Чем определяется быстродействие триггера

Симметричные триггеры

Триггером называется спусковое устройство имеющее два электрических состояния устойчивого равновесия, способное скачком переходить из одного состояния в другое при воздействии на вход триггера управляющего сигнала.

Статические триггеры широко применяются в импульсных и цифровых устройствах. Посредством их осуществляется переключение ветвей радиоэлектронных цепей, управление генераторами линейно-изменяющихся напряжений и токов, формирование прямоугольных импульсов тока, запоминание информации и т.д.

В вычислительной технике также популярны так называемые динамические триггеры, которые при воздействии на вход управляющего сигнала, в отличие от статических триггеров, обеспечивают на выходе серию импульсов тока или напряжения.

Ниже рассматривается только симметричный потенциальный триггер, построенный на основе транзисторных ключей, замкнутых в петлю положительной обратной связи с коэффициентом петлевого усиления Ko > I.

Симметричный триггер. Принцип работы

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера
Рис.1 Схема симметричного триггера и диаграмма.

На рис.1 изображена схема статического симметричного триггера на транзисторах типа p-n-p и диаграмма напряжений на коллекторах и базах. В каждом из состояний устойчивого равновесия один из транзисторов открыт (в режиме насыщения), другой закрыт (в режиме отсечки).

Транзистор Т2 закрыт, так как на его базе образуется положительное напряжение смещения за счет источника Есм Конденсатор С1‘ практически разряжен, а С1» заряжен до напряжения близкого к Ek. В связи с тем, что коэффициент усиления по току транзисторов, находящихся в режиме отсечки и насыщения, равен нулю, общее усиление в петле обратной связи также равно нулю. Этим обеспечивается устойчивость описанного состояния.

Переход триггера из одного устойчивого состояния в другое (т.е. его переключение или опрокидывание) осуществляется путем воздействия внешнего запускающего импульса на базы или коллекторы транзисторов. (Подробнее о запуске триггера см. ниже.) Причем параметры запускающего сигнала должны обеспечивать вывод транзисторов в активный режим работы, когда восстанавливается усиление по току у транзисторов и в течение времени опрокидывания действует положительная обратная связь между ключами.

Переходные процессы в триггере

Рассмотрим более подробно переходные процессы, происходящие в триггере при его переключении.

Вследствие инерционности транзисторов и наличия паразитных емкостей переключение триггера происходит не мгновенно, а в течение конечного промежутка времени. Характер и длительность переходного процесса переключения зависят от параметров и структуры схемы, а также от способа запуска и параметров запускающих импульсов (амплитуды, длительности, формы). Рассмотрим переходные процессы при раздельном запуске триггера.

Примем по-прежнему, что в исходном состоянии транзистор T1 открыт и насыщен, а T2 закрыт и пусть положительный запускающий импульс тока поступает в базу открытого транзистора. Под его действием начинается процесс рассасывания неосновных носителей в базе насыщенного транзистора и через некоторое время tp (рис.2) этот транзистор окажется на границе насыщения. С этого момента начинает уменьшаться его коллекторный ток, что приводит к возрастанию отрицательного напряжения на коллекторе Uk1. Это вызовет снижение положительного напряжения смещения Uб2 на базе закрытого транзистора T2. Время tn, в течение которого положительное напряжение смещения уменьшается от начального значения до нуля, называется временем предварительного формирования отрицательного фронта на коллекторе T1. Сумма tp+tn называется временем подготовки. По истечении этого времени, т.е. после достижения Uб2 = 0, транзистор T2 открывается, восстанавливается усиление в петле положительной обратной связи, и в триггере за время tрег происходит лавинообразный процесс опрокидывания (регенеративный процесс).

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера
Рис.2 Диаграмма. Переходные процессы в триггере.

Действительно, при открывании транзистора T2 появляется ток ik2 в его коллекторной цепи. Приращение этого тока идет в базу транзистора T1 и, складываясь с входным запирающим импульсом тока способствует запиранию транзистора T1. Коллекторный ток ik1 запирающегося транзистора T1 уменьшается. Обратное приращение тока ik1 передается в базу открывающегося транзистора T2 вызывает его еще большее отпирание в т.д. Лавинообразный процесс заканчивается закрыванием транзистора T1 и открыванием T2. При этом положительная обратная связь между каскадами снова обрывается.

