Чем опасны емкостные токи
Удар током и электротравма: причины возникновения, симптомы и признаки, меры первой помощи и комплексное лечение
Удар током и электротравма: причины возникновения, симптомы и признаки, меры первой помощи и комплексное лечение
Удар током относится к наиболее опасным бытовым и производственным несчастным случаям и всегда сопряжен с большой смертностью. Действие электрического тока на организм человека приводит к сильному нагреву тканей и развитию ожога, а так же к нарушению работы внутренних органов. Первая помощь при ударе током заключается в прекращении действия электрического тока на организм пострадавшего, проведение закрытого массажа сердца и искусственного дыхания, если от удара током у пострадавшего остановилось сердце, обработка и наложение повязки на обожженные места.
Электротравма обычно возникает в результате воздействия на ткани организма человека бытового электрического тока большой силы или разряда атмосферного электричества (молнии). Источниками поражения электрическим током являются: неисправное электрооборудование на предприятиях и бытовые электроприборы, оборвавшиеся провода высоковольтных линий, несоблюдение правил техники безопасности при работе с электрооборудованием. Степень воздействия электрического тока на организм человека определяется напряжением и силой тока, способом прохождения тока по телу, общим состоянием здоровья пострадавшего и тем насколько своевременно была оказана первая помощь.
Особенности удара током и электротравмы
Электрический ток при прохождении через тело человека вызывает нагрев тканей, и может привести к электрическим ожогам кожи и повреждениям подлежащих тканей и органов.
Электрические ожоги возникают в местах входа и выхода электрического тока и носят название «меток тока».
Электрические ожоги могут показаться незначительными на вид, но на самом деле они зачастую глубокие со значительными повреждениями мышц, костей и внутренних органов.
Электрический ток может нарушить работу сердца, вплоть до его остановки.
У пострадавшего от удара тока может произойти остановка дыхания.
Признаки и симптомы удара током электротравмы
Нахождение оголенного источника электрического тока вблизи пострадавшего;
Бессознательное состояние у пострадавшего;
Очевидные ожоги на поверхности кожи;
Нарушение дыхания с возможной остановкой дыхания;
Пульс слабый, аритмичный или отсутствует;
Входное и выходное отверстие электрического заряда обычно расположено на кистях рук или ступнях.
Вследствие особенностей электротравмы даже при кратковременном воздействии электрического тока у пострадавшего может наступить остановка дыхания и сердца. Поэтому достаточно эффективная первая помощь при ударах электрическим током на месте происшествия часто является решающим фактором в спасении пострадавшего.
При возникновении ниже перечисленных симптомов у пострадавшего от удара током срочно вызовите скорую помощь:
Чем опасны емкостные токи
Релейная защитаВ последнее время в России все большее распространение получают сети 6–10 кВ с низкоомным резистивным заземлением нейтрали. Особенностью данных сетей является действие защиты от однофазных замыканий на землю поврежденного фидера на отключение. ОДНОФАЗНЫЕ ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6–10 кВ |
Наименование присоединения | Расчетный емкостный ток, А | Измеренный емкостный ток, А | Разница между расчетными и измеренными токами, % |
8,13 | 8,84 | 8 | |
ВЛ 10 кВ № 2 | 7,525 | 8,19 | 8 |
ВЛ 10 кВ № 3 | 2,65 | 2,77 | 4 |
ВЛ 10 кВ № 4 | 10,55 | 7,41 | 30 |
Исходя из характеристик устройства частичного заземления нейтрали трансформатора [3], принимаем, что ток однофазного замыкания в сети с ТЗН составляет порядка 35–40 А.
Токи срабатывания защит рассчитываем, исходя из отстройки защит от собственного емкостного тока присоединения, по формуле из [4]:
где kотс – коэффициент отстройки (принимаем равным 1,3 для ЦРЗА);
I с – собственный емкостный ток присоединения.
Коэффициент отстройки (kотс) включает в себя коэффициент надежности (kн) и коэффициент отстройки от бросков емкостного тока в переходных процессах (kбр) [5]. При анализе осциллограмм и переходных процессов токов ОЗЗ в ЦРЗА (в качестве ЦРЗА применены SEPAM) коэффициент отстройки от бросков емкостного тока (kбр) можно принять за 1 и не учитывать при расчете токов срабатывания защит.
