующие:
— стабильный (самопроизвольно не делящийся) изотоп урана U-238, добываемый из урановой руды или (в виде примеси) из фосфатной руды;
— радиоактивный (самопроизвольно делящийся) изотоп урана U-235, добываемый из урановой руды или нарабатываемый из U-238 в ядерных реакторах;
— радиоактивный изотоп плутония Pu-239, нарабатываемый из U-238 в ядерных реакторах;
— стабильный изотоп водорода дейтерий D, добываемый из природной воды или нарабатываемый из протия в ядерных реакторах;
— радиоактивный изотоп водорода тритий T, нарабатываемй из дейтерия в ядерных реакторах;
— стабильный изотоп лития Li-6, добываемый из руды;
— стабильный изотоп бериллия Be-9, добываемый из руды;
— октоген и триаминотринитробензол, химические взрывчатые вещества.
Критическая масса шара, выполненного из U-235 с диаметром 17 см, составляет 50 кг, критическая масса шара, выполненного из Pu-239 с диаметром 10 см — 11 кг. С помощью отражателя нейтронов из бериллия и источника нейтронов из трития критическую массу можно снизить соответственно до 35 и 6 кг.
Для устранения риска самопроизвольного срабатывания ядерных зарядов в них используют т.н. оружейный Pu-239, очищенный от других, менее стабильных изотопов плутония до уровня 94%. С периодичность 30 лет плутоний очищают от продуктов самопроизвольного ядерного распада его изотопов. С целью увеличения механической прочности плутоний сплавляют с 1 массовым процентом галлия и покрывают тонким слоем никеля для защиты от окисления
Температура радиационного саморазогрева плутония в процессе хранения ядерных зарядов не превышает 100 градусов Цельсия, что ниже температуры разложения химического ВВ.
Самыми первыми конструкциями ядерных зарядов деления были «Малыш» и «Толстяк», разработанные в США в середине 1940-х годов. Последний тип заряда отличался от первого сложной аппаратурой синхронизации подрыва многочисленных электродетонаторов и большим поперечным габаритом.
«Толстяк» был выполнен по имплозивной схеме – полую сферу из делящегося вещества (плутоний Pu-239) окружали оболочка из урана U-238 (толкатель), оболочка из алюминия (гаситель) и оболочка (генератор имплозии), набранная из пяти- и шестигранных сегментов химического взрывчатого вещества, на внешней поверхности которых были установлены электродетонаторы. Каждый сегмент представлял собой детонационную линзу из двух видов ВВ с различной скоростью детонации, преобразовывавших расходящуюся волну давления в сферическую сходящуюся волну, равномерно сжимавшую алюминиевую оболочку, которая в свою очередь сжимала урановую оболочку, а та – плутониевую сферу до смыкания её внутренней полости. Алюминиевый гаситель был использован, чтобы воспринять отдачу волны давления при её переходе в материал с большей плотностью, урановый толкатель – для инерционного удержания плутония в ходе реакции деления. Во внутренней полости плутониевой сферы был расположен источник нейтронов, изготовленный из радиоактивного изотопа полония Po-210 и бериллия, который под действием альфа-излучения полония испускал нейтроны. Коэффициент использования делящегося вещества составлял порядка 5 процентов, период полураспада радиоактивных осадков — 24 тысячи лет
Бериллиевый отражатель нейтронов представляет собой металлическую оболочку толщиной до 40 мм, источник нейтронов – газообразный тритий, заполняющий полость в плутонии, или пропитанный тритием гидрид железа с титаном, хранящийся в отдельном баллоне (бустере) и выделяющий тритий под действием нагрева электричеством непосредственно перед применением ядерного заряда, после чего тритий по газопроводу подается внутрь заряда. Последнее техническое решение позволяет кратно варьировать мощность ядерного заряда в зависимости от объема перекачиваемого трития, а также облегчает замену газовой смеси на новую каждые 4-5 лет, поскольку период полураспада трития составляет 12 лет. Избыточное количество трития в составе бустера позволяет снизить критическую массу плутония до 3 кг и существенно повысить действие такого поражающего фактора как нейтронное излучение (за счет снижения действия других поражающих факторов — ударной волны и светового излучения). В результате оптимизации конструкции коэффициент использования делящегося вещества увеличился до 20%, в случае избытка трития – до 40%.
