Чем опасен разгон памяти
Разоблачаем 5 мифов об эффективности и выгоде разгона процессоров и видеокарт
Индустрия компьютерных комплектующих давно взяла «курс на разгон». Только самые бюджетные модели материнских плат и процессоров не имеют оверклокерских функций, а видеокарты хотя бы с одной теплотрубкой в охлаждении получают зашитый в BIOS прирост частоты на 50 МГц и гордую приставку «OC» в названии.
реклама
Глядя на то, как обладатель ВАЗ 2112 тюнингует свою «ласточку», доводя ее стоимость до уровня качественной бюджетной иномарки, только ухмыляешься. Эти автолюбители попали в капкан маркетинга и варятся в своем соку, на специализированных форумах и ютуб-каналах единомышленников.
реклама
Однако если трезво взглянуть на нас, пользователей ПК, то можно увидеть, что мы тоже давно попали в маркетинговую ловушку. И переплачиваем не только за возможность разгона, но уже даже и за специфический дизайн, за RGB-подсветку, которую втыкают сейчас везде. Это напоминает мне китайские магнитофоны с цветомузыкой из 90-х годов. Но там светодиоды воспринимались как дурной вкус.
реклама
Самое забавное в этой ситуации то, что по настоящему разгоняющиеся железки давно исчезли, а почти весь лимит по повышению частоты выжимает производитель с помощью технологии умного турбобуста.
Разгон сегодня находится в состоянии упадка
А что сейчас? А сейчас разгонный потенциал сжался до уровня жалких 5-10%. На сколько можно разогнать Ryzen 7 3700X? Практически ни насколько, все уже выжато производителем.
реклама
Не знаю как у вас, но у меня жутко бомбит от такого положения дел на оверклокерском фронте, и я решил разоблачить несколько мифов, которыми особенно сильно одурманены начинающие оверклокеры.
К сожалению, увеличив частоту Core i5-10600K до 5200 МГц по всем ядрам, вы вряд ли увидите прирост производительности в играх «на глаз», без замеров в бенчмарках. И время рендеринга не ускорится настолько, чтобы заметить это.
С видеокартами такая же история, разогнав GeForce GTX 1660 SUPER, даже до 2100 МГц, вы получите всего лишь около 7% от частоты «буста» моделей с хорошим охлаждением. Думаю не стоит говорить, что этого не заметить на глаз, и если у вас «тормозила» игра, она продолжит «тормозить» и после разгона.
Нет и еще раз нет! Это было возможно на процессорах, которые я описал в начале блога, но сейчас это невозможно ни на процессорах, ни на видеокартах.
Третий миф выходит из второго, вам не удастся компенсировать недостаток производительности более дешевой модели. Наоборот, разгон стоит денег и вы доплатите и за модель видеокарты с хорошим охлаждением, и за процессор с разблокированным множителем, и за материнскую плату с качественной системой питания.
Иногда навороченная оверклокерская модель видеокарты стоит почти столько же, сколько бюджетная модель более высокого уровня. Добавьте к этому траты на повышенный расход электричества при разгоне и железо, которое легко можно вывести из строя.
Бездумный разгон прост, покрутить ползунки в MSI Afterburner или увеличить множитель процессора в BIOS сможет каждый. На каков будет результат? Сколько проработает «железо» с сильно завышенным напряжением? Чтобы разобраться во всех нюансах, недостаточно прочитать пару гайдов, надо потратить время на изучение форумов и отзывов пользователей.
Поэтому темы про разгон процессоров и видеокарт самые посещаемые и активные, пользователям приходится пропускать сквозь себя уйму информации.
Многие ютуб-блогеры, делающие видео для начинающих оверклокеров, уверяют их, что разгон сейчас безопасен и сломать ничего нельзя. Это не так! При бездумном разгоне с повышением напряжения очень легко вывести из строя разгоняемый чип.
А если еще добавить увеличившиеся температуры, особенно в тех местах, где они не мониторятся (чипы памяти видеокарт, зона VRM видеокарт и материнских плат), то риск вывести железо из строя заметно увеличивается.
Что делать и умер ли разгон окончательно?
После прочтения блога у вас может сложиться пессимистическая картина, но не спешите вешать нос.
Во-вторых, есть еще железо, где бесплатный разгон еще остался. Я говорю про разгон памяти. Он стал давать заметный прирост в производительности в последние годы и пока еще практически бесплатен.
Если вы потратите время на изучение форумов и купите хорошие, разгоняемые планки памяти, например CRUCIAL Ballistix BL8G30C15U4B, то прирост производительности после разгона сможете увидеть и невооруженным взглядом.
Пишите, что вы думаете по поводу упадка разгона? И разгоняете ли свое железо?
