Чем отклонить лазерный луч
Лазерное шоу своими руками. Часть 1
Рисующий луч: прошлое, настоящее и будущее.
Это вводная статья о истории развития и принципах работы технологий векторного отображения информации.
Не обижайтесь, на то, что тут всё слишком «википедично», просто мне надоели глупые вопросы.
Те, кто в теме, возможно найдут для себя интересным почитать конец статьи и могут смело переходить ко второй её части по ссылке в конце.
Немножко истории.
Всё началось с того, что некий немец Фердинанд Браун попытался применить на практике так называемые катодные лучи (cathode rays) — пучок ускоренных в электрическом поле электронов, и изобрёл самую первую электронно-лучевую трубку (CRT, ЭЛТ) в 1897 году. Это была трубка с холодным катодом, электромагнитной отклоняющей системой по одной из осей (по второй оси это было вращающееся зеркало) и экраном, покрытым люминофором. В ходе дальнейших усовершенствований другими учёными (Борис Розинг, Джон Б. Джонсон, Гарри Вайнер, и изобретатель телевидения Владимир Зворыкин) в неё были добавлены катод с подогревом, отклоняющая система по второй оси и модулятор интенсивности пучка для управления яркостью свечения точки на экране. Так родилась современная электронно-лучевая трубка.
Электронный луч в ней изменяет свою траекторию в электрическом поле пластин вертикального и горизонтального отклонения (на рисунке показаны жёлтым) и попадает на люминофор экрана, вызывая его свечение. Координаты точки свечения в такой системе задаются напряжением на отклоняющих пластинах. Приблизительно такие ЭЛТ устанавливались в аналоговые осциллоскопы. Кроме электростатической, существует магнитная система отклонения луча — пучок электронов пролетает через магнитное поле, образованное катушками, и меняет свою траекторию в зависимости от силы тока в катушках.
Используя инерционность человеческого зрения и послесвечение люминофора, стало возможно создавать на экране рисунки и появился новый способ отображения информации, которым воспользовались инженеры из Массачусетского технологического института (MIT), создав первую ЭВМ Whirlwind-I (1950 год) с новейшим по тем временам устройством вывода — векторным сканирующим дисплеем. Так было положено начало развитию дисплеев с векторной развёрткой (с произвольным сканированием луча).
Во всем известном растровом способе формирования изображения (на рисунке слева) луч, скользя по строкам, формирует изображение из дискретных элементов — пикселей, образующих картинку; в векторном же способе (на рисунке справа) луч скользит позаданным векторами графическим примитивам — прямой, прямоугольнику, окружности или кривой, образуя изображение.
Широкое распространение дисплеи в векторной развёрткой получили с конца 60х годов прошлого века, и уже тогда, в отличие от растровых, могли похвастаться разрешением до 4096×4096 точек.
До недавнего времени такие дисплеи активно применялись (кое-где до сих пор применяются) в тестовом оборудовании:
как устройства отображения на радиолокационных станциях и в авиадиспетчерских:
и, конечно же, в осциллоскопах:
Многие как старые, так и современные осциллоскопы имеют возможность работы в режиме аналогового векторного дисплея. Для этого необходимо переключить осциллоскоп в режим развёртки X/Y и использовать X-вход для управления положением луча по горизонтали (у некоторых моделей также есть Z-вход, управляющий яркостью луча). Однако на современных цифровых осциллоскопах без функции «цифровой фосфор» векторная картинка теряет всю свою привлекательность и выглядит лишь простым набором образующих векторы точек.
Настоящее
На смену лампам пришли лазеры, а с удешевлением памяти и развитием устройств с растровой развёрткой векторная развёртка применяется только в определённых нишах (и в основном в авионике и с недавнего времени в автомобилестроении — HUD-системы вывода изображения на фоне внешней среды, а также в лазерной гравировке и лазерных шоу).
Поскольку последующие статьи будут о лазерном проекторе — рассмотрим, каким образом он отклоняет рисующий луч.
В настоящее время популярностью пользуются два способа управления лазерным лучом, и у каждого есть свои недостатки и преимущества:
1. Акустооптический дефлектор (АОД)
— Преимущества: высокая скорость отклонения луча.
— Недостатки: низкое разрешение, малое угловое поле сканирования (угол отклонения луча), сложность работы с лазерными лучами большой мощности, дорогая высокочастотная система управления.
