Чем опасно инфракрасное излучение для человека
Электромагнитное излучение: нужно ли его бояться?
Содержание
О том, какого мнения современная наука придерживается относительно влияние электромагнитного излучения на организм человека и какие приборы являются самыми значимыми источниками такого излучения, рассказывает
Влияние электромагнитных полей на организм человека изучается со времён СССР, ещё в 60х годах прошлого века оно было подтверждено, тогда же было введено и понятие «радиоволновая болезнь» и разработаны Предельно Допустимые Уровни (ПДУ). Исследования в этой области продолжаются и сейчас. Тем не менее, эффект и последствия от воздействия ЭМИ очень зависит от каждого конкретного человека, роста, веса, пола, состояния здоровья, иммунитета и даже диеты! Ровно так же как и от интенсивности поля, частоты и продолжительности воздействия.
Самыми значимыми источниками электромагнитного поля являются те приборы, которыми мы пользуемся чаще всего и которые располагаются к нам ближе всего. Это:
Устройства связи дают электромагнитное поле в момент приёма/передачи информации, а из-за того, что они расположены к нам на минимальном расстоянии (например, мобильный телефон находится вообще вплотную к голове), то и значения плотности потока ЭМ поля будет максимальным.
У СВЧ печей есть срок эксплуатации, если она новая и исправная, то излучения в момент работы снаружи печи практически не будет, если же поверхность загрязнена, неплотно прилегает дверца, то защита печи может не останавливать всё излучение и поля будут «пробивать» даже стены кухни! И давать превышение по всей квартире или ближайшим комнатам.
Как правило, чем мощнее потребитель тока, чем он ближе к нам расположен, чем дольше он на нас воздействует и чем менее защищён (экранирован), тем сильнее будут проявляться негативные последствия. Потому что интенсивность излучения от каждого конкретного источника тоже будет разная.
Негативное влияние на организм человека
Чем дольше мы находимся в электромагнитном поле, тем больше шансы на появление каких-либо последствий. Опасность в том, что без специального оборудования, мы никогда и не узнаем, подвергаемся ли мы прямо сейчас воздействию ЭМ-поля или нет. Разве что совсем в критических ситуациях, когда уже и волосы от статических зарядов начинают шевелиться.
Воздействие ЭМ полей может вызывать:
Опасность заключается ещё и в том, что заметив у себя любой из описанных выше признаков, человек станет подозревать всё что угодно, но не электромагнитные поля, вызванные, например, скрытой проводкой, идущей вдоль спального места.
Правила безопасности при воздействии электромагнитного излучения на организм человека
Самая качественная защита от ЭМ излучения – это расстояние.
Плотность излучения с расстоянием падает в разы. У каждого источника достаточно ограниченный радиус действия полей, поэтому правильное планирование мест для отдыха/досуга, работы и сна уже залог Вашего здоровья, однако, не стоит забывать и про то, что любой обесточенный источник ЭМ-полей перестаёт таковым являться.
Поэтому не забывайте выключать из сети неиспользуемые приборы, не располагайте рядом с головой мощные источники ЭМИ, следите за состоянием бытовой техники и читайте инструкции по правильной эксплуатации бытовых приборов.
В теории качественная бытовая техника будет являться более безвредной, так как чем крупнее и «именитее» производитель, тем больше он будет заботиться о своём имидже и, соответственно, сертифицировать все свои продукты как можно более ответственнее. Но это, понятное дело, сказывается и на стоимости оборудования.
Однако стоит учитывать то, что это касается только новой техники, не подвергавшейся физическому воздействию, ремонтам, при правильной эксплуатации, расположении и прочее. Если хоть что-то было нарушено, то интенсивность излучения может измениться в разы.
Какое мнение сейчас принято по данному вопросу в научном сообществе?
Вред электромагнитного излучения для здоровья человека никем не отрицается. Но споры и обсуждения продолжаются касательно предельно допустимых уровней, так как провести однозначно линию, разграничивающую вред и пользу для организма, очень тяжело. В конце концов, есть и лечебные источники ЭМ-полей и диагностическое оборудование.
Чем опасно инфракрасное излучение для человека
Инфракрасное излучение (ИКИ) занимает в электромагнитном спектре промежуточное положение между микроволновой и видимой частью. Биологические эффекты от воздействия такого излучения связаны с его способностью нагревать ткани при относительно высокой плотности поля (> 100 мВ/см2).
Наиболее чувствителен к инфракрасному излучению (ИКИ) орган зрения, особенно к волнам длиной от 750 до 1500 нм. В экспериментальных работах изучали влияние этого излучения на роговицу, радужную оболочку, хрусталик.
У работников заводов, выпускающих изделия из стекла, ежедневно подвергающихся воздействию инфракрасного излучения (ИКИ), уровень заболеваемости катарактой (субкапсулярной, кунеиформной и ядерной) оказался выше по сравнению с контрольной группой. Это заболевание, также известное как «катаракта стеклодувов», с определенного времени стали рассматривать как профессиональную патологию.