Длительность tрег интервала опрокидывания составляет назначительную долю общей длительности переходного процесса. К моменту окончания опрокидывания при достаточно больших ускоряющих емкостях изменение тока базы |Δ iб2| в отпирающемся транзисторе T2 равно по величине изменению коллекторного тока |Δ ik1| запирающегося транзистора T1. Чем больше базовый ток к моменту окончания опрокидывания, тем быстрее происходит установление напряжения на коллекторе отпирающегося транзистора.

Установление напряжений и токов на коллекторах и базах транзисторов происходит в течение некоторого времени tуст когда осуществляется перезарядка ускоряющих конденсаторов С1.

До начала запускающего импульса конденсатор С1‘ был разряжен, а С1» заряжен до напряжения близкого Ek. При опрокидывании триггера конденсатор С1‘ заряжается током, отбираемым из базы транзистора T2 по цепи: плюс источника питания Ek, входное сопротивление транзистора T2, конденсатор С1‘ резистор Rk‘ минус источника Ek. Время заряда конденсатора определяется постоянной времени зарядной цепи tзар=C1Rk. Зарядный ток создает падение напряжения на сопротивлении Rk‘. Таким образом, нарастание отрицательного потенциала коллектора закрывающегося транзистора завершится тогда, когда прекратится зарядный ток, т.е. зарядится конденсатор С1‘. Следовательно, время заряда конденсатора С1‘ определяет отрицательный фронт t (-) ф выходного напряжения. Отрицательный фронт тем меньше, чем меньше величина ускоряющей емкости. По окончании заряда конденсатора С1‘ базовый ток транзистора T2 становится меньше, он определяется сопротивлениями резисторов R1 и R2.

При опрокидывании триггера конденсатор С1» получает возможность разрядиться по двум цепям:
а) левая обкладка С1«, резистор R2‘, источник смещения, сопротивление эмиттер-коллектор T2, правая обкладка С1«;
б) левая обкладка С1«, сопротивление R1«, правая обкладка С1«. Вследствие разряда конденсатора С1«, напряжение Uб1 на базе транзистора T1 оказывается положительным и большим стационарного значения напряжения запирания (динамическое смещение). По мере разряда конденсатора С1» разрядный ток убывает и Uб1 стремится к станционарному значению.

Способы запуска триггера

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

При счетном запуске управляющие импульсы поступаю от общего генератора на один общий вход триггера (рис.4). При этом каждый импульс изменяет состояние триггера на противоположное.

В исходном состоянии напряжение на коллекторе насыщенного транзистора T1 близко к нулю» диод Дн‘ открыт, конденсатор Су‘ разряжен. За счет высокого отрицательного потенциала закрытого транзистора T2 передаваемого через сопротивление Rб«, диод Дн» закрыт, а конденсатор Су» заряжен до напряжения Ек (в полярности, указанной на рис. 4 ). Следовательно, положительный запускающий импульс напряжения поступит только через открытый диод Дн‘ на базу насыщенного транзистора и вызовет опрокидывание триггера.

Если действие положительного входного импульса не завершится до окончания опрокидывания триггера, то напряжение, прикладываемое к диоду Дн«, окажется равным сумме положительного входного напряжения и отрицательного напряжения на конденсаторе Су«. Так как обычно амплитуда входного сигнала меньше Ек, то результирующее напряжение, приложенное к диоду Дн» будет отрицательным, и диод попрежнему будет закрыт. По окончании входного импульса конденсатор Су» разрядится через малое сопротивление открывшегося транзистора T2 и внутреннее сопротивление источника запускающих импульсов, а конденсатор Су‘ зарядится до напряжения Ек. Диод Дн» откроется, а Дн‘ закроется. Очередной запускающий импульс пройдет через диод Дн» и вызовет новое опрокидывание триггера.

Способы повышения быстродействия симметричного триггера

Быстродействие триггера как устройства, основанного на транзисторных ключах, определяется скоростью переключения выбранных транзисторных ключей.

Следовательно, основными методами повышения быстродействия триггера являются:
1) применение высокочастотных транзисторов;
2) устранение (или уменьшение) задержки выключения, обусловленной рассасыванием неосновных носителей в базе насыщенного транзистора;
3) применение специальных способов, уменьшающих время установления напряжения на коллекторах и ускоряющих конденсаторах.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггераС целью сокращения времени рассасываний неосновных носителей в базе применяются ненасыщенные ключи, например, за счет введения нелинейной отрицательной обратной связи через диоды Дос(рис.5). Ненасыщенный триггер обладает более высокой чувствительностью к запускающим импульсам, с чем связано снижение его помехоустойчивости.