АОД работает следующим образом. В оптически-активном кристалле(например ТеО2) возбуждается акустическая волна с частотами в десятки-сотни мегагерц; при прохождении лазерного луча через такой кристалл, за счёт явлений дифракции или рефракции, меняется направление луча. В дифракционном АОД угол отклонения дифрагированного луча управляется изменением частоты акустической волны. В рефракционном АОД отклонение происходит вследствие искривления пути луча при прохождении через среду кристалла с неоднородной деформацией, которая возникает под воздействием бегущей акустической волны.
2. Механическая система развёртки на гальванометрах
— Преимущества: возможность работы с лазерными лучами любых мощностей, которые способны выдержать зеркала, высокое разрешение и точность позиционирования, небольшая цена.
— Недостатки: низкая скорость развёртки из-за применения в системе механических деталей.
Такая система построена на основе гальванометров — устройств, состоящих из электромагнита и постоянного магнита, закреплённого на одной оси с зеркалом.
При изменении тока в катушке постоянный магнит, взаимодействуя с полем катушки, поворачивает ось с зеркалом на угол, пропорциональный проходящему через катушку току. При объединении двух таких гальванометров становится возможным управление положением луча на плоскости, как показано на рисунке ниже.
Будущее
Летом 2012 года случилось одно интересное событие, которое мало кто заметил.
Sumitomo Electric и Sony представили первый в мире миниатюрный непосредственно излучающий зелёный лазер. Диоды, непосредственно излучающие красный и синий свет, уже были представлены на рынке пикопроекторов, и только непосредственно излучающие зелёные лазерные диоды всё ещё не были коммерциализованы. Вместо них использовались синтетичекие методы удвоения частоты лазерных диодов, генерирующих излучение, близкое к инфракрасному. Именно отсутствие на рынке непосредственно излучающих зелёных лазеров ограничивало характеристики видимости, цену и массовые (мобильные и автомобильные) применения лазерных технологий.
Изобретение зелёного лазерного диода даёт новый толчок в развитии коммерчески доступных технологий HUD и HMD (Head mounted display), а также мобильных пикопроекторов.
Одним из самых перспективных решений в области HUD являются лазерные сканирующие МЭМС технологии, которые могут обеспечить всегда сфокусированное, высокочёткое виртуальное изображение высокой яркости, а также низкое потребление, размер, вес и цену устройства.
Лазерная сканирующая технология в чём-то похожа на систему развёртки на гальванометрах и основана на применении(для формирования полного набора цветов) комбинаций трёх базовых цветов — красного, зелёного и синего — от лазерных диодов соответствующего цвета. Скомбинированный лазерный луч, попадая на выполненное по МЭМС технологии микроминиатюрное зеркало, отклоняется на угол, задаваемый электронной системой развёртки. За счёт миниатюрности зеркала скорость сканирования позволяет таким системам работать как в векторном, так и в растровом режиме. Разрешение сканирования может в несколько раз превышать современное Full HD.
Первый в мире коммерческий лазерный сканирующий МЭМС-блок HUD, проецирущий на ветровое стекло автомобиля информацию дополненной реальности посредством непосредственно излучающих лазеров (в том числе и нового зелёного), в недавнем времени появился в Японии. Копорация Pioneer выпустила первую в мире автомобильнуюнавигационную систему GPS на основе технологии MicroVision с дополненной реальностью — Poineer CyberNavi.
Проекторный модуль AR-HUD системы устанавливается в положение противосолнечного козырька сбоку от сиденья водителя, HUD дисплей представляет собой лист прозрачного пластика, который крепится в поле зрения водителя напротив лобового стекла, а 37-дюймовый виртуальный дисплей находится на расстоянии порядка 3 м от глаз водителя. Виртуальные элементы HUD формируются посредством сканирующих МЭМС-зеркал проектора, проецирующих лазерные лучи трёх базовых цветов пространства RGB, дающие полноцветное изображение с высоким уровнем контрастности.
Лазерные сканирующие технологии в скором времени будут повсеместно использоваться в очках дополненной реальности (например в Google Glass), для отображения информации на лобовом стекле автомобилей, в мотоциклетных шлемах и как мобильные проекторы в сотовых телефонах.