Как разогнать оперативную память и зачем это делать
Содержание
Содержание
После установки оперативная память работает на минимальной частоте. Купив планку ОЗУ с тактовой частотой 2400 МГц, можно с удивлением обнаружить, что она функционирует на 1600 МГц.
Зачем добиваться максимальной производительности оперативной памяти
Чем больше МГц, тем выше пропускная способность чтения и записи, больше операций выполняется за одну секунду. Архивация файлов с помощью WinRAR происходит на 40% быстрее. В этом обзоре наглядно показано, как влияет разгон Kingston HyperX FURY на скорость обработки информации.
Чтобы сэкономить себе время на поиски оптимального тайминга, можно воспользоваться программой «Drum Calculator for ryzen». ОЗУ, работающая с минимальным таймингом и максимальной частой, больше нагружает процессор, что отражается на количестве FPS в играх. Пример использования калькулятора и удачного разгона здесь.
А здесь можно посмотреть детальное и полномасштабное тестирование изменения частот и таймингов с приростом 6–14 FPS.
Совместимость
Оперативная память работает на частоте самого медленного модуля. Если установлено несколько планок разных производителей или серий, может возникнуть конфликт совместимости, тогда операционная система не запустится.
Чтобы выжать из железа максимум, надо устанавливать модули памяти из одной серии. В этом обзоре показана разница между двухканальным и одноканальным режимом работы ОЗУ.
В двухканальном режиме необходимо устанавливать планку через один слот. Тут продемонстрирована комплексная работа планок оперативки из одной серии.
Правила разгона
Не все материнские платы поддерживают разгон. Китайские «ноунеймы» в особенности любят блокировать возможность увеличить производительность вручную, оставляя только автоматическое поднятие частот.
Turbo Boost — это всегда разгон в щадящем режиме, протестированный производителем и максимально безопасный. Чтобы получить производительности на 5–10% больше, потребуется поработать ручками. Контроллер памяти процессора не даст разогнать оперативную память выше собственных параметров частоты.
Спасительная кнопка отката
Вывести из строя оперативную память, меняя частоту — невозможно. Со слишком высокими параметрами ПК просто не запустится. Если после нескольких загрузок все еще появляется «синий экран смерти», необходимо сбросить настройки на заводские параметры. Делается это с помощью перемычки «CLR CMOS», на некоторых материнках он подписан, как «JBAT».
Настройка частоты и тайминги памяти
Есть два способа разгона — автоматический и ручной. Первый вариант безопасен, второй позволяет добиться большей производительности, но есть риск сбоя ОС и физического повреждения ОЗУ. Для увеличения частоты оперативной памяти используется BIOS.
Автоматическая настройка
Специальное программное обеспечение «Extreme Memory Profiles» для процессоров Intel позволяет быстро настроить уже готовые профили разгона. У фанатов AMD есть свой софт от MSI. Применяя автоматические настройки, мы получаем оптимальные параметры задержки.
Разгон серверной ОЗУ
Рассмотрим автонастройки частоты на примере материнской платы x79 LGA2011 с процессором Intel Xeon E5-2689. Серверная оперативная память — 2 планки Samsung по 16 Gb с частотой 1333 MHz, работающие в двухканальном режиме, тайминг — 9-9-9-24.
Путь к разгону лежит через BIOS, вкладка «Chipset», раздел «Northbridge» — параметры северного моста.
Выбираем настройку «DDR Speed». Параметр «Auto» меняем на «Force DDDR3 1600». Сохраняем, перезагружаемся. Запускаем тест в программе AIDA 64, выбрав в меню «Сервис» задачу «Тест кэша и памяти», затем жмем «Start Benchmark».
В синтетическом тесте скорость чтения, записи и копирования увеличилась почти на 20%. «Memory Bus» поднялся до 800 MHz, тайминг — 11-11-11-28.
Возвращаемся в BIOS, ставим «Force DDDR3 1866».
При таких настройках прирост производительности достигает 39%. Процессор разогнался автоматически с 2600 MHz до 3292,5 MHz, прирост CPU составил 26%, параметры тайминга — 12-12-12-32.
Разгон с помощью профиля XMP от MSI
В современные планки ОЗУ устанавливается SPD-чип с предустановленными профилями разгона, позволяя увеличивать частоту до 3200 MHz. Для разгона такой оперативки выбираем функцию «XMP» в BIOS.
Опускаемся вниз, не трогая остальные настройки, указываем «Профиль 1». Сохраняем изменения, тестируем в Benchmark.
Ручная настройка
Включаем компьютер. Для перехода в BIOS нажимаем клавишу «F1» или «Delete» — в зависимости от материнки. Переходим в раздел, отвечающий за центральный процессор и оперативную память, ищем строку с параметром частоты ОЗУ.