Действие нелинейной обратной связи состоит в следующем. При отпирании транзистора входным током отрицательный потенциал его коллектора уменьшается. Когда он сравняется с потенциалом в точке «а», диод открывается, и часть входного тока замыкается через диод. Транзистор не входит в насыщение.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Влияние нагрузки на работу триггера

Обычно нагрузка Rн подключается параллельно транзистору (рис.7) и существенно влияет на работу триггера.

Если транзистор закрыт, то нагрузка приводит к снижению потенциала его коллектора (а значит, и выходного напряжения), так как напряжение Ек делится между сопротивлениями Rк и Rн, и к уменьшению базового тока открытого транзистора. Транзистор может выйти из режима насыщения. Чтобы сохранить режим насыщения, надо уменьшать величину сопротивления резистора связи R1.

Когда транзистор открыт, нагрузка практически не влияет на его режим работы, так как сопротивление открытого транзистора мало.

Источник

Электроника

учебно-справочное пособие

Триггеры

Триггеры предназначены для запоминания двоичной информации. В нем может храниться либо 0 либо 1. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений). Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

Для удобства использования триггеры имеют два выхода:

Логические уровни на этих двух выходах противоположны. Это сделано для удобства соединения триггеров с другими логическими элементами устройств. Некоторые типы триггеров инверсного выхода не имеют.

Состояние триггера определяется по выходному сигналу. Состоянию триггера 1 соответствует на выходе Q высокий уровень сигнала (1). Состоянию триггера 0 соответствует на выходе Q низкий уровень сигнала (0).

Входы триггера делятся на информационные и вспомогательные (управляющие). Сигналы, поступающие на информационные входы, управляют состоянием триггера. Сигналы на вспомогательных входах используются для предварительной установки триггера в требуемое состояние и синхронизации.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Обозначения входов триггеров:

Число входов зависит от структуры и функций, выполняемых триггером.

Классификация триггеров

По способу приема информации:

Синхронные триггеры подразделяются на:

По принципу построения триггеры со статическим управлением подразделяются на:

По функциональным возможностям различаются:

Наибольшее распространение в цифровых устройствах получили RS-триггер с двумя установочными входами, тактируемый D-триггер и счетный Т-триггер.

Для обозначения функциональных возможностей триггеров в интегральном исполнении используется следующая маркировка: TR — RS-триггер; TB — JK-триггер; ТМ — D-триггер.
В качестве базовых логических элементов можно использовать элементы ИЛИ-НЕ, И-НЕ. Поскольку триггер является простейшим ПЦУ, закон функционирования может быть задан таблицей переходов, в которой входные сигналы в момент их изменения и состояние триггера обозначены индексом t, а после переключения — индексом t+1.

Основные характеристики триггеров

RS-триггер

Асинхронный RS-триггер c прямыми входами

Асинхронный RS-триггер c прямыми входами имеет два информационных входа S и R, используемые для установки соответственно 1 и 0, а также два выхода: прямой и инверсный. RS-триггер построен на двух логических элементах ИЛИ-НЕ, соединенных в контур (рис. 2).

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

При комбинации сигналов S=1, R=0 (табл. 1) триггер переходит в состояние 1 независимо от предыдущего состояния. При S=0, R=1 триггер устанавливается в состояние 0. Комбинация сигналов S=0, R=0 не изменяет состояния триггера, т. е. состояние триггера в момент t+1 равно состоянию триггера в момент t. Набор сигналов S=1, R=1 является запрещенным, так как он приводит к нарушению работы триггера и неопределенности его состояния.

Таблица состояний асинхронного RS-триггера c прямыми входами

StRtQtQt+1
0000
0011
0100
0110
1001
1011
110
111

RS-триггер может быть построен на элементах «И-НЕ» (рис. 3). Вход S (Set) позволяет устанавливать выход триггера Q в единичное состояние при подаче на его вход логического нуля. Вход R (Reset) позволяет сбрасывать выход триггера Q в нулевое состояние при подаче на его вход логического нуля.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Так как триггер при построении его на различных элементах работает одинаково, то его изображение на принципиальных схемах тоже одинаково. Изображение простейшего триггера на принципиальных схемах приведено на рисунке 4.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггераЧем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера
а)б)

Синхронный RS-триггер со статическим управлением

Схема триггера позволяет запоминать состояние логической схемы, но так как в начальный момент времени может возникать переходный процесс (в цифровых схемах этот процесс называется опасные гонки), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены. То есть цифровые схемы требуют синхросигнала. Все переходные процессы должны закончиться за время периода синхросигнала.Для таких цифровых схем требуются синхронные триггеры.

Синхронный RS-триггер со статическим управлением (рис. 3) отличается от асинхронного наличием С-входа, на который поступают синхронизирующие (тактовые) сигналы.
Синхронный RS-триггер принимает состояние 1, если на входы С и S поступают уровни 1, или сохраняет единичное состояние при отсутствии единичных сигналов на входе С или R.

Схема синхронного триггера приведена на рисунке 5, а обозначение на принципиальных схемах на рисунке 6.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Синхронный RS-триггер с динамическим управлением

В синхронном RS-триггере с динамическим входом (рис. 7) информация воспринимается триггером со входов S и R при смене уровней С=1 на С=0.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

JK-триггер

JK-тригггер (рис. 8) представляет собой двухступенчатый синхронный триггер. Закон функционирования JK-триггера задан в табл. 2.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Таблица состояний JK-триггера

ВходыВыходСостояние
JtКtQt+1
101Запись 1
010Запись 0
00QtХранение
11QtСчетный режим

На рис. 9 представлен синхронный JK-триггер с динамическим управлением и выводами предустановки S и R. Такой триггер изменяет состояние по фронту (переход от «0» к «1») тактового импульса на входе С.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Т-триггер

Т-триггер (счетный триггер) имеет один вход Т, куда подают тактирующие (счетные) импульсы. Функционирование T-триггера описывается диаграммой на рис. 10. После подачи каждого тактирующего импульса состояние Т-триггера меняется в обратное (инверсное) предыдущему состоянию.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Рис. 11- Условное графическое обозначение Т-триггера

D-триггер

D-триггер (от англ. delay) запоминает входную информацию при поступлении синхроимпульса.

Хранение информации в D-триггерах обеспечивается за счет синхронизации, поэтому все реальные D-триггеры имеют два входа: информационный D и синхронизации С (рис. 12). Под действием синхросигнала С информация, поступающая на вход D, принимается в триггер, но на выходе Q появляется с задержкой на один такт. В D-триггере с динамическим входом прием в триггер информации со входа D происходит в момент смены на входе С уровня 0 на уровень 1.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Таблица состояний D-триггера

CDQt+1
100
111

Условное графическое обозначение D-триггера показано на рис. 13.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Так как информация на выходе остается неизменной до прихода очередного импульса синхронизации, D-триггер называют также триггером с запоминанием информации или триггером-защелкой. Легче всего объяснить появление этого названия по временной диаграмме, приведенной на рисунке 14.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Принципиально в этой схеме входной переходной процесс может беспрепятственно проходить на выход триггера. Поэтому там, где это важно, необходимо сокращать длительность импульса синхронизации до минимума. Чтобы преодолеть такое ограничение были разработаны триггеры, работающие по фронту. Схема такого триггера приведена на рисунке 15, а обозначение на принципиальных схемах на рисунке 16.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

На рис. 17 представлено условное обозначение D-триггера микросхемы К155ТМ2, содержащей два D-триггера. Входы R и S выполняют те же функции, что и в RS-триггере.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

D-триггер несложно преобразовать в счетный триггер, т. е. такой, состояние которого изменяется после поступления очередного импульса на счетный вход. Для обеспечения счетного режима необходимо вход D соединить с инверсным выходом триггера (рис. 18,а). Из логики работы D-триггера следует, что после прихода импульса на вход С состояние триггера будет изменяться на противоположное. Это иллюстрируется временными диаграммами, или эпюрами напряжений (рис. 18,б). Подобно таблице истинности, эпюры напряжений дают наглядное представление о работе устройства.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Необходимо отметить, что изменение состояния D-триггера данного типа происходит при изменении напряжения на счетном входе с низкого уровня на высокий. Такое изменение напряжения часто называют положительным перепадом напряжения или фронтом импульса. Реакцию триггера на положительный перепад напряжения отображают косой чертой, пересекающей линию входа С (рис. 18,а). Аналогично изменение напряжения с высокого уровня на низкий называют отрицательным перепадом напряжения, спадом или срезом импульса. На схемах это отображают также косой чертой, но повернутой на 90° относительно показанной на рисунке 18,а. В зависимости от своей внутренней структуры триггер реагирует или на положительный, или на отрицательный перепад напряжения.

Чем определяется быстродействие триггера. Смотреть фото Чем определяется быстродействие триггера. Смотреть картинку Чем определяется быстродействие триггера. Картинка про Чем определяется быстродействие триггера. Фото Чем определяется быстродействие триггера

Источники

Электроника © ЦДЮТТ • Марсель Арасланов • 2020

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *