Чем определяется существующая специализация клеток

Чем определяется существующая специализация клеток

Подробное решение параграф § 28 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Что такое ген и генотип?

Ген – это фрагмент (участок или отрезок) ДНК, содержащий информацию об одной молекуле белка. Генотип – это набор всех генов в организме.

Что вам известно о современных достижениях в области генетики?

– Перспективы генной терапии в лечении атеросклероза сосудов нижних конечностей.

– Использование молекулярно-генетических маркеров для диагностики ряда психических заболеваний

– Лечение редкой формы паралича при помощи генной терапии

– Генетика выходит на битву со старением

– Генетика в помощь антропологам

– Успехи стволовой терапии

– Открытие гена, ответственного за развитие синдрома Ашера первого типа

– Новый способ диагностировать рак любого вида по анализу крови

Вопросы для повторения и задания

1. Что такое геном? Выберите самостоятельно критерии сравнения и сравните понятия «геном» и «генотип».

Геном – совокупность генов, содержащихся в одинарном наборе хромосом данного организма. Например, у человека геном 23 хромосомы. Генотип – это набор всех генов в организме в диплоидном состоянии, например, генотип человека 46 хромосом.

2. Чем определяется существующая специализация клеток?

Ведущую роль в дифференцировке клеток на первых стадиях развития зародыша играют цитоплазма и поверхностный слой яйцеклетки, которая неоднородна по строению. Все клетки зародыша на стадии бластулы сходны по составу генов (генотипу), но различия в составе цитоплазмы обеспечивают дифференцировку клеток, поэтому на стадии гаструлы клетки зародыша оказываются специализированными. Важно подчеркнуть, что механизм дальнейшей специализации, образования тканей и органов усложняется, определяется взаимодействием разных частей зародыша.

3. Какие обязательные элементы входят в состав гена эукариотической клетки?

Если ген – это отрезок ДНК, значит состоит из нуклеотидов, соединенных между собой.

В соответствии с современными научными представлениями ген эукариотических клеток, кодирующий определённый белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но тем не менее активно участвуя в его управлении. Кроме регуляторных зон существует структурная часть гена, которая, собственно, и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

4. Приведите примеры взаимодействия генов.

В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может

превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой — за синтез фермента. Нарушение в работе любого из этих генов приведёт к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый. Иногда встречается и противоположная ситуация, когда один ген влияет на развитие нескольких признаков и свойств организма. Такое явление называют плейотропией или множественным действием гена. Как правило, такое действие вызывают гены, функционирование которых очень важно на ранних стадиях онтогенеза. У человека подобным примером может служить ген, участвующий в формировании соединительной ткани. Нарушение в его работе приводит к развитию сразу нескольких симптомов (синдром Марфана): длинные «паучьи» пальцы, очень высокий рост из-за сильного удлинения конечностей, высокая подвижность суставов, нарушение структуры хрусталика и аневризма (выпячивание стенки) аорты.

Подумайте! Вспомните!

1. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые. Гены, закодированные в митохондриальной ДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома). У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека — одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа — несколько сотен тысяч, а в крупных ооцитах лягушки — десятки миллионов. Кроме того, обычно происходит деградация митохондрий сперматозоида после оплодотворения.

2. Вспомните известные вам особенности развития человека. На каком этапе эмбриогенеза уже возникает чёткая дифференциация клеток?

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

3. Создайте портфолио по теме «Исследования ДНК человека: надежды и опасения».

Зачем мне нужен генетический анализ? Возможно, уже через пару лет этот вопрос покажется вам глупым. Вы же не удивляетесь сейчас, когда врач просит вас сдать анализ крови? А уже очень скоро генетический анализ будет делаться в обязательном порядке каждому ребенку в роддоме и каждому пациенту, который обратился в клинику. Потому что по вашему ДНК можно определить, к каким заболеваниям у вас есть предрасположенность и какие лекарства для вас более эффективны.