Если в BIOS есть пункт «MB Intelligent Tweaker (M.I.T.)», нажимаем «Ctrl + F1» в главном меню — должна появиться еще одна категория с настройками. В ней находим строку «System Memory Multiplier».
Если пункта M.I.T. нет, скорей всего, используется «AMI BIOS». Ищем вкладку «Advanced BIOS Features», переходим к параметру «Advanced DRAM Configuration».
Если установлен «UEFI BIOS», нажимаем «F7» — раздел «Advanced Mode», переходим к вкладке «Ai Tweaker», изменяем частоту, используя выпадающее меню «Memory Frequency».
Метод научного тыка
Теперь рассмотрим подробнее, как разогнать частоту, тайминг. Сразу «давить на газ» не стоит, параметр частоты увеличиваем плавно. Для сохранения нажимаем «F10», перезагружаемся и смотрим результаты с помощью теста Benchmark в AIDA 64 или в другой программе. Универсальных параметров разгона ОЗУ нет, данные ниже предоставлены для ориентира.
Параметр «System Memory Multiplier» позволяет разогнать ОЗУ, изменяя множитель. При изменении частоты, автоматически меняются и базовые тайминги.
Поиграв с вариациями частоты, переходим к нижней строчке «DRAM Timing Control», выставляем тайминги, переключившись с режима «Auto» на желаемые параметры.
Управление временем
Высокая частота и низкие тайминги позволяют увеличить производительность, высокие тайминги и высокая частота — снижают ее. Тайминги или задержка — это количество тактовых импульсов для выполнения операций ОЗУ. Уменьшаем значения с минимальным шагом — 0,5. Получив повышение показателей производительности, можно продолжить, снизив время отклика. Подбирать правильные настройки придется методом проб и ошибок.
Повысить производительность оперативки можно, увеличивая напряжение с помощью параметра «Voltage Setting», безопасно 1.2–1.35 В, максимум — 1.6 В. С этим пунктом стоит быть очень острожным, электричество — не игрушки, есть риск спалить ОЗУ и потерять гарантию.
Увеличение частоты оперативной памяти с помощью готовых профилей — самый простой и быстрый способ получить желаемую производительность. Вариант с ручными настройками больше подходит энтузиастам, для которых дополнительный прирост быстродействия на дополнительные 10–15% — дело принципа.
Почему вам стоит разгонять оперативную память (это легко!)
Любая программа на ПК использует для работы оперативную память, RAM. Ваша RAM работает на определённой скорости, заданной производителем, но несколько минут копания в BIOS могут вывести её за пределы стандартных спецификаций.
Да, скорость работы памяти имеет значение
Каждая запускаемая вами программа загружается в память с вашего SSD или жёсткого диска, скорость работы которых гораздо ниже, чем у памяти. После загрузки программа обычно остаётся в памяти некоторое время, и CPU получает к ней доступ по необходимости.
Улучшение скорости работы памяти может напрямую улучшить эффективность работы CPU в определённых ситуациях, хотя существует и точка насыщения, после которой CPU уже не в состоянии использовать память достаточно быстро. В повседневных задачах несколько дополнительных наносекунд не принесут вам особой пользы, но если вы занимаетесь обработкой больших массивов чисел, вам может помочь любое небольшое увеличение эффективности.
В играх скорость RAM может ощущаться гораздо сильнее. У каждого кадра есть только несколько миллисекунд на обработку кучи данных, поэтому если вы играете в игру, зависящую от скорости CPU (к примеру, CSGO), ускорение памяти может увеличить частоту кадров. Посмотрите на это измерение скорости от Linus Tech Tips:
Средняя частота кадров вырастает на несколько процентов с увеличением скорости RAM, когда большую часть работы делает CPU. Сильнее всего скорость памяти проявляется на минимальном показателе частоты; когда загрузка новой области или нового объекта должна произойти за один кадр, он будет прорисовываться дольше обычного, если будет ожидать загрузки данных в память. Это называется «микрозаикание», или «фриз», и игра может производить впечатление заторможенности даже при хороших показателях средней частоты кадров.
Разгонять память не страшно
Разгонять память совсем не так страшно, как разгонять CPU или GPU. Разгоняя CPU, вы должны следить за его охлаждением, за тем, справится ли охлаждение с увеличением частоты. Работать CPU или GPU могут гораздо громче, чем обычно [видимо, имеется в виду работа кулеров / прим. перев.].
Память не особенно перегревается, поэтому разгонять её довольно безопасно. Даже на нестабильных частотах худшее, что может произойти – это выявление ошибки при тесте на стабильность. Однако если вы проводите эти эксперименты на ноутбуке, вам нужно убедиться, что вы сможете очистить CMOS (восстановив настройки в BIOS по умолчанию), если что-то пойдёт не так.
Скорость, тайминги и CAS-латентность
Скорость работы памяти обычно измеряют в мегагерцах, МГц [так в оригинале; конечно, в герцах измеряют частоту, а частота влияет на скорость работы / прим. перев.]. Это мера тактовой частоты (сколько раз в секунду можно получить доступ в память), совпадающая с мерой скорости CPU. Стоковая частота DDR4 (современного типа памяти) обычно составляет 2133 МГц или 2400 МГц. Однако на самом деле это немного маркетинг: DDR обозначает «удвоенную скорость данных», то есть что память читает и пишет дважды за один такт. Так что на самом деле её скорость составляет 1200 МГц, или 2400 мегатактов в секунду.
Но большая часть DDR4 RAM работает на 3000 МГц, 3400 МГц или выше – благодаря XMP (Extreme Memory Profile). XMP, по сути, позволяет памяти сообщить системе: «Да, я знаю, что DDR4 должна поддерживать частоту до 2666 МГц, но почему бы тебе не ускорить меня?» Это ускорение из коробки, предварительно настроенное, проверенное и готовое к запуску. Оно достигается на уровне железа, при помощи чипа на памяти под названием Serial Presence Detect (SPD), поэтому на одну планку может быть только один профиль XMP:
У каждой планки памяти есть несколько встроенных вариантов тактовой частоты; стоковый вариант использует ту же самую систему SPD под названием JEDEC. Любая частота, превышающая скорость JEDEC, считается разгоном – то есть, XMP получается просто профилем JEDEC, разогнанным на заводе.
Тайминги RAM и CAS-латентность – два разных способа измерять скорость памяти. Они измеряют задержку (то, насколько быстро RAM реагирует на запросы). CAS-латентность – это мера того, сколько тактов проходит между командой READ, отправленной в память, и получением процессором ответа. Её обычно обозначают «CL» и указывают после частоты памяти, например: 3200 Mhz CL16.
Она обычно связана со скоростью работы памяти – чем больше скорость, тем больше CAS-латентность. Но CAS-латентность – лишь один из множества разных таймингов и таймеров, с которыми работает RAM; все остальные обычно просто называются таймингами памяти. Чем меньше тайминги, тем быстрее будет ваша память. Если вам захочется подробнее узнать о каждом из таймингов, прочитайте руководство от Gamers Nexus.
XMP не будет делать всё за вас
Вы можете купить планку памяти от G.Skill, Crucial или Corsair, но эти компании не производят сами чипы DDR4, лежащие в основе RAM. Они покупают чипы у фабрик, изготавливающих полупроводниковые устройства, что означает, что вся память на рынке происходит из небольшого количества главных точек: Samsung, Micron и Hynix.
Кроме того, модные планки памяти, которые помечаются как 4000 МГц и выше, и у которых заявлена низкая CAS-латентность, на самом деле не отличаются от «медленной» памяти, стоящей в два раза дешевле. Оба варианта используют чипы памяти Samsung B-die DDR4, просто у одного из них золотистый радиатор, цветные огоньки и украшенный стразами верх (да, это реально можно купить).
Приходя с фабрики, чипы подвергаются проверкам при помощи процесса под названием «биннинг». И не вся память показывает наилучшие результаты. Некоторые чипы хорошо ведут себя на частотах 4000 МГц и выше с низкой CAS-латентностью, а некоторые не работают выше 3000 МГц. Это называется кремниевой лотереей, и именно она повышает цену на высокоскоростные планки.
Но заявленная скорость не обязательно ограничивает реальный потенциал вашей памяти. Скорость XMP – это просто рейтинг, гарантирующий, что планка памяти будет работать на указанной скорости 100% времени. Тут играют большую роль маркетинг и сегментация продуктов, чем ограничения RAM; никто не запрещает вашей памяти работать за пределами спецификаций, просто включить XMP легче, чем разгонять память самому.
Также XMP ограничен определённым набором таймингов. Согласно представителям Kingston, в памяти «настраиваются только ’основные’ тайминги (CL,RCD,RP,RAS)», и поскольку у SPD есть ограниченное место для хранения профилей XMP, всё остальное решает материнская плата, которая не всегда делает верный выбор. В моём случае материнка Asus в режиме «авто» установила очень странные значения некоторых таймингов. Моя планка памяти отказалась работать по умолчанию, пока я не исправил эти тайминги вручную.
Кроме того, биннинг на фабрике жёстко задаёт диапазон напряжения, в котором должна работать память. К примеру, фабрика протестирует память с напряжением в 1,35 В, не будет продолжать тест, если память не покажет максимальных результатов, и даст ей метку «3200 МГц», под которую попадает большинство планок. Но что, если запустить память с напряжением в 1,375 В? А 1,39 В? Эти цифры еще очень далеки от опасных для DDR4 напряжений, но даже небольшой прирост напряжения может помочь значительно увеличить частоту памяти.
Как разгонять память
Самое сложное в разгоне памяти – определить, какие частоты и тайминги нужно использовать, поскольку в BIOS есть более 30 различных настроек. К счастью, четыре из них считаются «основными» таймингами, и их можно подсчитать при помощи программы Ryzen DRAM Calculator. Она предназначена для систем на базе AMD, но будет работать и для пользователей Intel, поскольку в основном предназначена для расчётов таймингов памяти, а не CPU.
Скачайте программу, введите скорость памяти и тип (если он вам неизвестен, то быстрый поиск серийного номера в Google может выдать вам результаты). Нажмите кнопку R-XMP для загрузки спецификаций, и нажмите Calculate SAFE [безопасный вариант] или Calculate FAST [быстрый вариант], чтобы получить новые тайминги.
Эти тайминги можно сравнить с прописанными спецификации при помощи кнопки Compare timings – тогда вы увидите, что на безопасных настройках всё немножечко подкручено, а основная CAS-латентность уменьшена на быстрых настройках. Будут ли у вас работать быстрые настройки – вопрос удачи, поскольку это зависит от конкретной планки, но у вас, вероятно, получится заставить память работать с ними в безопасном диапазоне напряжений.
Скриншот программы лучше отправить на другое устройство, поскольку вам понадобится редактировать настройки таймингов в BIOS компьютера. Затем, когда всё работает, вам нужно будет проверить стабильность разгона при помощи встроенного в калькулятор инструмента. Это процесс долгий, и вы можете прочитать наше руководство по разгону памяти, чтобы узнать все его подробности.
Где прогресс в оперативной памяти и зачем её разгонять?
Привет, GT! Все мы любим новое железо — приятно работать за быстрым компьютером, а не смотреть на всякие прогрессбары и прочие песочные часики. Если с процессорами и видеокартами всё более-менее понятно: вот новое поколение, получите ваши 10-20-30-50% производительности, то с оперативкой всё не так просто.
Где прогресс в модулях памяти, почему цена на гигабайт почти не падает и чем порадовать свой компьютер — в нашем железном ликбезе.
Стандарт памяти DDR4 имеет ряд преимуществ перед DDR3: большие максимальные частоты (то есть пропускная способность), меньшее напряжение (и тепловыделение), и, само собой, удвоенная ёмкость на один модуль.
Комитет инженерной стандартизации полупроводниковой продукции при Electronic Industries Alliance (более известный как JEDEC) трудится над тем, чтобы ваша оперативная память Kingston подходила к материнской плате ASUS или Gigabyte, и по этим правилам играют все. По части электрики, физики и разъёмов всё жёстко (оно и понятно, нужно обеспечить физическую совместимость), а вот в отношении рабочих частот, объёмов модулей и задержек в работе правила допускают некоторую волатильность: хотите сделать лучше — делайте, главное, чтобы на стандартных настройках у пользователей не было проблем.
Именно так получились в своё время модули DDR3 с частотой выше, чем 1600 МГц, и DDR4 с частотами выше 3200 МГц: они превышают базовые спецификации, и могут работать как на «стандартных» параметрах, совместимых со всеми материнскими платами, так и с экстремальными профилями (X.M.P.), протестированными на заводе и зашитыми в BIOS памяти.
Прогресс
Основные улучшения в этой сфере ведутся сразу в нескольких направлениях. Во-первых, производители непосредственно микросхем памяти (Hynix, Samsung, Micron и Toshiba) постоянно улучшают внутреннюю архитектуру чипов в пределах одного техпроцесса. От ревизии к ревизии внутреннюю топологию доводят до совершенства, обеспечивая равномерность нагрева и надёжность работы.
Во-вторых, память потихоньку переходит на новый техпроцесс. К сожалению, здесь нельзя проводить улучшения также быстро, как делают (делали последние лет 10) производители видеокарт или центральных процессоров: грубое уменьшение размеров рабочих частей, то есть транзисторов, потребует соответствующего снижения рабочих напряжений, которые ограничены стандартом JEDEC и встроенными в CPU контроллерами памяти.
Поэтому единственное, что остаётся — не только «поджимать» производственные нормы, но ещё и параллельно увеличивать скорость работы каждой микросхемы, что потребует соответствующего повышения напряжения. В итоге и частоты растут, и объёмы одного модуля.