ТЗН обеспечивает определенную фиксированную величину тока замыкания на землю в точке замыкания независимо от параметров сети, а отстройка защиты фидеров выполняется от собственных емкостных токов присоединений, протекающих в ТТНП неповрежденных присоединений при однофазном замыкании в сети.
СОГЛАСОВАНИЕ ЗАЩИТ ПО ТОКУ С НИЖЕСТОЯЩИМИ ЗАЩИТАМИ
Для ВЛ 10 кВ № 1 и № 2 при расчете уставки срабатывания по току учитываем суммарный емкостный ток обоих присоединений, так как ЗРУ-2 может получать питание по одной линии с включенным СВ 10 кВ ЗРУ-2. Данные расчетов токов и уставок сведены в табл. 2.
Таблица 2. Данные расчетов токов и уставок
Наименование присоединения | Емкостный ток, I с, А (измеренный) | Ток срабатывания защиты, I с.з, А | Коэффициент чувствительности защит kч к току замыкания 35 А |
17,03 | 22,14 | 1,58 | |
ВЛ 10 кВ № 2 (включен СВ 10 кВ ЗРУ-2 и отключена ВЛ № 1) | 17,03 | 22,14 | 1,58 |
ВЛ 10 кВ № 3 | 2,77 | 3,6 | 9,7 |
ВЛ 10 кВ № 4 | 7,41 | 9,6 | 3,6 |
Для отходящих кабельных линий 10 кВ ЗРУ-1 (кроме линий 10 кВ № 1, 2, 3, 4) и ЗРУ-2 отстраиваем ток срабатывания ОЗЗ от емкостного тока самой длинной линии 10 кВ и принимаем равным 3 А. При этом необходимо учитывать возможный ток небаланса в токовых цепях защит. Так как оценить токи небаланса и отстроиться от них расчетными методами не представляется возможным, то при каждом ложном срабатывании защиты необходимо проанализировать причины работы защиты от ОЗЗ и выполнить изменения токов срабатывания или выявить ошибки в монтаже ТТ защит от ОЗЗ.
ОПРЕДЕЛЕНИЕ ВРЕМЕНИ СРАБАТЫВАНИЯ ЗАЩИТ ОТ ОДНОФАЗНЫХ ЗАМЫКАНИЙ НА ЗЕМЛЮ
Для выполнения условий селективности работы защит от ОЗЗ было выполнено согласование по времени.
На отходящих линиях 10 кВ ЗРУ-1 (кроме линий 10 кВ № 1, 2, 3, 4) и ЗРУ-2 время работы защиты принимаем равным 0,1 сек.
Для ВЛ 10 кВ № 1,2 время срабатывания защиты от ОЗЗ рассчитываем, исходя из рекомендованной для микропроцессорных защит ступени селективности Δt = 0,25 сек. Время срабатывания защиты от ОЗЗ для ВЛ 10 кВ № 1, 2 составит 0,35 сек.
Для ВЛ 10 кВ № 3, с учетом обеспечения селективности действия защит (в пределах 0,25–0,35 сек.) на 4-х выключателях, установленных на линии, время срабатывания защиты от ОЗЗ принимаем равным 1,1 сек.
ПАРАМЕТРЫ И ЗАЩИТЫ ТРАНСФОРМАТОРОВ РЕЗИСТИВНОГО ЗАЗЕМЛЕНИЯ НЕЙТРАЛИ
Для резистивного заземления нейтрали применен шкаф типа КУН-70М со следующими характеристиками [6]:
С учетом допустимой длительности 5 сек. протекания тока замыкания на землю величиной в 40 А и согласования по току с защитами отходящих линий, для обеспечения селективности действия защит от ОЗЗ принимаем уставки защит: I с.з = 25 А, Т с.з = 1,4 сек. с действием на отключение СВ 10 кВ ЗРУ-1 и Т с.з = 1,7 сек. с действием на отключение своего выключателя.
Карта уставок защит от ОЗЗ представлена на рис. 2.
Рис. 2. Карта уставок защит от ОЗЗ
ОРГАНИЗАЦИЯ ЗАЩИТ ОТ ОЗЗ ПРИ НЕДОСТАТОЧНОЙ ЧУВСТВИТЕЛЬНОСТИ
При больших собственных емкостных токах замыкания на землю присоединений могут возникнуть проблемы с обеспечением чувствительности защит к токам ОЗЗ. Из данного положения можно выйти, согласовав работу защит по времени срабатывания, при этом не ставя перед собой задачу отстройки защит от емкостных токов своих присоединений.