В следующей части я подробнее расскажу вам о том, как устроен лазерный проектор для световых шоу, и выдам готовую схему высокоскоростного ЦАП. А в качестве бонуса — расскажу как вывести видео на осциллограф при помощи трёх проводков и разъёмчика.
ЧТО ЗНАЧИТ «УПРАВЛЯТЬ» ЛАЗЕРНЫМ ЛУЧОМ?
Почти наверняка читатель ответит, что это значит отклонять нужным образом лазерный луч в пространстве, расщеплять его при необходимости на несколько лучей, фокусировать излучение на мишень.
Когда регулируют длительность лазерных импульсов, частоту их повторения, энергию, то тем самым тоже осуществляют управление лазерным излучением. Иногда требуется удвоить или утроить частоту излучения или плавно ее изменять. Это тоже есть управление лазерным лучом. Может потребоваться дополнительное увеличение степени монохроматичности излучения или дополнительная стабилизация его частоты. И это есть управление лазерным лучом. Таким образом, понятие «управление лазерным лучом» оказывается значительно шире, чем это может показаться на первый взгляд.
Рискуя утомить читателя, попробуем всё же разъяснить принцип работы этого дефлектора. Предварительно нам придется сказать несколько слов о явлении двойного лучепреломления, открытом еще в XVII в. Представьте себе плоскопараллельную прозрачную пластинку из кристалла кальцита (СаСОэ), на которую по нормали падает световой луч. Внутри пластинки луч расщепляется, так что из нее выходят уже два луча; они параллельны друг другу. Один из лучей составляет единую прямую линию с падающим лучом; это-так называемый обыкновенный луч. Другой луч как бы «отщепляется» в пластинке от первичного и выходит из нее немного в стороне от обыкновенного луча (но, напоминаем, параллельно ему). Этот второй луч называют необыкновенным. Существенно, что обыкновенный и необыкновенный лучи поляризованы во взаимно перпендикулярных плоскостях; первый поляризован перпендикулярно плоскости, проходящей через 136
падающий луч и оптическую ось кристалла, второй поляризован в указанной плоскости. (Не входя в детали, скажем, что оптическая ось кристалла-это одно из особых направлений в нем; если, например, луч падает параллельно оси, то двойное лучепреломление не наблюдается.)
Предположим теперь, что падающий на пластинку кальцита луч поляризован либо как обыкновенный, либо как необыкновенный луч.
А как поворачивают плоскость поляризации луча? Для этого используют, в частности, электрооптичес- кий эффект Поккельса. Надо взять еще один кристалл (например, кристалл дигидрофосфата калия КН2Р04) и поместить его между пластинами плоского конденсатора. Электрическое поле конденсатора воздействует на показатель преломления кристалла, в частности изменяет его способность к двойному лучепреломлению. Пусть сквозь данный кристалл (или, как
Так выглядит явление двойного лучепреломления при нормальном падении светового луча на плоскопараллельную пластинку кристалла (7 — обыкновенный луч, 2 — необыкновенный луч). Обыкновенный луч поляризован перпендикулярно плоскости рисунка, что показано с помощью кружков, а необыкновенный поляризован в плоскости рисунка (короткие стрелки). Штриховая прямая — оптическая ось кристалла
Рассмотрим, как действует двухкаскадный электрооптический дефлектор. Будем полагать, что исходный световой луч поляризован перпендикулярно плоскости рисунка и, таким образом, является обыкновенным лучом для кристаллов кальцита СаС03. Если обе ячейки Поккельса (ячейки А и В) выключены, то исходный луч не испытывает отклонения ни в одном из кристаллов кальцита и выйдет из дефлектора в положении, обозначенном цифрой 7. Теперь предположим, что ячейка А включена, а ячейка В выключена. В ячейке А плоскость поляризации луча повернется на 90°, луч станет необыкновенным и поэтому испытает отклонение в первом кристалле кальцита.
