Чем отличаются атомы хлора и кислорода
Кислород: химия кислорода
Кислород
Положение в периодической системе химических элементов
Кислород расположен в главной подгруппе VI группы (или в 16 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение кислорода
Электронная конфигурация кислорода в основном состоянии :
+8O 1s 2 2s 2 2p 4 1s 2s
2p
Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.
Физические свойства и нахождение в природе
Озон О3 — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода.
Кислород — это самый распространённый в земной коре элемент. Кислород входит в состав многих минералов — силикатов, карбонатов и др. Массовая доля элемента кислорода в земной коре — около 47 %. Массовая доля элемента кислорода в морской и пресной воде составляет 85,82 %.
В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе.
Способы получения кислорода
В промышленности кислород получают перегонкой жидкого воздуха.
Лабораторные способы получения кислорода:
Разложение перманганата калия:
Разложение бертолетовой соли в присутствии катализатора MnO2 :
2KClO3 → 2KCl + 3O2
Разложение пероксида водорода:
2HgO → 2Hg + O2
Соединения кислорода
Степень окисления | Типичные соединения |
+2 | Фторид кислорода OF2 |
+1 | Пероксофторид кислорода O2F2 |
-1 | Пероксид водорода H2O2 Пероксид натрия Na2O2 и др. |
-2 | Вода H2O Оксиды металлов и неметаллов Na2O, SO2 и др. Соли кислородсодержащих кислот Кислородсодержащие органические вещества Основания и амфотерные гидроксиды |
Химические свойства
При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.
1.1. Кислород реагирует с фтором с образованием фторидов кислорода:
С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.
1.2. Кислород реагирует с серой и кремнием с образованием оксидов:
1.3. Фосфор горит в кислороде с образованием оксидов:
При недостатке кислорода возможно образование оксида фосфора (III):
Но чаще фосфор сгорает до оксида фосфора (V):
1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):
N2 + O2→ 2NO
1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:
2Ca + O2 → 2CaO
Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:
2Na + O2→ Na2O2
А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:
K + O2→ KO2
Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.
Цинк окисляется до оксида цинка (II):
2Zn + O2→ 2ZnO
2Fe + O2→ 2FeO
4Fe + 3O2→ 2Fe2O3
3Fe + 2O2→ Fe3O4
при недостатке кислорода образуется угарный газ СО:
2C + O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Кислород взаимодействует со сложными веществами:
4FeS + 7O2→ 2Fe2O3 + 4SO2
Ca3P2 + 4O2→ 3CaO + P2O5
2.2. Кислород окисляет бинарные соединения неметаллов:
2H2S + 3O2→ 2H2O + 2SO2
Аммиак горит с образованием простого вещества, азота:
4NH3 + 3O2→ 2N2 + 6H2O
Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):
4NH3 + 5O2→ 4NO + 6H2O
CS2 + 3O2→ CO2 + 2SO2
2CO + O2→ 2CO2
2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.
Кислород окисляет азотистую кислоту :
2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:
CH4 + 2O2→ CO2 + 2H2O
2CH4 + 3O2→ 2CO + 4H2O
CH4 + O2→ C + 2H2O
Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)
Хлор, свойства атома, химические и физические свойства
Хлор, свойства атома, химические и физические свойства.
35,446-35,457* 1s 2 2s 2 2p 6 3s 2 3p 5
Хлор — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 17. Расположен в 17-й группе (по старой классификации — главной подгруппе седьмой группы), третьем периоде периодической системы.
Атом и молекула хлора. Формула хлора. Строение атома хлора:
Хлор – неметалл. Относится к группе галогенов.
Хлор обозначается символом Cl.
Как простое вещество хлор при нормальных условиях представляет собой ядовитый газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом и сладковатым, «металлическим» вкусом.
Молекула хлора двухатомна.
Химическая формула хлора Cl2.
Строение атома хлора. Атом хлора состоит из положительно заряженного ядра (+17), вокруг которого по трем оболочкам движутся 17 электронов. При этом 10 электронов находятся на внутреннем уровне, а 7 электронов – на внешнем. Поскольку хлор расположен в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья – внешняя оболочка представлена s- и р-орбиталями. На внешнем энергетическом уровне атома хлора на 3s-орбитали находятся два спаренных электрона, на 3p-орбитали – четыре спаренных и один неспаренный электрон. В свою очередь ядро атома хлора состоит из 17 протонов и 18 нейтронов. Хлор относится к элементам p-семейства.
Радиус атома хлора (вычисленный) составляет 79 пм.
Атомная масса атома хлора составляет 35,446-35,457 а. е. м.
Хлор – химически активный неметалл.
Хлор – токсичный, ядовитый, удушающий газ.