Допустим, что защиты от ОЗЗ ВЛ № 1, 2 не могут быть отстроены от емкостных токов своих присоединений по условию чувствительности к току замыкания (kч Т с.з = 1,1 сек.
Исходя из вышеизложенного, принимаем время срабатывания защит от ОЗЗ ВЛ № 1, 2: Т с.з = 1,4 сек., а время срабатывания защиты от ОЗЗ трансформатора заземления нейтрали увеличиваем соответственно до Т с.з = 1,7 сек. с действием на отключение СВ 10 кВ ЗРУ-1 и Т с.з = 2,0 сек. с действием на отключение своего выключателя.
Если по каким-либо причинам нет возможности увеличить время работы защит от ОЗЗ, то необходимо применять направленные защиты от ОЗЗ. При этом особое внимание следует уделить качеству и правильности монтажа ТТНП, так как проблематично проверить фазировку защиты первичными токами и напряжением. Если есть сомнение в правильности фазировки защиты от ОЗЗ, то необходимо провести опыт однофазного замыкания на землю.
ВЫВОДЫ
ЛИТЕРАТУРА
© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна
Чем опасны емкостные токи
Московский энергетический институт (ТУ)
Кафедра инженерной экологии и охраны труда
Учебно-методический комплекс
Справки по телефону: 362-71-32; e-mail: NovikovSG@mpei.ru доцент Новиков С.Г.
1. Действие электрического тока на человека
D. Факторы, влияющие на исход поражения человека электрическим током
Известно также, что опасность поражения растет вместе с ростом тока, проходящего через человека; поэтому следует ожидать, что увеличение частоты ведет к повышению этой опасности. Действительность показывает, что это предположение справедливо лишь в диапазоне частот от 0 до 50 Гц; дальнейшее же повышение частоты, несмотря на рост тока, проходящего через человека, сопровождается снижением опасности поражения, которая полностью исчезает при частоте 450 – 500 кГц, т. е. такие токи не могут поразить человека. Правда, эти токи сохраняют опасность ожогов как при возникновении электрической дуги, так и при прохождении тока непосредственно через человека (см. рис.1.17).
Постоянный ток примерно в 4 – 5 раз безопаснее переменного с частотой 50 Гц. Это вытекает из сопоставления значений пороговых неотпускающих токов (50 – 80 мА для постоянного и 10 – 15 мА для тока с частотой 50 Гц) и предельно выдерживаемых напряжений: человек, удерживая цилиндрические электроды в руках, в состоянии выдержать (по болевым ощущениям) приложенное к нему напряжение не более 21 – 22 В при 50 Гц и не более 100 – 105 В постоянного тока.
Постоянный ток по сравнению с переменным током того же значения, проходя через тело человека, вызывает более слабые сокращения мышц и менее неприятные ощущения. Обычно это ощущение нагрева кожи при малых токах или внутреннего нагрева при больших токах. Лишь в момент замыкания и размыкания цепи тока человек испытывает кратковременное болезненное ощущение вследствие внезапного судорожного сокращения мышц, подобное тому, которое возникает при переменном токе.
Сказанное о сравнительной опасности постоянного и переменного токов справедливо лишь для напряжений до 500 В. При более высоких напряжениях постоянный ток становится опаснее переменного 50 Гц.
Причины различной степени опасности токов с различными частотами кроются в характере раздражающего действия этих токов на клетки живой ткани.
Анализ опасности поражения током в различных электрических сетях
Чем определяется опасность поражения током в различных электрических сетях?
Анализ опасности поражения практически сводится к определению значения тока, протекающего через тело человека в различных условиях, в которых он может оказаться при эксплуатации электроустановок, или напряжения прикосновения. Опасность поражения зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, емкости токоведущих частей относительно земли и т. п.
Каковы схемы включения человека в электрическую цепь?
Наиболее характерными являются две схемы включения: между двумя фазами электрической сети, между одной фазой и землей. Кроме того, возможно прикосновение к заземленным нетоковедущим частям, оказавшимся под напряжением, а также включение человека под шаговое напряжение.
Что называется нейтралью трансформатора (генератора) и каковы режимы ее работы?
Точка соединения обмоток питающего трансформатора (генератора) называется нейтральной точкой, или нейтралью. Нейтраль источника питания может быть изолированная и заземленная.
Заземленной называется нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).
Изолированной называется нейтраль генератора или трансформатора, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы).
Что положено в основу выбора режима нейтрали?
Выбор схемы сети, а следовательно, и режима нейтрали источника тока производят исходя из технологических требований и условий безопасности.
При напряжении до 1000 В широкое распространение получили обе схемы трехфазных сетей: трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью.
По технологическим требованиям предпочтение часто отдается четырехпроводной сети, она использует два рабочих напряжения — линейное и фазное. Так, от четырехпроводной сети 380 В можно питать как силовую нагрузку — трехфазную, включая ее между фазными проводами на линейное напряжение 380 В, так и осветительную, включая ее между фазным и нулевым проводами, т. е. на фазное напряжение 220 В. При этом становится значительно дешевле электроустановка за счет применения меньшего числа трансформаторов, меньшего сечения проводов и т. п.
По условиям безопасности выбирают одну из двух сетей исходя из положения: по условиям прикосновения к фазному проводу в период нормального режима работы сети более безопасной является сеть с изолированной нейтралью, а в аварийный период — сеть с заземленной нейтралью. Поэтому сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети и когда емкость сети относительно земли незначительна. Это могут быть мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети небольших предприятий, передвижные установки.
Сети с заземленной нейтралью применяют там, где невозможно обеспечить хорошую изоляцию электроустановок (из-за высокой влажности, агрессивной среды и пр.) или нельзя быстро отыскать и устранить повреждение изоляции, когда емкостные токи сети вследствие значительной ее разветвленности достигают больших значений, опасных для жизни человека. К таким сетям относятся сети крупных промышленных предприятий, городские распределительные и пр.
Существующее мнение о более высокой степени надежности сетей с изолированной нейтралью недостаточно обоснованно.
Статистические данные указывают, что по условиям надежности работы обе сети практически одинаковы.
При напряжении выше 1000 В вплоть до 35 кВ сети по технологическим причинам имеют изолированную нейтраль, а выше 35 кВ — заземленную.
Поскольку такие сети имеют большую емкость проводов относительно земли, для человека одинаково опасно прикосновение к проводу сети как с изолированной, так и с заземленной нейтралью. Поэтому режим нейтрали сети выше 1000 В по условиям безопасности не выбирается.
Какова опасность двухфазного прикосновения?
Под двухфазным прикосновением понимается одновременное прикосновение к двум фазам электроустановки, находящейся под напряжением (рис. 1).
Рис. 1. Схема двухфазного прикосновения человека к сети переменного тока
Двухфазное прикосновение более опасно. При двухфазном прикосновении ток, проходящий через тело человека по одному из самых опасных для организма путей (рука—рука), будет зависеть от прикладываемого к телу человека напряжения, равного линейному напряжению сети, а также от сопротивления тела человека:
В сети с линейным напряжением Uл = 380 В при сопротивлении тела человека Rчел = 1000 Ом ток, проходящий через тело человека, будет равен:
Этот ток для человека смертельно опасен. При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей).
Случаи прикосновения человека к двум фазам происходят сравнительно редко.
Чем характеризуется однофазное прикосновение?
Однофазным прикосновением называется прикосновение к одной фазе электроустановки, находящейся под напряжением.
Оно происходит во много раз чаще, чем двухфазное прикосновение, но менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного. Соответственно меньше оказывается и ток, проходящий через тело человека. Кроме того, на этот ток большое влияние оказывают режим нейтрали источника тока, сопротивление изоляции проводов сети относительно земли, сопротивление пола (или основания), на котором стоит человек, сопротивление его обуви и некоторые другие факторы.
Какова опасность однофазного прикосновения в сети с заземленной нейтралью?
Рис. 2. Схема прикосновения человека к одной фазе трехфазной сети с заземленной нейтралью
В сети с заземленной нейтралью (рис. 2) цепь тока, проходящего через тело человека, включает в себя сопротивления тела человека, его обуви, пола (или основания), на котором стоит человек, а также сопротивление заземления нейтрали источника тока. С учетом указанных сопротивлений ток, проходящий через тело человека, определяется из следующего выражения:
При наиболее неблагоприятных условиях (человек, прикоснувшийся к фазе, имеет на ногах токопроводящую обувь — сырую или подбитую металлическими гвоздями, стоит на сырой земле или на проводящем основании — металлическом полу, на заземленной металлоконструкции), т. е. когда Rоб = 0 и Rп = 0, уравнение принимает вид:
Поскольку сопротивление нейтрали Ro обычно во много раз меньше сопротивления тела человека, то им можно пренебречь. Тогда
Однако при этих условиях и однофазное прикосновение, несмотря на меньший ток, весьма опасно. Так, в сети с фазным напряжением Uф = 220 В при Rчел = 1000 Ом ток, проходя через тело человека, будет иметь значение:
Такой ток смертельно опасен для человека.
Если человек имеет на ногах непроводящую обувь (например, резиновые галоши) и стоит на изолирующем основании (например, на деревянном полу), то
Ток такой силы не опасен для человека.
Из приведенных данных видно, что для безопасности работающих в электроустановках большое значение имеют изолирующие полы и непроводящая ток обувь.
Каковы особенности однофазного прикосновения в сети с изолированной нейтралью?
В сети с изолированной нейтралью (рис. 3) ток, проходящий через тело человека в землю, возвращается к источнику тока через изоляцию проводов сети, которая в исправном состоянии обладает большим сопротивлением.
С учетом сопротивлений обуви Rоб и пола или основания Rп, на котором стоит человек, включенных последовательно сопротивлению тела человека Rчел, ток, проходящий через тело человека, определяется уравнением:
где Rиз — сопротивление изоляции одной фазы сети относительно земли, Ом.
Рис. 3. Схема прикосновения человека к одной фазе трехфазной сети с изолированной нейтралью
При наиболее неблагоприятном случае, когда человек имеет проводящую ток обувь и стоит на токопроводящем полу, т. е. при Rоб = 0 и Rп = 0, уравнение значительно упростится:
Для этого случая в сети с фазным напряжением Uф = 220 В и сопротивлением изоляции фазы Rиз = 90 000 Ом при Rчел = 1000 Ом ток, проходящий через человека, будет равен:
Этот ток значительно меньше тока (220 мА), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Он определяется в основном сопротивлением изоляции проводов относительно земли.
Какая сеть является более безопасной — с изолированной или заземленной нейтралью?
При прочих равных условиях прикосновение человека к одной фазе сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Однако этот вывод справедлив лишь для нормальных (безаварийных) условий работы сетей, при наличии незначительной емкости относительно земли.
В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной. Объясняется это тем, что при такой аварии в сети с изолированной нейтралью напряжение неповрежденной фазы относительно земли может возрасти с фазного до линейного, в то время как в сети с заземленной нейтралью повышение напряжения окажется незначительным.
Однако современные электрические сети ввиду их разветвленности и значительной протяженности создают большую емкостную проводимость между фазой и землей. В этом случае опасность прикосновения человека к одной и двум фазам практически одинакова. Каждое из этих прикосновений весьма опасно, так как ток, проходящий через тело человека, достигает очень больших значений.
Что такое напряжение шага?
Под напряжением шага понимается напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек. Величина шага обычно принимается равной 0,8 м.
Для некоторых животных (лошади, коровы) величина напряжения шага больше, чем для людей, и путь тока захватывает грудную клетку. По этим причинам они более подвержены поражениям шаговым напряжением.
Шаговое напряжение возникает вокруг места перехода тока от поврежденной электроустановки в землю. Наибольшая величина будет около места перехода, а наименьшая — на расстоянии более 20 м, т. е. за пределами, ограничивающими поле растекания тока в грунте.
На расстоянии 1 м от заземлителя падение напряжения составляет 68% полного напряжения, на расстоянии 10 м — 92%, на расстоянии 20 м потенциалы точек настолько малы, что практически могут быть равны нулю.
Такие точки поверхности почвы считаются находящимися вне зоны растекания тока и называются «землей».
Опасность напряжения шага увеличивается, если человек, подвергшийся его воздействию, падает. И тогда напряженйе шага возрастает, так как путь тока проходит уже не через ноги, а через все тело.
Случаи поражения людей из-за воздействия напряжения шага относительно редки. Они могут произойти, например, вблизи упавшего на землю провода (в такие моменты до отключения линии нельзя допускать людей и животных на близкое расстояние к месту падения провода). Наиболее опасны напряжения шага при ударе молнии.
Оказавшись в зоне шагового напряжения, выходить из нее следует небольшими шагами в сторону, противоположную месту предполагаемого замыкания на землю, и в частности лежащего на земле провода.