Чем отличаются методы определения твердости
Механические методы определения твердости.
Твердость материала – это способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твердого материала. Она определяется величиной нагрузки необходимой для начала разрушения материала. Твердость делится на относительную и абсолютную. Относительная твердость – это твердость одного материала по отношению к другому. Абсолютная твердость определяется с помощью методов вдавливания.
Твёрдость зависит от множества факторов. Среди них: межатомные расстояния вещества, валентность, природа химической связи, хрупкости и ковкости материала, гибкости, упругости, вязкости и других качеств.
Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода — лонсдейлит, который твёрже алмаза в полтора раза и фуллерит с превышением твёрдости алмаза в два раза. Однако среди распространённых веществ по-прежнему самым твёрдым является алмаз.
Для измерения твёрдости существует несколько шкал (методов измерения). Для разных материалов они будут разными. Для измерения твердости металлов применяются методы:
Метод Бринелля — твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка.
Существуют два вида методов расчета твердости:
По методу восстановленного отпечатка твёрдость рассчитывается как отношение приложенной нагрузки к площади поверхности отпечатка:
,
По методу невосстановленного отпечатка твёрдость определяется как отношение приложенной нагрузки к площади внедрённой в материал части и ндентора :
,
Единицами измерения являются кгс/мм². Твёрдость, определённая по этому методу, обозначается HB, где H = hardness (твёрдость, англ.), B — Бринелль. Это одни из самых старых методов, применявшиеся еще в XIX веке.
Твердость по методу Роквелла можно измерять:
1) Алмазным конусом с общей нагрузкой 150 кгс. Твердость измеряется по шкале С и обозначается HRC (например, 62 HRC). Метод позволяет определять твердость закаленной и отпущенной сталей, материалов средней твердости, поверхностных слоев толщиной более 0,5 мм;
2) Алмазным конусом с общей нагрузкой 60 кгс. Твердость измеряется по шкале А, совпадающей со шкалой С, и обозначается HRA. Применяется для оценки твердости очень твердых материалов, тонких поверхностных слоев (0,3 … 0,5 мм) и тонколистового материала;
3) Стальным шариком с общей нагрузкой 100 кгс. Твердость обозначается HRB и измеряется по шкале B. Так определяют твердость мягкой (отожженной) стали и цветных сплавов.
При измерении твердости на приборе Роквелла необходимо, чтобы на поверхности образца не было окалины, трещин, выбоин и др. Необходимо контролировать перпендикулярность приложения нагрузки к поверхности образца и устойчивость его положения на столике прибора. Расстояние отпечатка должно быть не менее 1,5 мм при вдавливании конуса и не менее 4 мм при вдавливании шарика. Твердость измеряется не менее 3 раз на одном образце, затем выводится среднее значение. Преимущество метода Роквелла по сравнению с методами Бринелля и Виккерса заключается в том, что значение твердости по методу Роквелла фиксируется непосредственно стрелкой индикатора, при этом отпадает необходимость в оптическом измерении размеров отпечатка.
Твёрдость по Шору (Метод вдавливания) — твёрдость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. В данном методе измерения используется прибор — дюрометр. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, предполагает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твердых). Твёрдость, определённая по этому методу, обозначается буквой используемой шкалы, записываемой после числа с указанием метода. В качестве примера, можно привести резину в покрышке колеса легкового автомобиля, которая имеет твердость примерно 70A, а школьный ластик — примерно 50A.
Твёрдость по Шору (Метод отскока) — метод определения твёрдости очень твёрдых материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк, падающий с определённой высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Обозначается HSx, где H — Hardness, S — Shore и x — латинская буква, обозначающая тип использованной при измерении шкалы.
Метод Либу (твердомеры)
Это самый широко применяемый на сегодня метод в мире, твёрдость определяется как отношение скоростей до и после отскока бойка от поверхности. Обозначается HL, где H — Hardness (твёрдость, англ.), L — Leeb (Либ, англ.), а 3-й буквой идёт обозначение типа датчика, напр. HLD, HLC и т.д. При использовании данного метода падающий нормально к поверхности исследуемого материала боек сталкивается с поверхностью и отскакивает. Скорость бойка измеряют до и после отскакивания. Предполагается, что боек не подвергается необратимой деформации.