Примеров такого развития много. В 2009-2010 году нормальным был выбор между 2/4 гигабайтами DDR3 1066 МГц и DDR3 1333 МГц на один модуль (обе были выполнены по 90-нм техпроцессу). Сегодня же умирающий стандарт готов предложить вам 1600, 1866, 2000 и даже 2133 МГц рабочих частот на модулях в 4, 8 и 16 ГБ, правда внутри уже 32, 30 и даже 28 нм.
К сожалению, подобный апгрейд стоит немалых денег (в первую очередь на исследования, закупку оборудования и отладку производственного процесса), так что ждать радикального уменьшения цены 1 ГБ оперативки до выхода DDR5 не придётся: ну а там нас ждёт очередное удвоение полезных характеристик при той же цене производства.
Цена улучшений, разгон и поиски баланса
Растущий объём и скорость работы напрямую влияет на ещё один параметр оперативной памяти — задержки (они же тайминги). Работа микросхем на высоких частотах до сих пор не желает нарушать законы физики, и на различные операции (поиск информации на микросхеме, чтение, запись, обновление ячейки) требуются определённые временные интервалы. Уменьшение техпроцесса даёт свои плоды, и тайминги растут медленнее, чем рабочие частоты, но здесь необходимо соблюдать баланс между скоростью линейного чтения и скоростью отклика.
Например, память может работать на профилях 2133 МГц и 2400 МГц с одинаковым набором таймингов (15-15-15-29) — в таком случае разгон оправдан: при большей частоте задержки в несколько тактов только уменьшатся, и вы получите не только увеличение линейной скорости чтения, но и скорости отклика. А вот если следующий порог (2666 МГц) требует увеличения задержек на 1-2, а то и 3 единицы, стоит задуматься. Проведём простые вычисления.
Делим рабочую частоту на первый тайминг (CAS). Чем выше соотношение — тем лучше:
2133 / 15 = 142,2
2400 / 15 = 160
2666 / 16 = 166,625
2666 / 17 = 156,823
Полученное значение — знаменатель в дроби 1 секунда / Х * 1 000 000. То есть чем выше число, тем ниже будет задержка между получением информации от контроллера памяти и отправкой данных назад.
Как видно из расчётов, наибольший прирост — апгрейд с 2133 до 2400 МГц при тех же таймингах. Увеличение задержки на 1 такт, необходимое для стабильной работы на частоте 2666 МГц всё ещё даёт преимущества (но уже не такие серьёзные), а если ваша память работает на повышенной частоте только с увеличением тайминга на 2 единицы — производительность даже немного снизится относительно 2400 МГц.
Верно и обратное: если модули совершенно не хотят увеличивать частоты (то есть вы нащупали предел для конкретно вашего комплекта памяти) — можно попытаться отыграть немного «бесплатной» производительности, снизив задержки.
На самом деле факторов несколько больше, но даже эти простые расчёты помогу не напортачить с разгоном памяти: нет смысла выжимать максимальную скорость из модулей, если результаты станут хуже, чем на средних показателях.
Практическое применение разгона памяти
В плане софта от подобных манипуляций в первую очередь выигрывают задачи, постоянно эксплуатирующие память не в режиме потокового чтения, а дёргающие случайные данные. То есть игры, фотошоп и всякие программистские задачи.
Аппаратно же системы со встроенной в процессор графикой (и лишённые собственной видеопамяти) получают значительный прирост производительности как при снижении задержек, так и при увеличении рабочих частот: простенький контроллер и невысокая пропускная способность очень часто становится бутылочным горлышком интегрированных GPU. Так что если ваши любимые «Цистерны» еле-еле ползают на встроенной графике старенького компа — вы знаете, что можно попробовать предпринять для улучшения ситуации.
Мэйнстрим
Как не странно, больше всего от подобных улучшений выигрывают среднестатистические пользователи. Нет, безусловно, оверклокеры, профессионалы и игроки с полным кошельком получают свои 0.5% производительности, применяя экстремальные модули с запредельными частотами, но их доля на рынке мала.
Что под капотом?
Шаг первый: прогреваем модуль памяти феном или активными нагрузками на чтение-запись (во втором случае вам надо быстренько выключить ПК, обесточить его и снять оперативку, пока она ещё горячая).
Шаг второй: находим сторону без наклейки и аккуратно подцепляем радиатор чем-нибудь в центре и по краям. Использовать печатную плату как основание для рычага можно, но с осторожностью. Внимательно выбираем точку опоры, стараемся избегать давления на на хрупкие элементы. Действовать лучше по принципу «медленно, но верно».