Учёные-генетики из США при помощи технологии точного редактирования генов предприняли очередную попытку видоизменить ДНК яйцеклетки человека. Данный эксперимент был проведён с целью избавления будущего потомства от наследственных заболеваний, передающихся эмбриону от родителей. Ряд экспертов-биологов выступили против подобных исследований. В Великобритании, как и во многих других странах, изменение хромосом в яйцеклетке или сперматозоидах человека с целью получения искусственно оплодотворённого эмбриона запрещено законом из-за опасений, что «конструирование младенцев» будет поставлено на поток.

Источник

3.14 Современные представления о гене и геноме

3.14 Современные представления о гене и геноме 29.07.2012 Torchwood

Вопрос 1. Что такое геном?

Геном — это совокупность генов, характер­ных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от гено­типа, является характеристикой вида, а не осо­би, поскольку описывает набор генов, свойст­венных данному виду, а не их аллели, обуслав­ливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.

Вопрос 2. Чем определяется существующая специализация клеток?

Специализация клеток организма опреде­ляется избирательным функционированием генов. В каждой клетке работают гены, харак­терные именно для данного типа тканей и ор­ганов: в клетках мускулатуры — гены мышеч­ных белков, в клетках стенок желудка — гены пищеварительных ферментов и т. д. Большин­ство остальных генов при этом заблокировано, и их активация может привести к развитию серьезнейших заболеваний (например, к появ­лению раковой опухоли).

Вопрос 3. Какие обязательные элементы входят в состав гена эукариотической клетки?

Обязательными элементами гена эукариот являются:

регуляторные участки, расположен­ные в начале и конце гена, а также иногда вне гена (на некотором удалении от него). Они оп­ределяют, когда, при каких обстоятельствах и в каких типах тканей будет работать этот ген;
структурная часть, которая содержит информацию о первичной структуре кодируе­мого белка; обычно структурная часть меньше регуляторной.

Вопрос 4. Приведите примеры взаимодействия генов.

Примером взаимодействия генов может служить пигментация (окраска) шерсти у кро­лика. Формирование определенной окраски регулируется двумя генами. Один из них (на­зовем его А) отвечает за наличие пигмента, и в случае, если работа данного гена нарушена (рецессивный аллель), шерсть кролика будет белого цвета (генотип аа). Второй ген (назовем его В) отвечает за неравномерность окрашива­ния шерсти. В случае нормального функци­онирования этого гена (доминантный аллель), синтезируемый пигмент скапливается у осно­вания волоса, и кролик имеет серую окраску (генотипы АаВв, ААВв, АаВВ, ААВВ). Если же второй ген представлен только рецессивны­ми аллелями, то синтезируемый пигмент рас­пределяется равномерно. У таких кроликов шерсть черного цвета (генотипы Аавв, ААвв).

Источник

3.14 Современные представления о гене и геноме

Вопрос 1. Что такое геном?

Геном — это совокупность генов, характер­ных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от гено­типа, является характеристикой вида, а не осо­би, поскольку описывает набор генов, свойст­венных данному виду, а не их аллели, обуслав­ливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.

Вопрос 2. Чем определяется существующая специализация клеток?

Специализация клеток организма опреде­ляется избирательным функционированием генов. В каждой клетке работают гены, харак­терные именно для данного типа тканей и ор­ганов: в клетках мускулатуры — гены мышеч­ных белков, в клетках стенок желудка — гены пищеварительных ферментов и т. д. Большин­ство остальных генов при этом заблокировано, и их активация может привести к развитию серьезнейших заболеваний (например, к появ­лению раковой опухоли).

Вопрос 3. Какие обязательные элементы входят в состав гена эукариотической клетки?

Обязательными элементами гена эукариот являются:

регуляторные участки, расположен­ные в начале и конце гена, а также иногда вне гена (на некотором удалении от него). Они оп­ределяют, когда, при каких обстоятельствах и в каких типах тканей будет работать этот ген;
структурная часть, которая содержит информацию о первичной структуре кодируе­мого белка; обычно структурная часть меньше регуляторной.