Пушечная схема была упрощена за счет перехода к радиально-осевой имплозии посредством выполнения массива делящегося вещества в виде полого цилиндра, сминаемого взрывом двух торцевых и одного аксиального заряда ВВ
Имплозивная схема была оптимизирована (SWAN) за счет выполнения внешней оболочки ВВ в форме эллипсоида, позволившего уменьшить количество детонационных линз до двух единиц, разнесенных к полюсам эллипсоида — разность в скорости прохождения детонационной волны в поперечном сечении детонационной линзы обеспечивает одновременный подход ударной волны к сферической поверхности внутреннего слоя ВВ, детонация которого равномерно обжимает оболочку из бериллия (совмещающего функции отражателя нейтронов и гасителя отдачи волны давления) и сферу из плутония с внутренней полостью, заполненную тритием или его смесью с дейтерием
Наиболее компактной реализацией имплозивной схемы (примененной в советском 152-мм снаряде) является выполнение взрывчато-бериллиево-плутониевой сборки в виде полого эллипсоида с переменной толщиной стенки, обеспечивающей расчетную деформацию сборки под действием ударной волны от взрыва ВВ в конечную сферическую конструкцию
Несмотря на различные технические усовершенствования мощность ядерных зарядов деления оставалась ограниченной уровнем 100 Ктн в тротиловом эквиваленте из-за неустранимого разлета внешних слоев делящегося вещества в процессе взрыва с исключением вещества из реакции деления.
Однако мощность «слойки» также была ограничена уровнем 1 Мтн из-за начала протекания реакции деления и синтеза во внутренних слоях и разлета непрореагировавших внешних слоев. С целью преодоления этого ограничения была разработана схема обжатия легких элементов реакции синтеза рентгеновским излучением (вторая ступень) от реакции деления тяжелых элементов (первая ступень). Огромное давление потока рентгеновских фотонов, выделяющихся в реакции деления, позволяет 10-кратно обжать дейтерид лития с увеличением плотности в 1000 раз и нагреть в процессе сжатия, после чего литий подвергается воздействию потока нейтронов от реакции деления, превращаясь в тритий, который вступает в реакции синтеза с дейтерием. Двухступенчатая схема термоядерного заряда является наиболее чистой по выходу радиоактивности, поскольку вторичные нейтроны от реакции синтеза дожигают непрореагировавший уран/плутоний до короткоживущих радиоактивных элементов, а сами нейтроны гасятся в воздухе при пробеге порядка 1,5 км.
С целью равномерного обжима второй ступени корпус термоядерного заряда выполняют в форме скорлупы арахиса, располагая сборку первой ступени в геометрическом фокусе одной части скорлупы, а сборку второй ступени – в геометрическом фокусе другой части скорлупы. Сборки подвешены в объеме корпуса с помощью наполнителя из пенопласта или аэрогеля. По правилам оптики рентгеновское излучение от взрыва первой ступени концентрируется в сужении между двумя частями скорлупы и равномерно распределяется по поверхности второй ступени. С целью увеличения отражательной способности в рентгеновском диапазоне внутренняя поверхность корпуса заряда и внешняя поверхность сборки второй ступени покрываются слоем из плотного вещества: свинца, вольфрама или урана U-238. В последнем случае термоядерный заряд становится трехступенчатым – под действием нейтронов от реакции синтеза U-238 превращается в U-235, атомы которого вступают в реакцию деления и увеличивают мощность взрыва
Трехступенчатая схема была заложена в конструкции советской авиабомбы АН-602, расчетная мощность которой составляла 100 Мтн. Перед проведением испытания третья ступень была исключена из её состава путем замены урана U-238 на свинец из-за риска расширения зоны радиоактивных осадков от деления U-238 за пределы испытательного полигона. Фактическая мощность двухступенчатой модификации АН-602 составила 58 Мтн. Дальнейшее наращивание мощности термоядерных зарядов можно производить путем увеличения количества термоядерных зарядов в составе объединенного взрывного устройства. Однако в этом нет необходимости по причине отсутствия адекватных им целей – современный аналог АН-602, размещенный на борту подводного аппарата «Посейдон», имеет радиус разрушений ударной волной зданий и сооружений в 72 км и радиус пожаров в 150 км, что вполне достаточно для уничтожения таких мегаполисов как Нью-Йорк или Токио
Конструкция подобного заряда может быть выполнена в виде имплозивной сборки, включающее две эллипсоидные детонационные линзы (химическое ВВ из октогена, инертный материал из полипропилена), три сферические оболочки (нейтронный отражатель из бериллия, пьезоэлектрический генератор из иодида цезия, делящееся вещество из плутония) и внутреннюю сферу (термоядерное топливо из дейтерида лития)
Под действием сходящейся волны давления иодид цезия вырабатывает сверхмощный электромагнитный импульс, поток электронов генерирует в плутонии гамма-излучение, выбивающее нейтроны из ядер, инициируя тем самым самораспространяющуюся реакцию деления, рентгеновское излучение сжимает и нагревает дейтерид лития, поток нейтронов вырабатывает из лития тритий, который вступает в реакцию с дейтерием. Центростремительная направленность реакций деления и синтеза обеспечивает 100-процентное использование термоядерного топлива.
Дальнейшее развитие конструкций ядерных зарядов в направлении минимизации мощности и радиоактивности возможно за счет замены плутония на устройство лазерного сжатия капсулы со смесью трития и дейтерия.