Изотопы и модификации хлора:
Свойства хлора (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Хлор |
102 | Прежнее название | |
103 | Латинское название | Chlorum |
104 | Английское название | Chlorine |
105 | Символ | Cl |
106 | Атомный номер (номер в таблице) | 17 |
107 | Тип | Неметалл |
108 | Группа | Галоген |
109 | Открыт | Карл Вильгельм Шееле, Швеция, 1774 г. |
110 | Год открытия | 1774 г. |
111 | Внешний вид и пр. | Ядовитый газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом и сладковатым, «металлическим» вкусом |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | 2 аллотропные модификации хлора: – хлор с простой орторомбической кристаллической решёткой, – хлор с тетрагональной кристаллической решёткой |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 0,017 % |
120 | Содержание в морях и океанах (по массе) | 2,0 % |
121 | Содержание во Вселенной и космосе (по массе) | 0,0001 % |
122 | Содержание в Солнце (по массе) | 0,0008 % |
123 | Содержание в метеоритах (по массе) | 0,037 % |
124 | Содержание в организме человека (по массе) | 0,12 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса)* | 35,446-35,457 а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s 2 2s 2 2p 6 3s 2 3p 5 |
203 | Электронная оболочка | K2 L8 M7 N0 O0 P0 Q0 R0 |
204 | Радиус атома (вычисленный) | 79 пм |
205 | Эмпирический радиус атома* | 100 пм |
206 | Ковалентный радиус* | 102 пм |
207 | Радиус иона (кристаллический) | Cl – 0,009 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Простая орторомбическая |
513 | Параметры решётки | a = 6,29, b = 4,50 Å, c = 8,21 Å |
514 | Отношение c/a | |
515 | Температура Дебая | |
516 | Название пространственной группы симметрии | Cmca |
517 | Номер пространственной группы симметрии | 64 |
521 | Кристаллическая решётка #2 | |
522 | Структура решётки | Тетрагональная |
523 | Параметры решётки | a = 8,56 Å, c = 6,12 Å |
524 | Отношение c/a | 0,714 |
525 | Температура Дебая | |
526 | Название пространственной группы симметрии | P42/ncm |
527 | Номер пространственной группы симметрии | |
900 | Дополнительные сведения | |
901 | Номер CAS | 7782-50-5 |
201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.
205* Эмпирический радиус атома хлора согласно [3] составляет 99 пм.
206* Ковалентный радиус хлора согласно [1] и [3] составляет 102±4 пм.
407* Удельная теплота плавления (энтальпия плавления ΔHпл) хлора согласно [3] составляет 6,41 кДж/моль.
410* Молярная теплоемкость хлора [3] составляет 21,838 Дж/(K·моль).
Атомы и электроны
Атомно-молекулярное учение
Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом
Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.
Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.
Электронная конфигурация атома
Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.
Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов
Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов
Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов
Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.
Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».
Правила заполнения электронных орбиталей и примеры
Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.
Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.
Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.
Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.
Внешний уровень и валентные электроны
Тренировка
Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.
Кислород
Газ без цвета, без запаха, составляет 21% воздуха.
Общая характеристика элементов VIa группы
От O к Po (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.
Основное состояние атома кислорода
У атома кислорода (как и атомы азота, фтора, неона) нет возбужденного состояния, так как отсутствует свободная орбиталь с более высоким энергетическим уровнем, куда могли бы перемещаться валентные электроны.
Атом кислорода имеется два неспаренных электрона, максимальная валентность II.
Природные соединения
Получение
В промышленности кислород получают из сжиженного воздуха. Также активно применяются кислородные установки, мембрана которых устроена как фильтр, отсеивающие кислород (мембранная технология).
В лаборатории кислород получают разложением перманганата калия (марганцовки) или бертолетовой соли при нагревании. Применяется реакция каталитического разложения пероксида водорода.
На подводных лодках для получения кислорода применяют следующую реакцию:
Химические свойства
Является самым активным неметаллом после фтора, образует бинарные соединения со всеми элементами кроме гелия, неона, аргона. Чаще всего реакции с кислородом экзотермичны (горение), ускоряются при повышении температуры.
Во всех реакциях, кроме взаимодействия со фтором, кислород проявляет себя в качестве окислителя.
F + O2 → OF2 (фторид кислорода, O +2 )
В реакциях кислорода с металлами образуются оксиды, пероксиды и супероксиды. Реакции с активными металлами идут без нагревания.
Известна реакция горения воды во фторе.
Все органические вещества сгорают с образованием углекислого газа и воды.
Процесс можно остановить на любой стадии в зависимости от желаемого результата.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Основные сведения о хлоре как химическом элементе
История открытия хлора
Хлор — химический элемент с атомным номером 17. Принадлежит к 17-й группе периодической таблицы химических элементов, находится в третьем периоде таблицы. Обозначается символом Cl. Активный неметалл. Галоген. Молекула хлора состоит из двух атомов. Кристаллическая решетка хлора ромбическая. Молярная масса хлора (M (Cl)) составляет 35,446-35,457 г/моль.