Метод Аскер — твёрдость определяется по глубине введения стальной полусферы под действием пружины. Используется для мягких резин. По принципу измерения соответствует методу Шора, но отличается формой поверхности щупа. Аскер использует полусферу диаметром 2.54 мм.
Метод Кузнецова — Герберта — Ребиндера — твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл.
Метод Польди (двойного отпечатка шарика) — твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно и в образец, и в эталон.
Твердомеры для металлов. Методы Бринелля и Роквелла
Выбор метода контроля твёрдости зависит от:
Твердомеры Бринелля: методика и оборудование
Используются для определения твёрдости мягких сплавов и цветных металлов, чугуна и незакалённых сталей в соответствии с ГОСТ 9012-59.
Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний позволяет узнать твердость материалов, превышающих показатель обычной стали.Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, алюминия, дюраля, нержавейки, стекла. То есть, твердомер применяют не только к металлам.
Способ определения твёрдости по методу Бринелля заключается во вдавливании в поверхность ОК шарика-индентора (из закалённой стали или из твёрдого сплава). В результате на металле остаётся отпечаток в виде полусферы определённого диаметра и глубины, что позволяет определить меру твёрдости по Бринеллю (НВ).
Современная конструкция твердомера Бринелля позволяет плавно внедрять индентор в образец, обеспечивает высокую точность приложения нагрузки (погрешность не более 1,0 %), что позволяет получать отпечатки с высокой повторяемостью, необходимой для обеспечения точности измерений твердости.
В качестве инденторов используются шарики из твердого сплава диаметром 1; 2,5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала, который разделен на 5 основных групп:
1 — сталь, никелевые и титановые сплавы;
2 — чугун;
3 — медь и сплавы меди;
4 — легкие металлы и их сплавы;
5 — свинец, олово.
При измерении твердости по методу Бринелля необходимо выполнять следующие условия:
Твердомеры для металлов, реализующие метод Бринелля, подразделяют на приборы типа ТШ и типа БТБ.
Стационарные твердомеры для металлов типа ТШ, с механическим приводом от электродвигателя, состоят из следующих узлов:
Принцип измерения следующий: деталь испытуемой поверхностью вверх устанавливают на стол, после чего поднимают его до упора, имеющегося в корпусе индентора. Далее включается электродвигатель, который перемещает корпус индентора. Тот, преодолевая сопротивление пружин, приводит в движение шарик, который вдавливается в металл. Конечный результат считывается по шкале. Отношение плеч рычажного механизма, а также суммарный вес грузов на противовесе устанавливается в зависимости от предполагаемого результата измерений (см. таблицу выше).
Твердомеры для металлов типа БТБ имеют некоторые эксплуатационные преимущества перед приборами ТШ: они обладают увеличенными размерами рабочего пространства стола, смена режимов нагружения производится механически, а для отсчёта результата используется более точная оптическая система. Работы на БТБ производят в той же последовательности, что и на приборах ТШ, но образец после испытания сканируется измерительной головкой, с отображением результата на экране.
Данный способ подходит также для определения твёрдости изделий, которые эксплуатируются при повышенных температурах. Для этого на стол устанавливается ванна с нагревающей образец жидкостью, причём для температур до 300 0 С используют масло, а для более высоких температур – солевой расплав. Образец помещают в ванну на асбестовую плиту, после чего измеряют твёрдость обычным методом.
Доступными и простыми в эксплуатации являются портативные (переносные) твердомеры для металлов. Испытательная головка прибора устанавливается на деталь в месте измерения и крепится струбциной или специальными захватами. Нагрузка создаётся вручную, и контролируется по шкале индикатора. Для измерения результата применяют переносной микроскоп. Замеренный отпечаток сравнивается со значениями, которые приводятся в таблицах пересчёта.
Твердомеры для металлов, работающие по методу Бринелля, имеют ряд ограничений:
Твердомеры Роквелла: методика и оборудование
Метод определения твёрдости металлов по состоит во вдавливании алмазного конуса или стального закалённого шарика в предварительно зашлифованную поверхность образца. В отличие от предыдущего способа твёрдость по заключается в определении глубины вдавливания. Метод считается более оперативным, а в таких автоматизируется как процесс испытания, так и последующая обработка его результатов.
Суть метода заключается в том, что предварительно выбирается некоторая реперная точка, и полученная для этой координаты глубина внедрения индентора вычитается из произвольно выбранной наибольшей глубины вдавливания.
Существует 11 шкал определения твердости по методу Роквелла (A; B; C; D; E; F; G; H; K; N; T), основанных на комбинации «индентор (наконечник) — нагрузка». Наиболее широко используются два типа инденторов: шарик из карбида вольфрама диаметром 1/16 дюйма (1,5875 мм) или такой же шарик из закаленной стали либо конический алмазный наконечник с углом при вершине 120°. Возможные нагрузки — 60, 100 и 150 кгс. Величина твёрдости определяется как относительная разница в глубине проникновения индентора при приложении основной и предварительной (10 кгс) нагрузки.
Для обозначения твёрдости, определённой по методу Роквелла, используется символ HR, к которому добавляется буква, указывающая шкалу, по которой проводились испытания (HRA, HRB, HRC).
Таблица определения твердости по Бринеллю
Диаметр отпечатка d10 или 2d5, или 4d2,5 | Число твердости по Бринеллю при нагрузке Р (кгс), равной | Диаметр отпечатка d10 или 2d5, или 4d2,5 | Число твердости по Бринеллю при нагрузке Р (кгс), равной | ||||
30 D 2 | 10 D 2 | 2,5 D 2 | 30 D 2 | 10 D 2 | 2,5 D 2 | ||
2,00 | 955 | 4,00 | 229 | 76,3 | 19,1 | ||
2,05 | 910 | 4,05 | 223 | 74,3 | 18,6 | ||
2,10 | 868 | 4,10 | 217 | 72,4 | 18,1 | ||
2,15 | 4,20 | 207 | 68,8 | 17,2 | |||
2,20 | 764 | 4,25 | 201 | 67,1 | 16,8 | ||
2,25 | 735 | 4,30 | 197 | 65,5 | 16,4 | ||
2,30 | 707 | 4,35 | 192 | 63,8 | 16,0 | ||
2,35 | 682 | 4,40 | 187 | 62,4 | 15,6 | ||
2,40 | 659 | 4,45 | 183 | 60,9 | 15,2 | ||
2,45 | 616 | 4,50 | 179 | 59,5 | 14,9 | ||
2,50 | 597 | 4,55 | 174 | 58,1 | 14,5 | ||
2,55 | 579 | 4,60 | 170 | 56,8 | 14,2 | ||
2,60 | 562 | 4,65 | 167 | 55,5 | 13,9 | ||
2,65 | 531 | 4,70 | 163 | 54,3 | 13,6 | ||
2,70 | 516 | 4,75 | 159 | 53,0 | 13,3 | ||
2,75 | 489 | 4,80 | 156 | 51,9 | 13,0 | ||
2,80 | 477 | 4,85 | 152 | 50,7 | 12,7 | ||
2,85 | 455 | 4,90 | 149 | 49,6 | 12,4 | ||
2,90 | 444 | 4,95 | 146 | 48,6 | 12,2 | ||
2,95 | 429 | 5,00 | 143 | 47,5 | 11,9 | ||
3,00 | 415 | 34,6 | 5,05 | 140 | 46,5 | 11,6 | |
3,05 | 401 | 33,4 | 5,10 | 137 | 45,5 | 11,4 | |
3,10 | 388 | 129 | 32,3 | 5,15 | 134 | 44,6 | 11,2 |
3,15 | 375 | 125 | 31,3 | 5,20 | 131 | 43,7 | 10,9 |
3,20 | 363 | 121 | 30,3 | 5,25 | 128 | 42,8 | 10,7 |
3,25 | 352 | 117 | 29,3 | 5,30 | 126 | 41,9 | 10,5 |
3,30 | 341 | 114 | 28,4 | 5,35 | 123 | 41,0 | 10,3 |
3,35 | 331 | 110 | 27,6 | 5,40 | 121 | 40,2 | 10,1 |
3,40 | 321 | 107 | 26,7 | 5,45 | 118 | 39,4 | 9,86 |
3,45 | 311 | 104 | 25,9 | 5,50 | 116 | 38,6 | 9,66 |
3,50 | 302 | 101 | 25,2 | 5,55 | 114 | 37,9 | 9,46 |
3,55 | 293 | 97,7 | 24,5 | 5,60 | 111 | 37,1 | 9,27 |
3,60 | 285 | 95,0 | 23,7 | 5,65 | 109 | 36,4 | 9,10 |
3,65 | 277 | 92,3 | 23,1 | 5,70 | 107 | 35,7 | 8,93 |
3,70 | 269 | 89,7 | 22,4 | 5,75 | 105 | 35,0 | 8,76 |
3,75 | 262 | 87,2 | 21,8 | 5,80 | 103 | 34,3 | 8,59 |
3,80 | 255 | 84,9 | 21,2 | 5,85 | 101 | 33,7 | 8,43 |
3,85 | 248 | 82,6 | 20,7 | 5,90 | 99,2 | 33,1 | 8,26 |
3,90 | 241 | 80,4 | 20,1 | 5,95 | 97,3 | 32,4 | 8,11 |
3,95 | 235 | 78,3 | 19,6 | 6,00 | 95,5 | 31,8 | 7,96 |
Выбор метода в зависимости от условий испытания
Вариант метода | А | В | С | F | N | T |
Форма индентора | Конус | Шарик | Конус | Шарик | Конус | Шарик |
Материал индентора | Алмаз | Сталь | Алмаз | Сталь | Алмаз | Сталь |
Условное обозначение твёрдости | HRA | HRB | HRC | HRF | HRN | HRT |
Диапазон замера твёрдости | 60…80 | 35…100 | 30…70 | 60…100 | 17…92 | 5…94 |
Металлы | Стали весьма высокой твёрдости | Стали средней твёрдости, цветные сплавы | Стали повышенной твёрдости | Тонколистовые металлы | Для испытания тонких или малогабаритных изделий |
Стационарные твердомеры для металлов по методу Роквелла (типа ТК) делятся на приборы с электрическим и механическим приводом. Ручной твердомер ТК включает в себя:
Шкала | Сокращённое обозначение | Испытательная нагрузка | Тип индентора | Область применения | N | s |
---|---|---|---|---|---|---|
A | HRA | 60 кгс | 120° алмазный сфероконический * | Карбид вольфрама | 100 | 0,002 мм |
B | HRB | 100 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | Алюминиевые сплавы, бронза, мягкие стали | 130 | 0,002 мм |
C | HRC | 150 кгс | 120° алмазный, сфероконический | Твёрдые стали с HRB > 100 | 100 | 0,002 мм |
D | HRD | 100 кгс | 120° алмазный, сфероконический | 100 | 0,002 мм | |
E | HRE | 100 кгс | Диаметр 1⁄8 дюйма (3,175 мм) стальной, сферический | 130 | 0,002 мм | |
F | HRF | 60 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | 130 | 0,002 мм | |
G | HRG | 150 кгс | Диаметр 1⁄16 дюйма (1,588 мм) стальной, сферический | 130 | 0,002 мм | |
* Радиус сферического скругления вершины конуса 0,2 мм |
Факторы, влияющие на точность измерения
К недостатку метода Роквелла относится меньшая точность по сравнению с методами Бринелля и Виккерса.
Если вы хотите приобрести твердомер Бринелля, рекомендуем модель ТР 5008А или модель LC-200R