Вопрос 4. Приведите примеры взаимодействия генов.

Примером взаимодействия генов может служить пигментация (окраска) шерсти у кро­лика. Формирование определенной окраски регулируется двумя генами. Один из них (на­зовем его А) отвечает за наличие пигмента, и в случае, если работа данного гена нарушена (рецессивный аллель), шерсть кролика будет белого цвета (генотип аа). Второй ген (назовем его В) отвечает за неравномерность окрашива­ния шерсти. В случае нормального функци­онирования этого гена (доминантный аллель), синтезируемый пигмент скапливается у осно­вания волоса, и кролик имеет серую окраску (генотипы АаВв, ААВв, АаВВ, ААВВ). Если же второй ген представлен только рецессивны­ми аллелями, то синтезируемый пигмент рас­пределяется равномерно. У таких кроликов шерсть черного цвета (генотипы Аавв, ААвв).

Источник

Чем определяется существующая специализация клеток

Клеточная специализация, также известная как дифференцировка клеток, представляет собой процесс, посредством которого родовые клетки превращаются в специфические клетки, предназначенные для выполнения определенных задач в организме. Клеточная специализация является наиболее важной в развитии эмбрионов. У взрослых стволовые клетки специализируются на замене клеток, которые изнашиваются в костном мозге, мозге, сердце и крови.

Механика дифференцировки клеток

Точный механизм дифференцировки клеток неизвестен по состоянию на апрель 2010 г., хотя ученые знают, что определенные гены в ДНК клетки должны быть активированы или деактивированы, чтобы произвести определенный тип клеток. Строковский Ярослав выдвигает гипотезу, что соседние клетки вводят в клетку агент, который заставляет ее дифференцироваться. Было доказано, что клетки костного мозга специализируются, когда количество лейкоцитов в организме становится слишком низким.

Клеточная специализация и развитие эмбрионов

При зачатии образуется зигота, состоящая всего из одной клетки. Зигота превращается в зародыш, который является многоклеточным организмом. Специализация клеток жизненно важна для правильного развития эмбрионов. Эмбрион нуждается в клетках для развития каждого из его жизненно важных органов, таких как мозг, сердце и кожа.

Клеточная специализация у взрослых

Взрослые состоят в основном из клеток, называемых соматическими клетками, которые не изменяются. Тело взрослого человека также содержит стволовые клетки, которые могут быть специализированы для замены изношенных клеток в организме. Взрослые стволовые клетки можно найти во многих областях тела, включая мозг, кости и костный мозг, сердце, кровь, кожу и репродуктивные органы. Кроветворные стволовые клетки называются кроветворными клетками, а клетки, которые образуют кости или ткани, называются стромальными клетками.

Дедифференцировка

Использование специализации клеток в медицине

В настоящее время ученые изучают возможности использования взрослых стволовых клеток в лечении таких заболеваний, как диабет и болезни сердца; они предполагают, что стволовые клетки могут быть запущены, чтобы специализироваться на замене больных клеток в сердце или поджелудочной железе. Пересадки костного мозга уже используются для генерации большего количества лейкоцитов у больных лейкемией и для лечения определенных типов рака молочной железы или яичников.

Источник

28. Современные представления о гене и геноме

28. Современные представления о гене и геноме

Вспомните!

Что такое ген и генотип?

Что вам известно о современных достижениях в области генетики?

В 1988 г. в США по инициативе лауреата Нобелевской премии Джеймса Уотсона и в 1989 г. в России под руководством академика Александра Александровича Баева были начаты работы по реализации грандиозного мирового проекта «Геном человека». По масштабам финансирования этот проект сравним с космическими проектами. Целью первого этапа работы было определение полной последовательности нуклеотидов в ДНК человека. Сотни учёных многих стран мира в течение 10 лет трудились над решением этой задачи. Все хромосомы были «поделены» между научными коллективами стран – участниц проекта. России для исследования достались третья, тринадцатая и девятнадцатая хромосомы.

Весной 2000 г. в канадском городе Ванкувере подвели итоги первого этапа. Было официально объявлено, что нуклеотидная последовательность всех хромосом человека расшифрована. Трудно переоценить значение этой работы, так как знание структуры генов человеческого организма позволяет понять механизмы их функционирования и, следовательно, определить влияние наследственности на формирование признаков и свойств организма, на здоровье и продолжительность жизни. В ходе исследований было обнаружено множество новых генов, чью роль в формировании организма в дальнейшем предстоит изучить более подробно. Изучение генов ведёт к созданию принципиально новых средств диагностики и способов лечения наследственных заболеваний. Расшифровка последовательности ДНК человека имеет огромное практическое значение для определения генетической совместимости при пересадке органов, для генетической дактилоскопии и генотипирования.

По мнению учёных, если XX век был веком генетики, то XXI век будет веком геномики (термин введён в 1987 г.).

Геномика – наука, которая изучает структурно-функциональную организацию генома, представляющего собой совокупность генов и генетических элементов, определяющих все признаки организма.

Но не только для биологии и медицины оказались важны полученные сведения. На основе знаний структуры генома человека можно реконструировать историю человеческого общества и эволюцию человека как биологического вида. Сравнение геномов разных видов организмов позволяет изучать происхождение и эволюцию жизни на Земле.

Что же представляет собой геном человека?

Геном человека. Вам уже известны понятия «ген» и «генотип». Термин «геном» впервые был введён немецким ботаником Гансом Винклером в 1920 г., который охарактеризовал его как совокупность генов, характерных для гаплоидного набора хромосом данного вида организма. В отличие от генотипа, геном является характеристикой вида, а не отдельной особи. Каждая гамета диплоидного организма, несущая гаплоидный набор хромосом, по сути, содержит геном, характерный для данного вида. Вспомните наследование признаков у гороха. Гены окраски семени, формы семени, окраски цветка есть у каждого растения, они являются обязательными для его существования и входят в геном данного вида. Но у любого растения гороха, как у всех диплоидных организмов, существует два аллеля каждого гена, расположенные в гомологичных хромосомах. У одного растения это могут быть одинаковые аллели, отвечающие за жёлтую окраску горошин, у другого – разные, обусловливающие жёлтую и зелёную, у третьего – оба аллеля будут определять развитие зелёной окраски семян, и так по всем признакам. Эти индивидуальные отличия являются характеристикой генотипа конкретной особи, а не генома. Итак, геном – это «список» генов, необходимых для нормального функционирования организма.

Расшифровка полной последовательности нуклеотидов в ДНК человека позволила оценить общее число генов, составляющих геном. Оказалось, что их всего около 30–40 тыс., хотя точное число пока не известно. Раньше предполагали, что количество генов у человека раза в 3–4 больше – около 100 тыс., поэтому данные результаты стали своего рода сенсацией. У каждого из нас генов всего в 5 раз больше, чем у дрожжей, и всего в 2 раза больше, чем у дрозофилы. По сравнению с другими организмами мы имеем не так уж много генов. Может быть, существуют какие-то особенности в строении и функционировании нашего генома, которые позволяют человеку быть сложноорганизованным существом?

Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например, белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов.

В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5 % от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90 % от всего генома.

Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определённых генов. Мышечной клетке не надо синтезировать кератин, а нервной – мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких как редупликация, транскрипция, синтез АТФ и многие другие.

В соответствии с современными научными представлениями ген эукариотических клеток, кодирующий определённый белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но тем не менее активно участвуя в его управлении.

Кроме регуляторных зон существует структурная часть гена, которая, собственно, и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

Взаимодействие генов. Необходимо отчётливо представлять себе, что работа одного гена не может осуществляться изолированно от всех остальных. Взаимовлияние генов многообразно, и в формировании большинства признаков организма обычно принимает участие не один и не два, а десятки разных генов, каждый из которых вносит свой определённый вклад в этот процесс.

По данным проекта «Геном человека», для нормального развития клетки гладкой мышечной ткани необходима слаженная работа 127 генов, а в формировании поперечно – полосатого мышечного волокна участвуют продукты 735 генов.

В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой – за синтез фермента (рис. 82). Нарушение в работе любого из этих генов приведёт к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый.

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Рис. 82. Схема образования пигмента у душистого горошка

Иногда встречается и противоположная ситуация, когда один ген влияет на развитие нескольких признаков и свойств организма. Такое явление называют плейотропией или множественным действием гена. Как правило, такое действие вызывают гены, функционирование которых очень важно на ранних стадиях онтогенеза. У человека подобным примером может служить ген, участвующий в формировании соединительной ткани. Нарушение в его работе приводит к развитию сразу нескольких симптомов (синдром Марфана): длинные «паучьи» пальцы, очень высокий рост из-за сильного удлинения конечностей, высокая подвижность суставов, нарушение структуры хрусталика и аневризма (выпячивание стенки) аорты.

Вопросы для повторения и задания

1. Что такое геном? Выберите самостоятельно критерии сравнения и сравните понятия «геном» и «генотип».

2. Чем определяется существующая специализация клеток?

3. Какие обязательные элементы входят в состав гена эукариотической клетки?

4. Приведите примеры взаимодействия генов.

Подумайте! Выполните!

1. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.

2. Вспомните известные вам особенности развития человека. На каком этапе эмбриогенеза уже возникает чёткая дифференциация клеток?

3. Создайте портфолио по теме «Исследования ДНК человека: надежды и опасения».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Взаимодействие неаллельных генов. Известно несколько видов взаимодействия неаллельных генов.

Комплементарное взаимодействие. Явление взаимодействия нескольких неаллельных генов, приводящее к развитию нового проявления признака, отсутствующего у родителей, называют комплементарным взаимодействием. Пример наследования окраски цветка у душистого горошка, приведённый в § 28, относится как раз к этому типу взаимодействия генов. Доминантные аллели двух генов (А и В) каждый в отдельности не могут обеспечить синтез пигмента. Антоциановый пигмент, вызывающий пурпурную окраску цветка, начинает синтезироваться только в том случае, когда в генотипе присутствуют доминантные аллели обоих генов (А_В_) (рис. 83).

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Рис. 83. Наследование окраски венчика у душистого горошка

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Рис. 84. Наследование формы гребня у кур

Известным примером комплементарного взаимодействия является наследование формы гребня у кур (рис. 84). Существует четыре формы гребня, формирование которых определяется взаимодействием двух неаллельных генов – А и В. При наличии в генотипе доминантных аллелей только гена А (А_bb) образуется розовидный гребень, наличие доминантных аллелей второго гена В (aaB_) обусловливает образование гороховидного гребня. Если в генотипе присутствуют доминантные аллели обоих генов (А_В_), образуется ореховидный гребень, а при отсутствии доминантных аллелей (aabb) развивается простой гребень.

Эпистаз. Взаимодействие неаллельных генов, при котором ген одной аллельной пары подавляет проявление гена другой аллельной пары, называют эпистазом. Гены, которые подавляют действие других генов, называют ингибиторами или супрессорами. Гены-ингибиторы могут быть как доминантными (I), так и рецессивными (i), поэтому различают доминантный и рецессивный эпистазы.

При доминантном эпистазе один доминантный ген (I) подавляет проявление другого неаллельного доминантного гена.

Возможны два варианта расщепления по фенотипу при доминантном эпистазе.

1. Гомозиготы по рецессивным аллелям (aaii) фенотипически не отличаются от организмов, имеющих в своём генотипе доминантные аллели гена-ингибитора. У тыквы окраска плода может быть жёлтой (А) и зелёной (а) (рис. 85). Проявление этой окраски может быть подавлено доминантным геном-ингибитором (I), в результате чего сформируются белые плоды (А_I_; aaI_).

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

В описанном и аналогичных случаях при расщеплении в F 2 по генотипу 9:3:3:1 расщепление по фенотипу соответствует 12:3:1.

2. Гомозиготы по рецессивным аллелям (aaii) не отличаются по фенотипу от организмов с генотипами A_I_ и aaI_.

У кукурузы структурный ген А определяет окраску зерна: пурпурная (А) или белая (а). При наличии доминантного аллеля гена-ингибитора (I) пигмент не синтезируется.

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Рис. 85. Наследование окраски плода у тыквы

В F 2 у 9 / 16 растений (A_I_) пигмент не синтезируется, потому что в генотипе присутствует доминантный аллель гена-ингибитора (I). У 3 / 16 растений (aaI_) окраска зерна белая, так как в их генотипе нет доминантного аллеля А, отвечающего за синтез пигмента, и, кроме того, присутствует доминантный аллель гена-ингибитора. У 1 / 16 растений (aaii) зёрна тоже белые, потому что в их генотипе нет доминантного аллеля А, отвечающего за синтез пурпурного пигмента. Только у 3 / 16 растений, имеющих генотип A_ii, формируются окрашенные (пурпурные) зёрна, так как при наличии доминантного аллеля А в их генотипе отсутствует доминантный аллель гена ингибитора.

В этом и других аналогичных примерах расщепление по фенотипу в F 2 13:3. (Обратите внимание, что по генотипу расщепление всё равно остаётся прежним – 9:3:3:1, соответствующим расщеплению в дигибридном скрещивании.)

При рецессивном эпистазе рецессивный аллель гена – ингибитора в гомозиготном состоянии подавляет проявление неаллельного доминантного гена.

У льна ген В определяет пигментацию венчика: аллель В – голубой венчик, аллель b – розовый. Окраска развивается только при наличии в генотипе доминантного аллеля другого неаллельного гена – I. Присутствие в генотипе двух рецессивных аллелей ii приводит к формированию неокрашенного (белого) венчика.

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

При рецессивном эпистазе в этом и других аналогичных случаях в F 2 наблюдается расщепление по фенотипу 9:3:4.

Полимерное действие генов (полимерия). Ещё одним вариантом взаимодействия неаллельных генов является полимерия. При таком взаимодействии степень выраженности признака зависит от числа доминантных аллелей этих генов в генотипе: чем больше в сумме доминантных аллелей, тем сильнее выражен признак. Примером такого полимерного взаимодействия является наследование окраски зёрен у пшеницы (рис. 86). Растения с генотипом А 1А 1А 2А 2 имеют тёмно-красные зёрна, растения a 1a 1a 2a 2 – белые зёрна, а растения с одним, двумя или тремя доминантными аллелями – разную степень окраски: от розовой до красной. Такую полимерию называют накопительной или кумулятивной.

Однако существуют варианты и некумулятивной полимерии. Например, наследование формы стручка у пастушьей сумки определяется двумя неаллельными генами – А 1 и А 2. При наличии в генотипе хотя бы одного доминантного аллеля формируется треугольная форма стручка, при отсутствии доминантных аллелей (a 1a 1a 2a 2) стручок имеет овальную форму. В этом случае расщепление во втором поколении по фенотипу будет 15:1.

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Чем определяется существующая специализация клеток. Смотреть фото Чем определяется существующая специализация клеток. Смотреть картинку Чем определяется существующая специализация клеток. Картинка про Чем определяется существующая специализация клеток. Фото Чем определяется существующая специализация клеток

Рис. 86. Наследование окраски зёрен пшеницы

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Ген в гене (генная матрешка)

Ген в гене (генная матрешка) Изредка обнаруживаются варианты, когда внутри одного гена целиком содержится другой, меньший по размерам ген. Этакая своеобразная «матрешка», построенная из генов. Такая организация генов весьма редка. Так, в хромосоме 22 имеется лишь 2 таких

Имеется ли в геноме «эгоистичная» ДНК?

Имеется ли в геноме «эгоистичная» ДНК? Когда полностью секвенировали довольно крупный геном круглого червя С. elegans, то обнаружили, что в нем 27 % нуклеотидных последовательностей кодируют структурные белки, 26 % принимают участие только в начальной стадии кодирования и в

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика)

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика) В каждом человеке есть что-то от всех людей. Георг Кристоф Лихтенберг В сей мир едва ли снова попадем, Своих друзей вторично не найдем. Лови же миг! Ведь он не повторится, Как ты и сам не повторишься в нем. Омар

Ген в гене (генная матрешка)

Ген в гене (генная матрешка) Изредка обнаруживаются варианты, когда внутри одного гена целиком содержится другой, меньший по размерам ген. Этакая своеобразная «матрешка», построенная из генов. Такая организация генов весьма редка. Так, в хромосоме 22 имеется лишь 2 таких

Имеется ли в геноме «эгоистичная» ДНК?

Имеется ли в геноме «эгоистичная» ДНК? Когда полностью секвенировали довольно крупный геном круглого червя С. elegans, то обнаружили, что в нем 27% нуклеотидных последовательностей кодируют структурные белки, 26% принимают участие только в начальной стадии кодирования и в

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика)

ИСТОРИЯ С ГЕОГРАФИЕЙ, ЗАПИСАННАЯ В НАШЕМ ГЕНОМЕ (этногеномика) В каждом человеке есть что-то от всех людей. Георг Кристоф Лихтенберг В сей мир едва ли снова попадем, Своих друзей вторично не найдем. Лови же миг! Ведь он не повторится, Как ты и сам не повторишься в нем. Омар

8. СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ

8. СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на основе модели внешнего мира и модели собственного тела, строящихся мозгом.Необходимость внутренних моделей

Какие современные представления о Вселенной предвосхитил греческий философ Демокрит еще в V веке до нашей эры?

Какие современные представления о Вселенной предвосхитил греческий философ Демокрит еще в V веке до нашей эры? Древнегреческий философ-материалист Демокрит (около 460 – около 370 до нашей эры) вошел в историю как один из первых представителей атомизма, однако занимался он

1.1. Современные представления о сущности жизни

1.1. Современные представления о сущности жизни Жизнь во всех ее формах и проявлениях изучает биология. Предметом биологии является многообразие вымерших и ныне существующих организмов, их строение и функции, происхождение и эволюция, размножение и развитие,

Ранние представления о психической деятельности животных

Ранние представления о психической деятельности животных Начало познания поведения животных При изучении любой формы психической деятельности прежде всего встает вопрос о врожденном и индивидуально приобретаемом, об элементах инстинкта и научения в поведении

Зрительные обобщения и представления

Зрительные обобщения и представления Подлинная рецепция, истинное восприятие предметных компонентов среды как таковых возможны лишь на основе достаточно развитой способности к анализу и обобщению, ибо только это позволяет полноценно узнавать постоянно меняющие свой

Общие представления о типологизации

Общие представления о типологизации Чем умнее человек, тем больше своеобычности он находит во всяком, с кем сообщается. Для человека заурядного все люди на одно лицо. Блез Паскаль Построение различных типологий человеческой психики преследует две основные цели –

15. Современные представления о возникновении жизни

15. Современные представления о возникновении жизни Вспомните!Какие химические элементы входят в состав белков и нуклеиновых кислот?Что такое биологические полимеры?Какие организмы называют автотрофами; гетеротрофами?Теория биохимической эволюции. Наибольшее

Современные представления о сексуальной ориентации

Современные представления о сексуальной ориентации В настоящее время сексуальную ориентацию подразделяют на гетеросексуальную, гомосексуальную и бисексуальную. Большую часть XX века гомосексуализм являлся объектом изучения психологов и психиатров, и во главу угла

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *