Чем определяется селективность ионных каналов
Селективные и неселективные ионные каналы
Функции: Обеспечивают избирательное прохождение ионов через мембрану, в том числе из клетки в наружную среду и обратно.
Избирательность ионных каналов определяется геометрией, параметрами и химической природой групп, выстилающих стенки канала и его устье. Отбор ионов может осуществляться специальным молекулярным устройством («ворота» ионных каналов).
Неселективные каналы обладают следующими свойствами:
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.
Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.
Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.
Изменение состояния канала обеспечивается работой воротного механизма, который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.
В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные – регуляция лигандом;
• потенциалзависимые – регуляция мембранным потенциалом;
• механочувствительные – реагируют на деформацию мембраны.
Наряду с этим, существуют механизмы блокады каналов.
Через один ионный канал может проходить 10 7 —10 8 ионов в секунду. Ряд природных и синтетических веществ связываются с элементами ионных каналов, блокируют их проводимость или работу «воротного» механизма.
Ионные каналы мембраны
Введение
Ионные каналы (ИК) клеточной мембраны имеют огромное значение для жизни клеток. Они обеспечивают обмен клетки с окружающей средой веществом, энергией и информацией, с них начинаются и ими поддерживаются процессы возбуждения и торможения в нервной системе и мышцах, именно они (вместе и другими молекулярными рецепторами) обеспечивают восприятие клеткой внешних сигналов. С помощью ИК происходит передача в клетку управляющих сигналов из окружающей её среды. Именно ИК обеспечивают синаптическую передачу возбуждения от возбуждённого нейрона на другие клетки. Обобщая, можно сказать, что почти все важнейшие физиологические процессы в организме начинаются с ионных каналов и поддерживаются ими!
Определение понятия
Ионные каналы мембраны — это маленькие белковые трубочки разного диаметра, вставленные в клеточную мембрану, через которые внутрь клетки или наружу могут перемещаться ионы. Перемещение ионов через ионные каналы приводит к изменению концентрации ионов внутри и снаружи клетки, а также к изменению электрического потенциала мембраны. Перемещение в клетку ионов кальция через кальциевые каналы запускает в ней различные внутренние биохимические процессы. Существует множество видов ионных каналов. © 2014-2017 Сазонов В.Ф. © 2014-2016 kineziolog.bodhy.ru. © 2016-2017 kineziolog.su.
Ионный канал клеточной мембраны — это отверстие в мембране, обмётанное по краям белковой нитью, через которое через мембрану могут перемещаться ионы. Белковая нить нужна для того, чтобы отверстие не затянулось жировым слоем мембраны. Во многих случаях белковая нить, или каналообразующий белок, обладает функциональной активностью и контролирует пропускную способность канала по отношению к различным ионам. © 2014-2017 Сазонов В.Ф. © 2014-2016 kineziolog.bodhy.ru. © 2016-2017 kineziolog.su.
Ионные каналы можно рассматривать как транспортный механизм, обеспечивающий перемещение ионов между цитоплазмной клетки и наружной средой.
Упрощённое определение:
В мембране существуют и неионные каналы. Например, аквапорины — это специальные водные каналы, пропускающие через себя воду. Это тоже мембранные каналы, хотя их формально нельзя назвать «ионными каналами».
В настоящее время в молекулярной биологии в основном завершён описательный период в исследовании многообразия катион-транспортирующих ионных каналов в клетках эукариот. Теперь на первый план выходят проблемы познания механизмов регуляции ионных каналов и описание их участия в реакциях живой клетки на различные воздействия и на изменение её микроокружения.
Регулирумый перенос ионов через гидрофильные поры мембраны с помощью управляемых ИК является важнейшим свойством живых клеток, как электровозбудимых, так и невозбудимых.
В связи с этим целесообразно использовать в классификации ионных каналов именно принцип управления их деятельностью. Принцип управления состоянием ионных каналов и был положен в основу предложенной нами (Сазонов В.Ф., 2011.) функциональной классификации ионных каналов.
Видео: Ионные каналы в мембране
Строение ИК
ИК состоят из белков сложной структуры (белков-каналоформеров). Схематические изображения ИК приведены ниже, например: натриевый НАХ-рецепторный ионный канал.
Белки ИК имеют определённую конформацию, образующую трансмембранную пору, и «вшиты» в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах по-отдельности и затем собираться в виде целостного канала. В другом случае канал может представлять собой единый полипептид, который в виде петель прошивает мембрану несколько раз. На начало XXI века известно более 400 белков-каналоформеров, для биосинтеза которых используется 1-2% генома человека.
Практически все ИК имеют в составе своих субъединиц регуляторные домены, способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал-активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. При изменении потенциала такой сенсор меняет состояние канала с открытого на закрытое или наоборот. Таким образом, ИК могут управляться определёнными воздействиями извне, это важное их свойство.
По структуре ИК возможно провести их классификацию, о чём будет сказано ниже.
Свойства ИК
Функции ИК
В зависимости от проходящих через них ионов ИК подразделяют на натриевые, калиевые, кальциевые, хлорные, протонные (водородные).
1. Регуляция водного обмена клетки: объём и тургор.
2. Регуляция pH: закисление и защелачивание.
3. Регуляция ионного обмена (обмен солей): изменение внутриклеточного ионного состава и концентрации.
5. Проведение возбуждения в возбудимых клетках: обеспечение движения нервных импульсов.
6. Трансдукция в сенсорных рецепторах: преобразование раздражения (стимула) в возбуждение.
Функциональные состояния ИК
1. Открытое. Канал открыт и через него происходит перемещение ионов.
2. Закрытое. Канал закрыт и ионы не проходят через него.
3. Активированное. Канал может выполнять свои функции, т.е. открываться и закрываться под действием его регуляторов (управляющих веществ или электрических потенциалов).
4. Инактивированное. Канал не может выполнять свои функции, т.е. открываться и закрываться, он «фиксируется» в каком-то одном состоянии.
5. Блокированное. Канал перекрыт, инактивирован веществом-антагонистом (блокатором), занявшем место управляющего вещества.
Структурно-функциональные нарушения ИК
Функциональная классификация ионных каналов (ИК)
(© Сазонов В.Ф., 2011. © 2011-2017 Сазонов В.Ф. © 2011-2016 kineziolog.bodhy.ru © 2016-2017 kineziolog.su)
Как уже говорилось выше, ИК можно классифицировать различным образом:
1. По селективности (степени избирательной проницаемости к определённым ионам). В этом случае мы будем говорить о натриевых, калиевых, хлорных каналах и т.п.
2. По строению (родству их химического строения и происхождения образующих их белков). По строению (структуре) и по происхождению от однотипных генов различные ИК объединяются в отдельные семейства. Например, выделяют три семейства лиганд-активируемых ИК: 1) семейство с пуриновыми рецепторами (АТФ-активируемые), 2) с никотиновыми АХ-рецепторами, ГАМК-, глицин- и серотонин-рецепторами, 3) с глутаматными рецепторами. При этом в одно и то же семейство попадают ИК с разной ионной селективностью, а также ИК с разными управляющими лигандами. Но зато образующие эти каналы белки имеют большое сходство в строении и происхождении.
3. По способу управления их состоянием. В этом случае мы будем говорить о потенциал-управляемых каналах, хемо-управляемых и т.д.
4. По связывающимся с ними лигандам (в том числе веществам-маркёрам) и т.д.
Создание удобной классификации является пока ещё не решённой проблемой. Как указывают Н.Н. Мушкамбаров и С.Л. Кузнецов, (2003), «в отличие от липидов, мембранные белки трудно классифицировать по их структуре. Более перспективно попытаться подразделить эти белки по их функциональной роли. Но и здесь нет законченной системы, т.к. любые попытки её создания наталкиваются на типичные трудности, когда один и тот же белок может быть отнесён к разным группам». Тем не менее, на наш взгляд, функциональная классификация ИК просто необходима для обучения студентов: биологов, медиков, психологов.
В основу предложенной нами функциональной классификации ИК (Сазонов В.Ф., 2011) положен способ управления их деятельностью, а не их селективная проницаемость к определённым ионам или химическое родство образующих их белков-каналоформеров. С этой точки зрения ИК делятся на неуправляемые и управляемые, т.е. либо постоянно открытые, либо открывающиеся-закрывающиеся при определённих воздействиях. Заметим, что большинство ИК являются управляемыми, но различаются между собой по механизмам управления. Воздействие регуляторного (управляющего) фактора на управляемый ИК вызывает конформационные изменения каналообразующих белков, канал открывается и ионы проходят по градиенту концентрации. При этом сам транспорт ионов через такие каналы не приводит к конформационным изменениям канальных белков и зависит только от разности концентраций веществ по обе стороны мембраны.
В одну и ту же функциональную группу нашей классификации могут попасть каналы различного молекулярного строения и с различной селективностью, т.е. пропускающие различные ионы. С другой стороны, сходные по строению и происхождению каналы могут оказаться в разных функциональных группах. Так, например, хлор-селективные ИК могут управляться как лигандами (глицином, ГАМК) и состоять в группе лиганд-управляемых каналов, так и потенциалом мембрнаны и состоять в группе потенциал-управляемых каналов (потенциал-активируемые хлорные каналы ClC).
Студентам
Для понимания электрических процессов, идущих в нервных клетках, формирования электрических потенциалов и нервных импульсов вполне достаточным будет разобраться в первых четырёх видах ионных каналов: 1) неуправляемые постоянно пропускают через себя ионы калия, 2) потенциал-управляемые открываются при деполяризации и начинают в этих условиях пропускать через себя в клетку ионы натрия (в постсинаптических окончаниях и нервных отростках) или же ионы кальция (в пресинаптических окончаниях или рецепторных клетках), 3) хемо-управляемые открываются под действием медиатора и начинают пропускать через себя в клетку ионы натрия, что вызывает деполяризацию в виде возбуждающего постсинаптического потенциала (ВПСП), 4) стимул-управляемые находятся в сенсорных рецепторах (рецепторных клетках или рецепторных нервных окончаниях) и открываются под действием стимула (раздражителя), начиная пропускать через себя ионы натрия, что вызывает деполяризацию в виде рецепторного потенциала.
Виды ионных каналов согласно функциональной классификации:
1. Неуправляемые (независимые, «проточные»). Конечно, это название условно и отражает лишь основное функциональное состояние подобных каналов. Пожалуй, полностью независимых и неуправляемых ИК в мембране просто не существует, и все они так или иначе регулируются. Неуправляемые ИК обычно находятся в постоянно открытом состоянии и обеспечивают постоянный ионный ток через открытую пору канала как в клетку, так и из клетки. Процесс перемещения ионов через такие ИК идёт пассивно за счёт диффузии под действием химических сил (по градиенту их концентрации) и/или электрических сил (по электрическому градиенту зарядов между внутренней и наружной сторонами мембраны).
Если неуправляемые каналы различают вещества только по размеру и пропускают через себя по градиенту концентрации все молекулы меньше определённой величины, т.е. служат фильтрами молекулярных размеров, то их называют «неселективные каналы», или «поры». Селективные каналы, работают избирательно и обеспечивают перенос только определённых ионов. Ионная селективность (избирательность) каналов определяется их диаметром и строением внутренней поверхности канала. Например, катионселективные каналы пропускают только катионы, так как содержат много отрицательно заряженных аминокислотных остатков.
Видео: Калиевый ионный канал
Примеры: т етродотоксин-чувствительные натриевые каналы, потенциал-активируемые К-каналы, калиевые Kdr-каналы задержанного выпрямления, кальциевые каналы пресинаптических окончаний аксонов.
Примеры: каналы с никотиновыми ацетилхолиновыми рецепторами nAChR), серотониновыми рецепторами (5-HT3), глициновыми, ГАМК-рецепторами (GABAA и GABAC).
Видео: Работа хемо-управляемого (лиганд-управляемого) ионного канала
4. Стимул-управляемые (механочувствительные, механосенситивные, стретч-активируемые, stretch-activated, протон-активируемые, температурно-чувствительные).
Они открываются под воздействием специфичного и адекватного для них стимула (раздражителя). Такие каналы обеспечивают сенсорное восприятие и располагаются в мембране сенсорных рецепторов.
Пример: механочувствительные ИК рецепторных волосковых клеток, обеспечивающих слуховое восприятие; температурно-чувствительные ИК терморецепторов кожи, обеспечивающие восприятие тепла и холода.
В настоящее время стимул-управляемые механочувствительные ИК обнаружены не только в специализированных механорецепторных структурах, но также и в мембранах бактерий, грибов, растений, позвоночных и беспозвоночных животных. Механочувствительные каналы не только обеспечивают сенсорное восприятие механического раздражения, но также вовлечены в контроль клеточного цикла, регуляцию объёма и роста клеток, секрецию и эндоцитоз.
TRP-каналы в мембране терморецепторов кожи обеспечивают термотрансдукцию, открываясь при различных значениях темпераруры. Они пропускают катионы, особенно ионы кальция.
5. Совместно-управляемые (NMDA-рецепторно-канальный комплекс). Они открываются одновременно как лигандами, так и определённым электрическим потенциалом мембраны. Можно сказать, что у них двойное управление.
Пример: NMDA-рецепторно-канальный комплекс, имеющий сложную систему управления, включающую в себя 8 рецепторных участков-сайтов, с которыми могут связываться различные лиганды.
7. Актин-управляемые (актин-регулируемые, actin-regulated, actin-gated channels). Они открываются и закрываются за счёт разборки-сборки примембранных микрофиламентов с участием актин-связывающих белков.
В электроневозбудимых клетках активация и инактивация актин-управляемых потенциал-независимых натриевых каналов контролируется процессами разборки-сборки примембранных микрофиламентов с участием актин-связывающих белков. Актиновые элементы цитоскелета, по-видимому, представляют важнейшую часть потенциал-независимого воротного механизма, управляющего открыванием и закрыванием каналов. Именно сборка микрофиламентов на цитоплазматической стороне мембраны приводит к инактивации таких каналов.
Коннексоны найдены практически во всех видах клеток.
9. «Энерго-зависимые транспортёры» (ионные насосы, ионные помпы, ионные обменники, транспортёры). Это особая группа динамичных пор, проводящих ионы через мембрану, которые формально не относятся к ИК. Их деятельность обеспечивается энергией расщепления АТФ. Они представлены мембранными ферментными белками АТФазами, которые активно протаскивают через себя ионы, используя для этого энергию расщепления АТФ, и обеспечивают активный транспорт ионов через мембрану даже против их градиента концентрации.
Примеры: натрий-калиевый насос, протонный насос, кальциевый насос.
Примеры ионных каналов разного типа
Ацетилхолиновый рецептор лиганд-управляемого (хемозависимого) ионного канала
На рисунке слева представлена структурная модель лиганд-управляемого ацетилхолинового ИК.
http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Nicotinic_Acetylch. (Top and front view to the 3D structure of the nicotinic acetylcholine receptor. *Created by S. Jähnichen using PhyMol *Derived from the published structure (source: [http://www.rcsb.org/pdb/ RCSB PDB Database] **PDB ID: 2BG9 **fro)
Глутаматные лиганд-управляемые (хемозависимые) и совместно-управляемые ионные каналы
Постсинаптические рецепторы к глутамату классифицируются в соответствии с аффинностью (сродством) к трем экзогенным агонистам:
3) N-метил-D-аспартату (NMDA).
Ионные каналы, активируемые квисгулатом и каинатом, подобны каналам, которые управляются никотиновыми рецепторами — они пропускают смесь катионов (Na + и К + ). По нашей функциональной классификации они являются лиганд-управляемыми.
Потенциал-управляемые ионные каналы
На рисунке слева представлена модель, отражающая взаимодействие субъединиц потенциал-управляемого кальциевого канала (вверху), и его доменная структура.
(Источник: Фундаментальная и клиническая физиология. Под ред. А.Г. Камкина и А.А. Каменского. М.: Академия, 2004. 1072 с.)
Кальциевые ионные каналы
Это означает, что нейроны могут активироваться входящими ионами кальция на подпороговом уровне, ещё до генерации нервного импульса.
Ионные каналы мембраны и их виды
1. Ионные каналы возбудимой клетки (структура, функция, патология) / Зефиров А.Л., Ситдикова Г.Ф. Казань: Арт-кафе, 2010. 271 с.
2. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. Учебное пособие для студентов медицинских вузов. М.: ООО «Медицинское информационное агентство», 2003. 544 с.
3. Сазонов В.Ф. Функциональная классификация мембранных ионных каналов // Научные труды III Съезда физиологов СНГ / Под ред. А.И. Григорьева, О.А. Крышталя, Ю.В. Наточина, Р.И. Сепиашвили. М.: Медицина–Здоровье, 2011. С. 72. (Электронная версия: physiology-cis.org/Page181.html)
4. Фундаментальная и клиническая физиология. Под ред. А.Г. Камкина и А.А. Каменского. М.: Академия, 2004. 1072 с.
Ионные каналы: селективность и проводимость.
Ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость. Селективность, или избирательность,канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Рассмотрим принцип работы ионных каналов на примере натриевого канала. В состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Nа + внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие h-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро. Канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представляет собой сумму тысяч одиночных токов. Свойство проводимостиразличных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.
Физиология нервов и нервных волокон.
Дата добавления: 2018-08-06 ; просмотров: 827 ; Мы поможем в написании вашей работы!
Мембранные белки как ионные каналы. Селективные и неселективные каналы.
Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрация ионов по обе стороны мембраны (трансмембранный ионный градиент).
Неселективные каналы обладают следующими свойствами:
· пропускают все типы ионов, но проницаемость для ионов K + значительно выше, чем для других ионов;
Селективные каналы обладают следующими свойствами:
· пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.
Изменение состояния канала обеспечивается работойворотного механизма, который представлен двумя белковыми молекулами. Эти белковые молекулы, т.н. активационные ворота и инативационные ворота, изменяя свою конформацию могут перекрывать ионный канал.
В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 2.3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.
В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
· хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда.
По способу активации выделяют:
· потенциал-активируемые ионные каналы (переход из закрытого в открытое состояние и обратно осуществляется конформацией белковой молекулы при изменении потенциала мембраны). Примером может служить потенциал-зависимый натриевый канал, определяющий деполяризацию клетки при генерации потенциала действия.
· механочувствительные ионные каналы (открываются при воздействии на мембрану клетки механического стимула, например, при активации механорецепторов кожи).
· лиганд-активируемые ионные каналы. По способу активации они подразделены на две группы (экстраклеточные и внутриклеточные) в зависимости от того, с какой стороны мембраны воздействует лиганд. Если стимул (например, ацетилхолин) при осуществлении синаптической передачи возбуждения в нервно-мышечном синапсе действует на рецептор (в данном примере холинорецептор, представляющий собой одну из нескольких белковых субъединиц ионного канала), расположенный на внешней поверхности мембраны мышечной клетки, откроется ионный канал, проницаемый для катионов. Если лиганд-активируемые каналы зависят от вторичных посредников в клетке, их переход в открытое состояние осуществляется при изменении концентрации определенных ионов в цитоплазме. Примером может служить кальций-активируемый калиевый канал, активирующийся при увеличении концентрации ионов кальция в клетке. Такие каналы принимают участие в реполяризации мембраны при завершении потенциала действия.
Понятие о мембранном потенциале, равновесном ионном потенциале и потенциале покоя. Условия и причины сущ потен покоя. Урав постоян поля.Функц мемб птенциала.
Условия и причины существования потенциала покоя.
Расчеты и экспериментальные данные свидетельствуют о том, что все клетки организма в состоянии «оперативного» покоя характеризуются определенной степенью поляризации. Плазмолемма каждой клетки заряжена, и в покое на ее внутренней поверхности поддерживается отрицательный относительно межклеточной среды потенциал. Трансмембранная разность потенциалов в разных клетках различна, но всюду достигает нескольких десятков милливольт. С помощью микроэлектродной техники удалось в эксперименте прямо измерить реальную разность потенциалов по обе стороны клеточной мембраны.
Для того, чтобы определенный ион (имеющий заряд) мог проникнуть через мембрану, необходимо, чтобы для этого имелись условия:
1.Наличие концентрационного градиента (создается работой ионных насосов)
2.Наличие электрохимического градиента (создается суммой концентраций заряженных частиц и свойствами ионных каналов разобщать катионы и анионы по обе стороны мембраны).
3.Наличие подходящих каналов в открытом состоянии.
При потенциале покоя внутренняя сторона клеточной мембраны имеет заряд, знак которого (отрицательность) определяется наличием в цитоплазме органических анионов (белков и аминокислот), неспособных проникать через ионные каналы, и дефицитомих противоионов – катионов калия, способных проникать через калиевые ионные каналы, вследствие чего в клетке создается избыток отрицательных ионов, а в интерстиции –избыток положительного заряда. Величину отрицательного заряда в клетке и положительного заряда в межклеточном пространстве удается предсказывать математически, но только для относительно простых случаев, например, для гигантского аксона кальмара.
Величина потенциала покоя описывается с известным приближением уравнением постоянного поля, предложенным Ходжкиным, Гольдманом и Кацем.
Не следует путать понятия мембранный потенциал, равновесный потенциал и потенциал покоя.
Мембранный потенциал задается суммой действующих по обе стороны мембраны зарядов, определяющей способность определенных ионов проникать через ионные каналы.
Равновесный потенциал – это такой потенциал плазмолеммы клетки, при котором суммарный ток определенного иона через мембрану равен нулю, несмотря на возможность отдельных ионов проникать через открытые каналы в обмен на такие же ионы, следующие в противоположном направлении. Определяется уравнением Нернста.
Функции мембранного потенциала покоя:
1. Поляризация мембраны является условием для возбуждения и торможения.
2.Поляризация определяет объем выделения медиатора из пресинаптического окончания.
3. ПП создает условия для нахождения потенциалзависимых каналов в закрытом состоянии (поляризация мембраны создает условия для формирования потенциала действия).
ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
Понятие о нервном центре.
Нервный центр — совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. Свойства нерв центров:
2.Замедленное проведение возбуждения по нейронным совокупностям ЦНС. Синаптическая задержка Tсин одного межклеточного контакта приблизительно равна 0,5-2 мс. Если имеется n нейронов в сети, общий латентный период проведения сигнала в мозге соответствует n×Tсин и может быть весьма значительным. Косвенно, зная время проведения сигнала по ЦНС (вычисляется с учетом общего времени рефлекса и времени, затраченного на проведение по нервным стволам), можно оценить количество синаптических переключений (n) в дуге конкретного рефлекса.
4.Односторонность проведения возбуждения, а также дивергенция и конвергенция синаптических входов создают морфологический субстрат для циркуляции возбуждения (реверберации) по замкнутым нейронным цепям. Считается, что это явление лежит в основе кратковременной памяти.
5.Для определенных нейронов, ассоциированных в ядра, характерна фоновая активность. Она определяется свойствами мембраны и зависит от спонтанной деполяризации. Другие нейроны являются «молчащими» и генерируют ПД только при активации синаптических входов.
6.Для нейронов и имеющихся на их поверхности синапсов характерна чувствительность для различным веществ, сигнальных молекул и метаболитов, содержащихся в ликворе.
7. характерна утомляемость, одной из причин которой является уменьшение запасов имеющегося медиатора и низкая скорость его синтеза.
8. пласичность. Облегчение, потенциация (тетаническая посттетаническая, долговременная), депрессия определяются свойствами рецепторов, следовыми процессами и появлением новых синаптических контактов или рецепторов на поверхности нейронов.
Для нервных сетей мозга характерно направленное, одностороннее (линейное) проведения возбуждения. Если имеется цепочка нейронов, связанных между собой синаптическими контактами, то из-за свойства химических синапсов выделять медиатор из пресинаптического окончания в синаптическую щель и рецептировать его рецептором, локализованным на мембране постсинаптической, вектор распространения возбуждения в нейронной сети направлен в сторону последующего постсинаптического нейрона. Общим примером данного принципа является закон Белла– Мажанди(афферентные волокна входят в спиной мозг через дорсальные, двигательные волокна покидают спинной мозг через вентральные корешки).
Процессы конвергенции заключаются в схождении различных импульсных потоков от нескольких нервных клеток к одному и тому же нейрону (см. раздел 4.1.4). Процесс конвергенции характерен не только для однотипных нервных клеток. Например, на мотонейронах спинного мозга, кроме первичных афферентных волокон, конвергируют волокна различных нисходящих трактов от супраспинальных и собственно спинальных центров, а также от возбуждающих и тормозных вставочных промежуточных нейронов. В результате мотонейроны спинного мозга выполняют функцию общего конечного пути для многочисленных нервных образований, включая и надсегментный аппарат головного мозга, имеющих отношение к регуляции двигательной функции.
Дивергенцией называется способность нервной клетки устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря этому одна нервная клетка может участвовать в нескольких различных реакциях, передавать возбуждение значительному числу других нейронов, которые могут возбудить большее количество нейронов, обеспечивая широкую иррадиацию возбудительного процесса в центральных нервных образованиях.
Строение нейрона.
. Функционально нейроны спинного мозга можно разделить на 4 основные группы:
1) мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки;
2) интернейроны — нейроны, получающие информацию от спи-нальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;
3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;
4) ) ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.
Мотонейроны. Аксон мотонейрона своими терминалями иннер-вирует сотни мышечных волокон, образуя мотонейронную единицу
Интернейроны. Эти промежуточные нейроны, генерирующие импульсы с частота до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функцией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения.
Нейроны симпатического отдела автономной системы. Расположены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3—5 в секунду).
Нейроны парасимпатического отдела автономной системы. Локализуются в сакральном отделе спинного мозга и являются фоновоактивными.
Нейроглия, или глия, — совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы. Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3—4 раза меньше, чем нервные; С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается. Классификация:
Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Размеры астроцитов 7—25 мкм. располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохондрии. астроциты служат опорой нейронов, обеспечивают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полностью покрывая их. В итоге между нейронами и капиллярами располагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию.
Олигодендроциты —малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендроцитов больше, чем в коре. Олигодендроциты участвуют в миели-низации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.
Микроглия представлена самыми мелкими многоотростча-тыми клетками глии, относящимися к блуждающим клеткам. Источником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.
14.Современные представления о межклеточных контактах.
Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).
Классификация синапсов. Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.
По местоположению выделяют нервно-мышечные,синапсы и нейронейрональные, последние в свою очередь делятся на аксо-соматические, аксоаксональные, аксодендритические, дендросомати-ческие.
По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.
Поспособу передачи сигнала синапсы делятся на электрические, химические, смешанные.
Характер взаимодействия нейронов. Определяется способом этого взаимодействия: дистантное, смежное, контактное.
Дистантное взаимодействие может быть обеспечено двумя нейронами, расположенными в разных структурах организма. Например, в клетках ряда структур мозга образуются нейрогормоны, нейропептиды, которые способны воздействовать гуморалыю на нейроны других отделов.
Смежное взаимодействие нейронов осуществляется в случае, когда мембраны нейронов разделены только межклеточным пространством. Обычно такое взаимодействие имеется там, где между мембранами нейронов нет глиальных клеток. Такая смежность характерна для аксонов обонятельного нерва, параллельных волокон мозжечка и т. д. Считают, что смежное взаимодействие обеспечивает участие соседних нейронов в выполнении единой функции. Это происходит, в частности, потому, что метаболиты, продукты активности нейрона, попадая в межклеточное пространство, влияют на соседние нейроны. Смежное взаимодействие может в ряде случаев обеспечивать передачу электрической информации от нейрона к нейрону