Шаг третий: открываем радиатор и разъединяем замки. Вот они, драгоценные чипы. Распаяны с одной стороны. Производитель — Micron, модель чипов 6XA77 D9SRJ.
8 штук по 1 Гб каждый, заводской профиль — 2400 МГц @ CL16.
Правда, дома снимать теплораспределители не стоит — сорвёте пломбу и плакала ваша пожизненная 1 гарантия. Да и родные радиаторы отлично справляются с возложенными на них функциями.
Попробуем измерить эффект от разгона оперативки на примере комплекта HyperX Fury HX426C16FW2K4/32. Расшифровка названия даёт нам следующую информацию: HX4 — DDR4, 26 — заводская частота 2666 МГц, C16 — задержки CL16. Далее идёт код цвета радиаторов (в нашем случае — белый), и описание комплекта K4/32 — набор из 4 модулей суммарным объёмом 32 ГБ. То есть уже сейчас видно, что оперативка незначительно разогнана ещё при производстве: вместо штатных 2400 прошит профиль 2666 МГц с теми же таймингами.
Помимо эстетического удовольствия от созерцания четырёх «Белоснежек» в корпусе вашего ПК этот набор готов предложить весомых 32 гига памяти и нацелен на пользователей обычных процессоров, не особо балующихся разгоном CPU. Современные Intel’ы без буквы K на конце окончательно лишились всех возможных способов получения бесплатной производительности, и практически не получают никаких бонусов от памяти с частотой выше 2400 МГц.
В качестве тестовых стендов мы взяли два компьютера. Один на базе Intel Core i7-6800K и материнской плате ASUS X99 (он представляет платформу для энтузиастов с четырёхканальным контроллером памяти), второй с Core i5-7600 внутри (этот будет отдуваться за мэйнстримовое железо со встроенной графикой и отсутствующим разгоном). На первом проверим разгонный потенциал памяти, а на втором будем измерять реальную производительность в играх и рабочем софте.
Разгонный потенциал
DDR4-2666 CL15-17-17 @1.2V
DDR4-2400 CL14-16-16 @1.2V
DDR4-2133 CL12-14-14 @1.2V
2133 / 12 = 177.75
2400 / 14 = 171.428
2666 / 15 = 177.7(3)
Попытки завести память на частоте 2900 МГц с повышением задержек до 16-17-18, 17-18-18, 17-19-19 и даже с подъёмом напряжения до 1.3 Вольта ничего не дали. Без серьёзных нагрузок компьютер работает, но фотошоп, архиватор или бенчмарк плюются ошибками или сваливают систему в BSOD. Похоже, что частотный потенциал модулей выбран до конца, и единственное, что нам остаётся — уменьшать задержки.
Лучший результат, который удалось достичь с тестовым комплектом из 4 модулей — 2666 МГц при таймингах CL13-14-13. Это существенно увеличит скорость доступа к случайным данным (2666 / 13 = 205.07) и должно показать неплохое улучшение результатов в игровом бенчмарке. В двухканальном режиме память разгоняется лучше: специалисты из oclab ухитрились довести комплект из двух 16 Гб модулей до частоты 3000 МГц @ CL14-15-15-28 с подъёмом напряжения до 1.4 Вольта — отличный результат.
Натурные испытания
Для нашего i5 со встроенной графикой в качестве бенчмарка мы выбрали GTA V. Игра не молодая, использует API DirectX 11, который давно известен и отлично вылизан в драйверах Intel, любит потреблять оперативную память и нагружает систему сразу по всем фронтам: GPU, CPU, Ram, чтение с диска. Классика. Вместе с этим GTA V использует т.н. «отложенный рендеринг», благодаря которому время расчёта кадра меньше зависит от сложности сцены, то есть методика испытания будет чище, а результаты — нагляднее.
За средний FPS возьмём значения, укладывающиеся в нормальное течение игры: пролёт самолёта, езда в городе, уничтожение супостатов имеют равномерный профиль нагрузки. По таким сценам (отбросив 1% лучших и худших результатов из массива данных) и получим средне-игровой FPS.
Просадки определим по сценам со взрывами и сложными эффектами (водопад под мостом, закатные пейзажи) аналогичным образом.
Подлагивания и неприятные фризы при резкой смене окружения (переключение от одного тестируемого случая к другому) случаются даже на монструозной GTX 1080Ti, постараемся их отметить, но в результаты не возьмём: в игре оно не встречается, и это, скорее, косяк самого бенчмарка.
CPU: Intel Core i5-7500 (4c4t @ 3.8 ГГц)
GPU: Intel HD530
RAM: 32 GB HyperX Fury White (2133 МГц CL12, 2666 МГц CL15 и 2666 МГц CL13)
MB: ASUS B250M
SSD: Kingston A400 240 GB
Для начала выставим стандартные частоты X.M.P.-профиля: 2666 МГц с таймингами 15-17-17. Встроенный бенчмарк GTA V выдаёт идентичный FPS и одинаковые просадки на минимальных и средних настройках в разрешении 720p: в большинстве сцен счётчик колеблется в районе 30–32, а в тяжёлых сценах и при смене одной локации на другую FPS проседает.
Причина очевидна — мощностей GPU достаточно, а вот блоки растеризации просто не успевают собрать и отрисовать большее число кадров в секунду. На «высоких» настройках графики результаты стремительно ухудшаются: игра начинает упираться непосредственно в скромные вычислительные возможности интегрированной графики.
2133 МГц CL12
Собственной памяти у GPU нет, и он вынужден постоянно дёргать системную. Пропускная способность DDR4 в двухканальном режиме на частоте 2133 МГц составит 64 бит (8 байт) × 2 133 000 000 МГц × 2 канала — порядка 34 Гб/с, с небольшими (до 10%) накладными потерями.
Для сравнения, пропускная способность подсистемы памяти у самой скромной дискретной карточки NVIDIA GTX 1030 — 48 Гб/с, а GTX 1050 Ti (которая легко выдаёт в GTA V 60 FPS на максимальных настройках в FullHD) — уже 112 Гб/с.
На заднем плане виден тот самый водопад под мостом, просаживающий FPS во внутриигровом бенчмарке.
Результаты бенчмарка просели до 28 FPS в среднем, а лаги при смене локаций и взрывах их ненапряжных просадок превратились в неприятные микрофризы.
2666 МГц CL13
40 Гб/с, сравнимо с младшей NVIDIA.
Максимальный FPS практически не вырос (0.1 не показатель и находится на грани погрешности измерений) — здесь мы всё ещё упираемся в скромные возможности ROP’ов, а вот все просадки стали менее заметны. В сценах с водопадом из-за высокой вычислительной нагрузки результат не изменился, во всех остальных — то есть на прогрузках, взрывах и прочих радостях, замедлявших работу видеоядра вырос в среднем на 10-15%. Вместо 25–27 кадров в нагруженных событиями эпизодах — уверенные 28–29. В целом игра стала ощущаться значительно комфортнее.
TL;DR и результаты
Нельзя оценивать скорость работы оперативной памяти по одной только частоте. У DDR4 достаточно большие тактовые задержки, и при прочих равных стоит выбирать память не только удовлетворяющую потребности вашего железа по рабочей частоте и объёму, но и уделять внимание этому параметру.
Проведённые тесты показали, что компьютеры на базе Intel Core i-серии со встроенной графикой получают заметный прирост производительности при использовании высокоскоростной памяти с низкими задержками. Видеоядро не имеет собственных ресурсов для хранения и обработки данных и пользуется системными отлично отвечает (до определённого предела) на рост частоты и снижение таймингов, так как от скорости доступа к памяти напрямую зависит время отрисовки кадра со множеством объектов.
Самое важное! Линейка Fury выпускается в нескольких цветах: белом, красном и чёрном — можно подобрать не только быструю память, но и подходящую по стилю к остальным комплектующим, как делают специалисты из HyperPC.
Закон Кирхгоффа и немного магии школьного образования позволяют утверждать, что память с чёрными радиаторами несколько будет холоднее в работе, чем другие варианты. Ну а для неверующих в свяфтую Физику есть замечательный пруф на образовательном канале МИФИ.
Если с мэйнстримовыми решениями всё понятно, то в топовом сегменте, где каждый системник — маленькое произведение искусства применение памяти и накопителей HyperX из обычных продуктовых линеек — как знак качества. При создании каждого кастомного проекта приходится учитывать множество факторов: тепловые нагрузки, пожелания капризного клиента, распределение воздушных потоков, акустические вопросы (мощный компьютер и тихий мощный компьютер — задачи, отличающиеся по сложности на порядок). HyperPC постоянно совершенствуют свои технологические процессы и остаются верны надёжным комплектующим — отсюда и превосходные результаты в их уникальных сборках. Но если вы предпочитаете готовым компьютерам — самобсор, то подобный комплект или одиночные модули HyperX Fury DDR4 можно приобрести в сети Юлмарт.
На этом всё, но мы не прощаемся. Прохладному лету — горячие темы, подписывайтесь на наш блог и все интересности не пройдут мимо.
1 — Из-за особенностей российского законодательства «пожизненная» гарантия будет действовать всего 10 лет со дня приобретения. Впрочем, в масштабах компьютерного железа с текущими темпами развития технологий и 10 лет срок не малый, а там и законодательство может измениться.