говорят, сквозь ячейку Поккельса) проходит плоско- поляризованный световой луч. Можно подобрать такое напряжение, подаваемое на ячейку Поккельса, при котором плоскость поляризации луча повернется по выходе из ячейки ровно на 90°. Итак, надо воспользоваться каскадом из ячейки Поккельса и пластинки кальцита. Допустим, что падающий на этот каскад световой луч имеет поляризацию обыкновенного луча (по отношению к кристаллу кальцита). Тогда, если подать на ячейку соответствующее напряжение, плоскость поляризации луча повернется на 90°, он станет необыкновенным лучом и поэтому, проходя через 138
пластинку кальцита, сместится в сторону. Если ячейку выключить, плоскость поляризации луча останется неизменной и он выйдет из пластинки кальцита, не сместившись. Таким образом, включая и выключая ячейку Поккельса, можно менять положение луча в пространстве при сохранении его направления. Изменение положения луча производится очень быстро: за время порядка 10“8 с.
Обычное зеркало с алюминиевым покрытием отражает примерно 95% падающего излучения, причём его эффективность сильно зависит от длины волны.
Из всех материалов, показанных на графике, самый высокий коэффициент отражения у алюминия, который отнюдь не является тугоплавким материалом. Если при облучении маломощным излучением зеркало будет нагреваться незначительно, то при попадании мощного излучения материал зеркального покрытия быстро придёт в негодность, что приведёт к ухудшению его отражающих свойств и дальнейшему лавинообразному нагреву и разрушению.
При длине волны менее 200 нм эффективность зеркал резко падает, т.е. от ультрафиолетового или рентгеновского излучения (лазер на свободных электронах) такая защита не будет работать вообще.
Существуют экспериментальные искусственные материалы со 100%-ным отражением, но они работают только для определённой длины волны. Также зеркала могут покрываться специальными многослойными покрытиями, увеличивающими их отражающие способности до 99.999%. Но и этот метод работает только для одной длины волны, причём падающей под определённым углом.
Выход из контейнера сразу подвергнет зеркальную поверхность воздействию окружающей среды – атмосферы и теплового воздействия. Если зеркальная поверхность не будет покрыта защитной плёнкой, то это сразу приведёт к ухудшению её отражающих свойств, а если её покрыть защитным напылением, то оно само будет ухудшать отражающие свойства поверхности.
В какой-то степени поможет способ «размазывания» тепловой энергии лазерного луча по корпусу путем обеспечения вращательного движения летательного аппарата (ЛА), вокруг собственной продольной оси. Но этот способ подходит лишь для боеприпасов и в ограниченной степени для беспилотных летательных аппаратов (БПЛА), в меньшей степени он будет эффективен при облучении лазером в переднюю часть корпуса.
На некоторые типах защищаемых объектов, например, на планирующих авиабомбах, крылатых ракетах (КР), или противотанковых управляемых ракетах (ПТУР), атакующих цель при пролёте сверху, такой способ также применить не удастся. Невращающимися, по большей части, являются миномётные мины. Сложно собрать данные по всем невращающимся ЛА, но уверен, что их очень много.
В любом случае, вращение ЛА лишь незначительно снизит влияние лазерного излучения на цель, т.к. тепло, передаваемое мощным лазерным излучением корпусу будет передаваться на внутренние конструкции и далее по всем компонентам летательного аппарата.
Применение дымов и аэрозолей в качестве мер по противодействию лазерному оружию также имеет ограниченные возможности. Как уже говорилось в статьях серии, применение лазеров против наземной бронированной техники или кораблей возможно только при использовании против средств наблюдения, к защите которых мы ещё вернёмся. Прожечь корпус БМП/танка или надводного корабля лазерным лучом в обозримой перспективе нереально.
Разумеется, невозможно применить дымовую или аэрозольную защиту против ЛА. Из-за высокой скорости ЛА дым или аэрозоль всегда будут сдуваться назад встречным напором воздуха, у вертолётов их будет сдувать воздушный поток от винта.
— на вооружении будет стоять большая номенклатура лазеров различных производителей, работающих на разных длинах волн;
— фильтр, предназначенный для поглощения или отражения определённой длины волны, при воздействии мощного излучения скорее всего выйдет из строя, что приведёт либо к попаданию лазерного излучения на чувствительные элементы, либо выходу из строя самой оптики (помутнение, искажение изображения);
— некоторые лазеры, в частности, лазер на свободных электронах, могут изменять рабочую длину волны в широком диапазоне.
Если на крупных носителях установка защитных экранов и дублирующих средств оптической и тепловизионной разведки вполне реализуема, то на высокоточном оружии, особенно компактных размеров, это сделать гораздо сложнее. Во-первых, существенно ужесточаются массогабаритные требования к защите, во-вторых, воздействие лазерного излучения высокой мощности даже при закрытой заслонке, может вызвать, перегрев компонент оптической системы из-за плотной компоновки, что приведёт к частичному или полному нарушению её работы.