Большинство несчастных случаев, приводящих к поражению глаз, происходит во время установки и наведения аппаратуры, когда работники не надевали защитные темные очки. Предельно допустимый уровень профессиональной экспозиции к инфракрасному излучению (ИКИ) равен 10 мВ/см2 при длине волны более 770 нм.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Инфракрасное излучение
Инфракрасное излучение (ИК-излучение) часть электромагнитного спектра с длиной волны &lambda = 0,76 1000 мкм, энергия которого при поглощении в веществе вызывает тепловой эффект. С учетом особенности биологического действия по длинам волн ИК-излучение делится на области: коротковолновую, с &lambda = 0,7615 мкм, средневолновую, с &lambda = 16-100 мкм, длинноволновую, с &lambda100 мкм.
Инфракрасное излучение также называют тепловым излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.
Воздействие инфракрасного излучения на организм проявляется как общими, так и местными реакциями.
Местная реакция сильнее выражена при облучении длинноволновыми инфракрасными лучами, поэтому при одной и той же интенсивности облучения время переносимости коротковолнового инфракрасного излучения больше, чем длинноволнового. Коротковолновое инфракрасное излучение обладает более выраженным общим действием за счет большей глубины проникновения в ткани тела.
Изменения в организме под воздействием инфракрасного излучения зависят от его интенсивности, спектрального состава, площади и зоны облучения. Так, наибольший эффект, наблюдается при облучении области шеи, верхней половины туловища.
Изменения на коже характеризуются эритемой, при интенсивном облучении может быть ожёг, при длительном воздействии на коже может развиться коричнево-красная пигментация.
Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечно-сосудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения. Все эти изменения могут проявиться в виде заболеваний:
— судорожная болезнь, вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях
— перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме основным признаком является резкое повышение температуры тела
— катаракта (помутнение хрусталиков) профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с &lambda = 0,78-1,8 мкм.
К острым нарушениям органов зрения относятся также ожог, конъюктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.
Согласно СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений допустимые величины интенсивности теплового облучения работающих на рабочих местах от производственных источников, нагретых до темного свечения (материалов, изделий и др.) должны соответствовать значениям, приведенным в таблице
Допустимые величины интенсивности теплового облучения работающих от источников излучения, нагретых до белого и красного свечения (раскаленный или расплавленный металл, стекло, пламя и др.) не должны превышать 140 Вт/кв. м. При этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.
Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Экраны бывают трех типов: непрозрачные, прозрачные и полупрозрачные.
В непрозрачных экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и становится источником теплового излучения. К непрозрачным экранам относятся: металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит), асбестовые и др.
В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что обеспечивает видимость через экран. Прозрачные экраны выполняются из различных стекол: силикатного, кварцевого, органического, металлизированного, а также к прозрачным экранам относятся пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.
Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из армированного металлической сеткой стекла.
По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие. Так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло, то отнесение экрана к той или иной группе производится в зависимости от того, какие свойства экрана выражены сильнее:
— теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают. В качестве теплоотражающих материалов в конструкции экранов используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску
— теплопоглощающие экраны выполняют из материалов с высоким термическим сопротивлением, т.е. с малым коэффициентом теплопроводимости. В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату
— в качестве теплоотводящих экранов наиболее широко используют водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла, металла (змеевики) и др.
В качестве средств индивидуальной защиты применяются фибровые и дюралевые каски, защитные очки, наголовные маски с откидными экранами, спецодежда и спецобувь.
Лечебно-профилактические мероприятия включают предварительные и периодические медицинские осмотры в целях предупреждения и ранней диагностики заболеваний у работающих.
Экспертиза ИК-излучения проводится Аккредитованным испытательным лабораторным центром ФБУЗ Центр гигиены и эпидемиологии в Республике Мордовия, аттестат аккредитации № РОСС. RU.0001.510112 от 03.06.2013г. Для этого в ИЛЦ имеется всё: опытные, высококвалифицированные специалисты, современная аналитическая и измерительная аппаратура, высокое качество исследований и измерений.
Инфракрасное излучение, польза и вред для человека
В повседневной жизни мы встречаем различные источники инфракрасного излучения. Они могут быть как природным явлением, так и результатом деятельности человека. Солнечное излучение наполовину является инфракрасным излучением. Этот вид лучей невидим для глаза человека. Но существуют различные виды животных, зрение которых восприимчиво к такому излучению, что позволяет им ориентироваться в темноте. Человек же может почувствовать его своей кожей в виде тепла.
Эти электромагнитные волны еще называются тепловыми. Все потому, что при этом излучении выделяется тепло. Именно на основе этого явления работают различные измерители, в том числе и тепловизор. Он измеряет разницу в излучении, которая также соответствует разнице температур различных объектов.
Такое излучение можно разделить на:
В данном случае длинна волны зависит от того, какую температуру излучает сам источник. Чем выше температура, тем короче будет волна излучения, но при этом она будет и интенсивнее. Для человеческого организма наиболее опасным считается коротковолновое излучение. Температура такого излучения превышает 800 градусов по Цельсию.
Твердые тела являются источником этого вида излучения и формируют длинноволновое ИК-излучение. Чем выше температура, тем светлее будет казаться предмет. Так при температуре выше 5 тысяч Кельвинов цвет предмета становится совершенно белым, а при более низких показателях он может достигать темно-красного. Это явление можно заметить при нагревании различных предметов. Например, при нагревании металлической проволоки она меняет свой цвет, что свидетельствует о повышении температуры. Но максимально в домашних условиях можно получить только насыщенный красный цвет, потому что нет подходящих условий для последующего повышения температуры.
Человек часто использует инфракрасное излучение в своих нуждах. Необходимо знать о том, что из себя оно представляет, в каких дозах безопасно для человека и какие последствия может вызывать. Также ИК-лучи могут быть и естественными. Солнечный свет представляет собой такое излучение. В зависимости от дозы он может быть как полезным для человека, так и вызывать многие проблемы, частая из которых солнечные ожоги.
Сферы использования инфракрасного излучения
Прежде чем говорить о том, как влияет инфракрасное излучение на организм человека, необходимо понять, где и для чего его используют. Такое излучение может быть не только вредным, но и наоборот полезным. Именно поэтому человек использует его в различных целях, которые улучшают жизнь человека.
Этот тип излучения часто используется в различных приборах, к ним относятся различные приборы ночного видения. Они работают по принципу фиксации ИК-лучей, которые излучают предметы. Распространено использование инфракрасного излучения в производственных целях. Изготовление телекоммуникационных предметов, пультов дистанционного управления, систем охраны и многого другого не обходится без использования данного вида излучения.
Часто можно встретить использование этого излучения в обогревательных системах и обогревателях. Обогреватели, работающие при помощи ИК-излучения являются экономным и удобным способом обогрева помещения и позволяют осуществлять его максимально быстро. Все потому, что такое излучение выделяет и тепло, которое быстро распространяется по всему помещению.
Так как существует и вред инфракрасного излучения на организм человека, необходимо тщательно выбирать приборы, которые работают с этим видом излучения. Хотя эти приборы являются экономными и качественными, следует обращать внимание на различные характеристики и контролировать чтобы не было превышения норм.
Польза инфракрасного излучения
Оно используется не только в производственных и бытовых целях, но и в медицине. При правильном использовании и дозировке излучение способно решать множество проблем, и улучшать качество жизни человека.
О том, чем полезно инфракрасное излучение для человека может сказать медицина. Уже доказано, что излучение способно оказывать лечебное действие на такие проблемы как:
Но не только в этом заключается польза инфракрасного излучения для человека. Сейчас распространено применение данного вида излучения для различных профилактических мероприятий. Так часто можно встретить его как способ укрепления иммунной системы, улучшения памяти, улучшения баланса гормонов, восстановления водно-солевого баланса. Для предупреждения грибковых заболеваний или микробов тоже используется этот вид излучения. Длинные волны способны оказывать успокаивающее воздействие на человека и поэтому их используют для уменьшения усталости, стресса и раздражительности. Инфракрасные лучи могут оказывать и обезболивающее действие, а также подавлять раковые клетки в организме.
Из этого видно какое широкое применение в медицинских целях имеет инфракрасное излучение. В правильных дозах оно способно улучшить состояние организма человека и является прекрасным способом профилактики многих проблем. Но тут имеются различные противопоказания, и поэтому для некоторых людей такое излучение даже в медицинских дозах может быть опасно.
Как в медицине, так и при изготовлении различных приборов, человек строго соблюдает нормы допустимого ИК-излучения. Также следует следить и за тем, какой вид лучей используется в той или иной ситуации, потому что не все виды этого излучения одинаково безопасны для человека. Так для отопления помещений необходимо использовать только обогреватели, использующие длинные волны. Короткие волны при близком контакте с человеком представляют для него опасность. Зачастую они провоцируют покраснение кожи и различные заболевания глаз.
Вред инфракрасного излучения
Но такое излучение может приносить не только пользу, но и вред. Чем опасно инфракрасное излучение для человека?
Самое распространенное явление, с которым может столкнуться человек — это солнечные ожоги. Именно инфракрасное излучение становится причиной покраснения кожных покровов или же ожогов, полученных от пребывания на солнце. Использование различных защитных средств предотвращает нанесение вредя инфракрасными лучами.
Негативное действие инфракрасного излучения на организм человека также вызывает различные симптомы. Так человек начинает испытывать проблемы с координацией, потемнение в глазах, учащенное сердцебиение и тошноту. В отдельных случаях он может потерять сознание.
Для глаз большую опасность представляет тип излучения с короткими волнами. Коротковолновое свечение в 0,75-1,5 мкм способно провоцировать не только ухудшение зрения, но и катаракту или боязнь света. Следует избегать длительного контакта с сильными излучениями с такими короткими волнами. Чаще всего его можно встретить в различных обогревателях для улицы. Поэтому жилые помещения должны использовать обогреватели на основе длинных волн, которые не несут такой опасности для человека.
Даже в медицинских целях не всегда можно использовать ИК-излучение. Так не рекомендуется такой тип лечения при злокачественных опухолях, заболеваниях крови и кровотечениях. Поэтому даже при использовании обогревателей, работающих по такой технологии, следует удостовериться о том, какой тип излучения используется, чтобы предотвратить вред для человека. Ведь такие лучи не для всех одинаково полезны.
Мы ежедневно сталкивается с различными источниками такого излучения. Воздействие инфракрасного излучения на человека может быть как положительным, так и отрицательным. Множество приборов используют его для своей работы и также оно широко применяется в медицине. Знание о том, где и как встречается этот тип излучения поможет избежать многих проблем. Ведь даже солнечный свет может нанести вред организму, не говоря уже о различных приборах с инфракрасным излучением, которые используются не по назначению.
Влияние лазерного излучения на организм человека
Лазер (laser, акроним от light amplification by stimulated emission of radiation «усиление света посредством вынужденного излучения») – устройство, которое излучает интенсивный, направленный луч света. Он имеет множество полезных применений, но неконтролируемое воздействие лазера на человека вредно для здоровья. Наиболее частая причина повреждения тканей, вызванного лазером, имеет термическую природу, когда белки ткани денатурируются из-за повышения температуры после поглощения лазерной энергии.
Человеческое тело уязвимо для излучения определенных лазеров, и при определенных обстоятельствах их воздействие может привести к повреждению глаз и кожи. Исследования, касающиеся пороговых значений повреждения глаз и кожи, были проведены для понимания биологических опасностей лазерного излучения. Сейчас широко признано, что человеческий глаз почти всегда более уязвим для травм, чем человеческая кожа.
Только эффективная работа отдела по охране труда может защитить работников от опасных излучений. Мы помогаем предприятиям обеспечить безопасность путем аудита, измерений и разработки документов.
Как лазерный луч повреждает ткани?
Лазерное излучение достаточной интенсивности и продолжительности воздействия может привести к необратимому повреждению кожи и глаз человека. Наиболее распространенной причиной повреждения тканей, наведенного лазером, является термальная природа. Это процесс, при котором белки ткани денатурируются из-за повышения температуры после поглощения энергии лазера. Процесс термического повреждения обычно осуществляется лазерами, воздействующими в течение более 10 микросекунд при длине волны от ближнего ультрафиолетового до дальнего инфракрасного диапазона (0,315 — 103 мкм).
Фотохимические реакции являются основной причиной повреждения тканей после воздействия либо ультрафиолетового излучения (200 — 315 нм) в течение любого времени экспозиции, либо «коротковолнового» видимого излучения (400 — 550 нм), когда экспозиция превышает 10 секунд. Повреждение ткани также может быть вызвано после воздействия очень короткого лазерного импульса.
Текущие данные указывают на то, что основной причиной поражения является тепловой процесс, в котором эффекты отдельных импульсов складываются. Как острое, так и хроническое воздействие всех форм оптического излучения может вызывать повреждение кожи разной степени.
Насколько опасно лазерное излучение?
Для обычных лазерных источников в диапазоне от 0,3 до 1,0 мкм почти 99% излучения, проникающего в кожу, поглощается, по крайней мере, в наружных 4 мм тканей.
Основные тепловые эффекты лазерного воздействия зависят от следующих факторов:
При длинах волн более 400 нм реакция кожи на поглощенное оптическое излучение по существу является термически индукцированным некрозом. Этот вид травмы может быть вызван любым источником оптического излучения с аналогичными параметрами и поэтому не является реакцией, специфичной для лазерного излучения. По причинно-следственной связи и клиническому виду она похожа на глубокий электрический ожог.
Многочисленные типы лазеров были исследованы довольно широко для лечения кожных заболеваний. Конечно, повреждение кожи имеет меньшее значение, чем повреждение глаз; однако с расширением использования более мощных лазерных систем, незащищенная кожа персонала, использующего лазеры, может подвергаться более часто опасным уровням.
При импульсном лазерном излучении, в том числе и при облучении в течение пикосекунд, в тканях могут возникать и другие вторичные реакции. Это может в конечном итоге активизировать рост раковых клеток.