Ковалентная связь хлора:
В 1772 году Джозеф Пристли впервые получил первое соединение с хлором — газообразный хлороводород.
В 1774 году хлор был получен шведским ученым Вильгельмом Шееле, который описал выделение хлора при взаимодействии пиролюзита с соляной кислотой: 4 H C l + M n O 2 = C l 2 + M n C l 2 + 2 H 2 O
Шееле вывел хлор со следующими характеристиками:
Однако Вильгельм, используя теорию флогистона, сделал предположение о том, что хлор состоит из дефлогистированной муриевой (соляной) кислоты.
В 1810 году Г. Дэви с помощью процесса электролиза разложил поваренную соль на хлор и натрий, тем самым доказав элементарную природу хлора. В 1811 году ученый предложил новое название для элемента — «хлорин». А спустя год Ж. Гей-Люссак доработал окончательное название, которое мы используем по сей день — хлор. В 1811 также Иоганн Швейгер хотел предложить для хлора название галоген, но вскоре для всей 17 группы элементов закрепился этот термин.
В 1826 году химиком Йёнсом Якобом Берцелиусом была определена точная атомная масса хлора 35,446. 35,457 а. е. м
Физические и химические свойства
К физическим свойствам хлора относят:
К химическим свойствам относят:
C l 2 + 2 H B r → B r 2 + 2 H C l — при таких реакциях хлор вытесняет бром из соединений с водородом или металлом;
2 N a + C l 2 → 2 N a C l — при взаимодействии натрия и хлора мы получаем хлорид натрия;
2 F e + 3 C l 2 → 2 F e C l 3 — при взаимодействии железа и хлора мы получим хлорид железа(III);
C l 2 + H 2 O ⇄ H C l + H C l O
C l 2 + 2 N a O H → N a C l + N a C l O + H 2 O ;
H 2 + C l 2 → 2 H C l ;
Строение электронной оболочки
Электронная оболочка — совокупность всех электронов в атоме, которые окружают ядро.
На валентном уровне атома хлора содержится 1 неспаренный электрон: 1s2 2s2 2p6 3s2 3p5. За счет присутствия в атоме хлора незанятой орбитали d-подуровня, атом хлора может проявлять и прочие степени окисления.
Обратимся к схеме возбужденных состояний атомов хлора:
Валентность | Возможные степени окисления | Электронное состояние валентного уровня | Пример соединений |
---|---|---|---|
I | +1, −1, 0 | 3s2 3p5 | NaCl, NaClO, Cl2 |
III | +3 | 3s2 3p4 3d1 | NaClO2 |
V | +5 | 3s2 3p3 3d2 | KClO3 |
VII | +7 | 3s1 3p3 3d3 | KClO4 |
Нахождение в природе
Биологическая роль хлора
Ионы хлора жизненно необходимы растениям, потому что они участвуют в энергетическом обмене у растений. Человек потребляет 5-10 г NaCl в сутки. Каждый день с пищей человек получает 3-6 г хлора, что абсолютно покрывает потребность в этом элементе откуда-либо из внешней среды.
Хлорные каналы присутствуют во многих типах митохондриальных мембран, скелетных мышцах и клетках. Эти каналы выполняют исключительные функции в нормализации объема жидкости, участвуют в поддержании кислотно-щелочного баланса — рН клеток. Всасывание хлора происходит в толстой кишке.
Получение и применение хлора
Получение хлора в химии
Хлор, который производят, хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет.
В настоящее время химические методы получения хлора не используют, так как они являются очень ресурсозатратными и малоэффективными.
Метод Дикона
В 1867 году ученым химиком Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха: 4 H C l + O 2 → 2 H 2 O + 2 C l 2 ↑
Современные лабораторные методы
На данный момент хлор используется в лабораториях в баллонах.
Для того чтобы получить небольшое количество хлора, обычно используют процессы, основанные на окислении хлороводорода более сильными окислителями. Чаще всего это перманганат калия или диоксид марганца: 2 K M n O 4 + 16 H C l → 2 K C l + 2 M n C l 2 + 5 C l 2 ↑ + 8 H 2 O
Электрохимические методы
При невозможности использования сжиженного хлора в баллонах, используют электрохимические методы.
В промышленности применяются три варианта электрохимического метода: два из них — электролиз с твердым катодом, третий — электролиз с жидким ртутным катодом (ртутный метод производства). При таких методах качество получаемого хлора почти не отличается.
Мембранный метод
Мембранный метод производства хлора наиболее энергоэффективен, но при этом довольно сложен в организации и эксплуатации.
В мембранном методе катодное и анодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Поэтому в мембранном электролизере два потока.
В анодное пространство поступает поток раствора соли. А в катодное — деионизированная вода. Все потоки предварительно очищаются от всевозможных примесей.
Применение хлора
Реакции с органическими веществами
Замещение атомов водорода в молекулах О В :
Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов: C 6 H 6 + C l 2 → C 6 H 5 C l + H C l