Абляционная защита (от латинского ablatio – отнятие, унос массы) основана на уносе вещества с поверхности защищаемого объекта потоком горячего газа и/или на перестройке пограничного слоя, что в совокупности значительно уменьшает теплопередачу к защищаемой поверхности. Иными словами, поступающая энергия тратится на нагрев, расплав, и испарение защищающего материала.
В настоящий момент абляционная защита активно используется в спускаемых модулях космических аппаратов (КА) и в соплах реактивных двигателей. Наибольшее применение получили обугливающиеся пластмассы на основе фенольных, кремнийорганических и других синтетических смол, содержащих в качестве наполнителей углерод (в том числе графит), двуокись кремния (кремнезем, кварц), найлон.
Абляционная защита – одноразовая, тяжелая и объёмная, поэтому использовать её на летательных аппаратах многоразового использования (читай не всех пилотируемых, и большей части беспилотных ЛА) нет смысла. Единственное её применение – это на управляемых и неуправляемых снарядах. И здесь основной вопрос в том, какой толщины должна быть защита для лазера мощностью, например, 100 кВт, 300 кВт и т.д.
Под вопросом находятся неуправляемые боеприпасы, поскольку неравномерное разрушение абляционной защиты от лазерного излучения может изменить внешнюю баллистику, вследствие чего боеприпас отклонится от цели. Если абляционная защита уже где-то применяется, например, в гиперзвуковых боеприпасах, то придётся наращивать её толщину.
Другой способ защиты – конструктивное покрытие или исполнение корпуса несколькими защитными слоями из тугоплавких материалов, устойчивых к внешним воздействиям.
Если проводить аналогию с космическими аппаратами, то можно рассмотреть тепловую защиту многоразового КА «Буран». На участках, где температура поверхности составляет 371 – 1260 градусов Цельсия, применялось покрытие, состоящее из аморфного кварцевого волокна 99,7 %-ной чистоты, к которому добавляется связующее – коллоидная двуокись кремния. Покрытие изготавливается в виде плиток двух типоразмеров толщиной от 5 до 64 мм.
На внешнюю поверхность плиток наносится боросиликатное стекло, содержащее специальный пигмент (белое покрытие на основе окиси кремния и блестящей окиси алюминия), для получения малого коэффициента поглощения солнечной радиации и высокого коэффициента излучения. На носовом обтекателе и носках крыла аппарата, где температуры превышают 1260 градусов, применялась абляционная защита.
Необходимо учитывать, что при длительной эксплуатации может быть нарушена защита плиток от влаги, что приведёт к утрате теплозащитой своих свойств, поэтому она не может напрямую быть использована в качестве противолазерной защиты на многоразовых ЛА.
В настоящий момент разрабатывается перспективная абляционная теплозащита с минимальным износом поверхности, обеспечивающая защиту летательных аппаратов от температуры до 3000 градусов.
Группа учёных из Института Ройса при Университете Манчестера (Великобритания) и Центрального южного университета (Китай) разработала новый материал с улучшенными характеристиками, который без структурных изменений выдерживает температуру до 3000°C. Это керамическое покрытие Zr0.8Ti0.2C0.74B0.26, которое накладывается на матрицу углерод-углеродного композита. По своим характеристикам новое покрытие значительно превосходит самую лучшую высокотемпературную керамику.
Химическая структура термостойкой керамики сама по себе выполняет роль защитного механизма. При температуре 2000°C материалы Zr0.8Ti0.2C0.74B0.26 и SiC окисляются и превращаются в Zr0.80T0.20O2, B2O3 и SiO2, соответственно. Zr0.80Ti0.20O2 частично расплавляется и формирует относительно плотный слой, а оксиды с низкой температурой плавления SiO2 и B2O3 испаряются. При более высокой температуре 2500°C кристаллы Zr0.80Ti0.20O2 сплавляются в более крупные образования. При температуре 3000°C формируется почти абсолютно плотный внешний слой, в основном состоящий из Zr0.80Ti0.20O2, титаната циркония и SiO2.
В мире ведутся разработки и специальных покрытий, предназначенных для защиты от лазерного излучения.
Представитель Народно-освободительной армии Китая еще в 2014 году заявлял, что американские лазеры не представляют особой опасности для китайской военной техники, обшитой специальным защитным слоем. Остаются только вопросы, от лазеров какой мощности, защищает это покрытие, и какую имеет толщину и массу.
Наибольший интерес представляет покрытие, разработанное американскими исследователями из Национального института стандартов и технологий и университета Канзаса – аэрозольный состав на основе смеси углеродных нанотрубок и специальной керамики, способный эффективно поглощать свет лазеров. Нанотрубки нового материала однородно поглощают свет и передают тепло в близлежащие области, снижая температуру в точке контакта с лучом лазера. Керамические высокотемпературные соединения обеспечивают защитному покрытию высокую механическую прочность и стойкость по отношению к разрушениям от высокой температуры.
В процессе испытаний тонкий слой материала нанесли на поверхность меди и после высыхания сфокусировали на поверхности материала луч длинноволнового инфракрасного лазера, лазера, который используется для резки металла и других твердых материалов.
Анализ собранных данных показал, что покрытие успешно поглотило 97.5 процентов энергии луча лазера и без разрушения выдержало уровень энергии в 15 кВт на квадратный сантиметр поверхности.
По данному покрытию возникает вопрос: на испытаниях защитное покрытие было нанесено на медную поверхность, которая сама по себе является одной из самых сложных материалов для обработки лазером, из-за её высокой теплопроводности, неясно как оно поведёт себя такое защитное покрытие с другими материалами. Также возникают вопросы о её максимальной температурной стойкости, стойкости к вибрационно-ударным нагрузкам, воздействию атмосферных условий и ультрафиолета (солнце). Не указано время, в течении которого проводилось облучение.
Ещё один интересный момент: если двигатели ЛА также будут покрыты веществом с высокой теплопроводностью, то от них равномерно будет нагрет весь корпус, что максимально демаскирует ЛА в тепловом спектре.
В любом случае, характеристики вышеуказанной аэрозольной защиты будут находиться в прямой зависимости с размерами защищаемого объекта. Чем больше защищаемый объект и площадь покрытия, тем больше энергии может быть рассеяно по площади и отдано в виде теплового излучения и охлаждения набегающим потоком воздуха. Чем меньше защищаемый объект, тем толще придётся делать защиту, т.к. малая площадь не позволит отвести достаточно тепла и будут перегреты внутренние конструктивные элементы.
Применение защиты от лазерного излучения, неважно абляционной или конструктивной теплоизолирующей, может переломить тенденцию к уменьшению размеров управляемых боеприпасов, существенно уменьшить эффективность как управляемых, так и не управляемых боеприпасов.
Все несущие поверхности и органы управления – крылья, стабилизаторы, рули, придётся делать из дорогих и сложно обрабатываемых тугоплавких материалов.
Отдельно возникает вопрос по защите радиолокационных средств обнаружения. На экспериментальном космическом аппарате «БОР-5» испытывалась радиопрозрачная теплозащита – стеклопластик с кремнеземным наполнителем, но её теплозащитные и массогабаритные характеристики мне найти не удалось.
Пока неясно, может ли в результате облучения мощным лазерным излучением обтекателя радиолокационных средств разведки, пусть и с защитой от теплового излучения, возникнуть высокотемпературное плазменное образование, препятствующее прохождению радиоволн, вследствие чего цель может быть потеряна.
Внедрение противолазерной защиты неизбежно приведёт к росту стоимости и массогабаритных характеристик управляемых и неуправляемых боеприпасов, а также пилотируемых и беспилотных летательных аппаратов.
В заключение можно упомянуть об одном из разрабатывающихся способов активного противодействия лазерной атаке. Компания Adsys Controls, расположенная в Калифорнии, разрабатывает защитную систему Helios, которая должна сбивать наведение лазера противника.
При наведении боевого лазера противника на защищаемый аппарат Helios определяет его параметры: мощность, длину волны, частоту импульсов, направление и дальность до источника. В дальнейшем Helios мешает лазерному лучу противника фокусироваться на цели, предположительно путём наведения встречного низкоэнергетического лазерного луча, который сбивает с толку систему наведения противника. Детальные характеристики системы Helios, стадия её разработки и её практическая работоспособность пока неизвестны.