Чем окружено ядро в клетке

Клеточное ядро как важнейший компонент клетки #47

Клеточное ядро

Ядро является обязательным компонентом всех эукариотических клеток. Форма и размеры ядра зависят от формы и величины клетки и выполняемой ею функции.

Химический состав ядра

По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15 — 30%) и РНК (12%). В ядре клетки сосредоточено 99% ДНК клетки в виде комплекса с белками – дезоксирибонуклеопротеина (ДНП).

Функции ядра

Ядро выполняет две главные функции:

Ядерная оболочка

Ядерный сок

Ядерный сок (кариоплазма) – это однородная масса, заполняющая пространство между структурами ядра. В его состав входят вода, минеральные соли, белки (ферменты), нуклеотиды, аминокислоты, АТФ и различные виды РНК.

Функция кариоплазмы: обеспечение взаимосвязей между ядерными структурами.

Хроматин

Хроматин представляет собой дезоксирибонуклеопротеин (ДНП), состоящий преимущественно из ДНК и белков-гистонов, выявляемый под световым микроскопом в виде глыбок и гранул. Это деспирализованные хромосомы интерфазного ядра. В процессе митоза хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры – хромосомы.

Метафазная хромосома

Метафазная хромосома состоит из двух продольных нитей ДНП – хроматид, соединенных друг с другом в области первичной перетяжки – центромеры. Центромера делит каждую хроматиду на два плеча.

В зависимости от расположения первичной перетяжки различают следующие типы хромосом: метацентрические (равноплечие), в которых центромера расположена посередине, а плечи примерно равной длины; субметацентрические (неравноплечие), когда центромера смещена от середины хромосомы, а плечи неравной длины; акроцентрические (палочковидные), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Некоторые хромосомы могут иметь вторичные перетяжки, отделяющие от хроматиды участок, называемый спутником. Основная функция хромосом – хранение, воспроизведение и передача генетической информации.

Кариотип

Кариотип – это диплоидный набор хромосом соматических клеток организма определенного вида. Каждый вид растений и животных имеет определенное, постоянное число хромосом. Так, в ядре соматических клеток у лошадиной аскариды содержится 2 хромосомы, у мухи дрозофилы – 8, у человека – 46. Во всех соматических клетках число хромосом всегда парное (диплоидный набор – 2n), т.е. каждая хромосома в наборе имеет парную, гомологичную (одну из этих хромосом дочерний организм получает от отца, а вторую от матери). Гомологичные хромосомы одинаковы по величине, форме, расположению центромер. Для каждого биологического вида характерно постоянство числа, величины и формы хромосом. При образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна, поэтому хромосомный набор гамет называется гаплоидным (одинарным – 1n). При оплодотворении восстанавливается диплоидный набор хромосом.

Ядрышки

Ядрышки имеют шаровидную форму, не окружены мембраной. Они содержат преимущественно белки и р-РНК. Ядрышки – непостоянные образования, они растворяются в начале деления клетки и восстанавливаются после его окончания. Их образование связано со вторичными перетяжками (ядрышковыми организаторами) спутничных хромосом, в которых локализованы гены, кодирующие синтез рибосомальных РНК и белков. Функция ядрышек – образование субъединиц рибосом.

Эукариотические клетки

Клетки подавляющего большинства живых организмов имеют оформленное, сложно устроенное ядро, цитоплазму с органоидами и оболочку. Такие клетки называются эукариотическими. Они характерны для протистов, грибов, растений и животных.

Прокариотические клетки

Прокариотические клетки не имеют оформленного ядра и мембранных органоидов. Генетический аппарат прокариот представлен нуклеоидом одной кольцевой молекулой ДНК, не связанной с белками-гистонами и не окруженной мембраной. Имеются рибосомы. Функций мембранных органоидов выполняют впячивания плазмалеммы – мезосомы. К прокариотам относятся бактерии и цианобактерии.

Клетки растений и животных сходны по строению и химическому составу, но между ними имеются и определенные отличия.

Источник

Особенности и строение ядра

Ядро как центр управления клетки

Упорядоченное строение и поведение — важные характеристики всех живых организмов. Информация, находящаяся по большей части в ядре эукариот и в ядерном участке (нуклеоиде) прокариот, контролирует все эти процессы.

В клетках генетическая информация кодируется как определенная последовательность нуклеотидов в молекулах ДНК и РНК. Именно генетическая информация и формирует информационную систему клетки.

Что такое ядро клетки?

Местонахождение ДНК — ядро клеток эукариот. Ядро в биологии — это информационный центр ДНК, место сохранения и воспроизведения наследственной информации, определяющей признаки отдельной клетки и всего организма.

Также ядро по строению и функциям является центром управления обмена веществ в клетке. Все потому, что РНК, образующаяся в ядре, определяет время и виды белка, синтез которых должен происходить на рибосомах в цитоплазме. По этой причине, если удалить ядро из клетки, то она вскоре погибнет.

Форма и размеры ядер клеток склонны к изменчивости. Они зависят от вида организма, типа ткани, общего функционального состояния клетки и возраста. Ядро может иметь шарообразную форму (от 15 до 20 мкм в диаметре), линзы и веретена.

В клетках паутинных желез пауков и отдельных насекомых ядра клетки по строению являются многолопастными. Такая форма способствует увеличению площади контакта цитоплазмы и ядерной оболочки одновременно с увеличением скорости биохимических реакций.

Все клетки имеют общий план строения.

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке​​​​​​​

Строение ядерной оболочки

От цитоплазмы ядро отсоединено при помощи двойной мембраны или ядерной оболочки. У оболочки есть внутренняя мембрана и внешняя.

Внешняя мембрана граничит с гиалоплазмой. Она отличается складчатой структурой, а в некоторых местах соединена с каналами эндоплазматической сети — на ней расположены рибосомы.

Внутренняя мембрана вступает в контакт с нуклеоплазмой и не содержит рибосом.

Перинуклеарное пространство — это пространство, находящееся между мембранами ядерной оболочки.

Ядерная оболочка пронизана многочисленными порами — их диаметр варьируется от 30 до 100 нм. Тип и физиологическое состояние клетки определяют количество этих пор: на 1 мкм ядерной оболочки их может быть от 10 до 30.

Цистерны эндоплазматической сети, а в некоторых случаях фрагменты предыдущей ядерной оболочки, распавшейся в результате деления ядра — основа формирования новой ядерной оболочки.

Хромосомы и внутреннее строение ядра

Нуклеоплазма заполняет собой пространство между ядерными структурами и содержит ядрышка (одно или несколько), множество ДНК и РНК, разнообразные белки, множество ядерных ферментов, аминокислоты, свободные нуклеотиды, продукты обмена веществ. Именно нуклеоплазма обеспечивает взаимосвязь всех ядерных структур.

Хроматин имеет вид сетки тонких фибрилл и мелких гранул на окрашенных препаратах клетки в состоянии покоя. Основа хроматина — нуклеопротеиды или длинные нитеобразные молекулы ДНК. Они связаны со специфическими белками — гистонами.

Нуклеосома — это комплекс, который включает 8 молекул гистонов и обмотанный вокруг них участок молекулы ДНК.

Вокруг сердцевины нуклеосомы участок молекулы ДНК образует 1,75 оборота. Нуклеосомы представляют собой эллипсоиды, длина которых 10 нм, а ширина — 5-6 нм.

Отличительный признак хроматин эукариот —нуклеосомы.

Нуклеосомы образуют нуклеосомную нить — это спираль первого порядка. За счет того, что нуклеосомная нить образует спираль высшего порядка, обеспечивается плотная упаковка ДНК. Эта спираль высшего порядка называется соленоид.

Соленоид компактируется и образует еще более сложную суперспираль. Все это способствует уплотнению ДНК и укорачиванию хромосом в несколько тысяч раз в сравнении с интерфазными.

Самой длинной хромосомой человека является первая. Ее длина — 6,8 — 1,4 мкм. Каждая хроматида этой хромосомы включает двойную сплошную спираль ДНК, длина которой — 7,3 см. Из этого следует, что в компактизованном состоянии длина спирали становится меньше в 19 тысяч раз.

Метафаза митоза лучше всего демонстрирует морфологию хромосом.

Если объект является цитологически благоприятным, то при помощи светового микроскопа можно увидеть хромосому, состоящую из двух морфологически одинаковых палочкообразных частей — хроматид. Между хроматидами имеется щель.

Хроматиды — это дочерние хромосомы, содержащие непрерывно компактизованную молекулу ДНК.

В хромосомах содержатся такие компоненты как РНК, кислые белки, липиды, минеральные вещества вроде ионов кальция и магния. А еще — нужный для репликации ДНК фермент: ДНК-полимеразу.

В каждой хромосоме также есть первичная перетяжка — центромера. Она представляет собой истонченный участок, не склонный к спирализации и делящий хромосому на два плеча.

Центромера выполняет функцию регулирования движения хромосом в процессе клеточного деления. К ней прикрепляются нити веретена деления, растягивающие хромосомы или хроматиды к полюсам.

Типы центромер хромосом определяются расположением и бывают:

У отдельных хромосом не одна, а несколько вторичных перетяжек. Эти перетяжки не связаны с присоединением к веретену деления. Так осуществляется контроль синтеза ядрышка — ядрышковый организатор.

Ядрышка

Форма, размеры и количество ядрышек меняются в зависимости от функционального состояния ядра. Большее количество ядрышек обеспечивает большую активность ядра.

Количество ядрышек в ядре варьируется от 1 до 10. В некоторых случаях в ядре вообще нет ядрышек — как в ядрах клеток дрожжей.

Ядрышки на 80% состоят из белка, на 10-15% из РНК, определенного количества ДНК и других химических компонентов.

Когда ядро делится, то ядрышка разрушаются. На последнем этапе деления происходит формирования новых ядрышек вокруг определенных хромосомных участков — генов, получивших название ядрышковых организаторов.

Они контролируют синтез рибосомальной РНК и прочих структурных компонентов ядрышек.

В ядрышке происходит объединение РНК и белка, в результате чего образуются рибонуклеопротеиды, являющиеся предшественниками рибосом, которые через поры ядерной оболочки проникают в цитоплазму — здесь их формирование заканчивается.

Ядрышко — это место синтеза РНК и самособирания хромосом.

Во взрослом состоянии отдельные клетки могут вообще не иметь ядер. К ним относятся эритроциты млекопитающих и клетки ситовидных трубок цветковых растений.

Источник

Особенности строения и функции ядра клетки

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Источник

Клеточная мембрана и ядро

теория по биологии 🌿 цитология

Теория для подготовки к блоку «Цитология»

Клеточная мембрана

Мембрана клетки = цитоплазматическая мембрана = плазматическая мембрана = плазмалемма

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Строение клеточной мембраны

Мембрана клеток частично проницаема. Это значит, что любое вещество не может в нее проникнуть, однако и закрытой ее назвать нельзя. Так как существуют константы гомеостаза ( гомеостаз – постоянство внутренней среды ), определяющие содержание веществ внутри клетки, то клетка выводит ненужные ей вещества и пропускает нужные. Для этого в клетках есть разные приспособления:

Белки, образующие «тоннели» в клеточной мембране для пассивного тока воды и некоторых неорганических ионов.

Мембрана клетки не представляет их себя непрерывную цепь липидов, она имеет включения в виде белков разных конфигураций. Они могут быть на поверхности мембраны, проходить сквозь нее, образовывать каналы, находиться в наружном или внутреннем слое липидов.

Мембрана ядра состоит из двух оболочек, пронизанных ядерными порами. Внешняя оболочка ядра шероховатая, она связана с эндоплазматической сетью клетки.

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Строение двухроматидной хромосомы

Транспортная функция подразумевает под собой то, что через мембрану в клетку и из нее проходит некоторые вещества, молекулы, ионы.

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Для поступления веществ в клетку существуют следующие пути:

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB21495 Установите соответствие между функциями клеточных структур и структурами, изображёнными на рисунке: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ФУНКЦИИСТРУКТУРЫ

А) осуществляет активный транспорт веществ

Б) изолирует клетку от окружающей среды

В) обеспечивает избирательную проницаемость веществ

Г) образует секреторные пузырьки

Д) распределяет вещества клетки по органеллам

Е) участвует в образовании лизосом

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

АБВГДЕ

На первой картинке изображена мембрана, которую легко узнать по билипидному слою, а на второй — комплекс Гольджи, состоящий из продолговатых цистерн.

Мембрана защищает и осуществляет транспорт.

Комплекс Гольджи отвечает как бы за пищеварение клетки, но не участвует в непосредственном расщеплении.

Перейдем к ответам:

Транспорт веществ — мембрана.

Изоляция клетки — мембрана.

Избирательная проницаемость – мембрана.

Секреторные пузырьки – комплекс Гольджи.

Распределение веществ- комплекс Гольджи.

Лизосомы – комплекс Гольджи.

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Задание EB0501 Установите соответствие между структурами клеток и их функциями.

ФУНКЦИИСТРУКТУРА КЛЕТОК

В) разделение клетки на отделы (компартменты)

Г) активный транспорт молекул

Д) пассивный транспорт молекул

Е) формирование межклеточных контактов

1) клеточная мембрана

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Странная аббревиатура ЭПС — Эндоплазматическая сеть. Приставка «Эндо-» обозначает то, что она находится внутри. Исходя из вариантов представим себе клетку из мембраны и сети внутри.

Прикинем варианты ответов:

Пока пропустим все синтезы, о них подумаем и узнаем потом.

Разделение клетки на отделы. Очевидно, что это деление внутри клетки. Видимо, это ЭПР.

Активный или пассивный транспорт молекул. Кроме барьерной функции, мембрана еще и отвечает за транспорт веществ, как активный, так и пассивный. Казалось бы, мембрана такая устойчивая структура, но не стоит забывать о фаго- и пиноцитозе (захват мембраной твердых и жидких частиц)

Одно из свойств клеточной мембраны — выборочная проницаемость.

Формирование межклеточных контактов. Сделаем наше представление о клетке еще проще. Представим себе ткань, не важно какую. Много маленьких клеточек, которые соприкасаются своими мембранами и взаимодействуют между собой. Таким образом, в формировании межклеточных контактов участвует именно мембрана.

Вернемся к синтезу. Просто порассуждаем снова. Мембрана — это лишь оболочка клетки, структура, безусловно, важная, но именно внутри клетки, внутри мембраны находятся органоиды, каждый из которых выполняет свою функцию. Вероятнее всего, за синтезы и прочие сложные вещи будет отвечать органоид, а не мембрана, поэтому, за синтез белка и липидов отвечает ЭПC.

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

В схеме вопрос стоит о двумембранных органоидах. Мы знаем, что к двумембранным относятся митохондрии и пластиды. Рассуждаем: пропуск всего один, а варианта два. Это не просто так. Нужно внимательно перечитать вопрос. Есть два типа клеток, но нам не сказано, о каком идет речь значит, ответ должен быть универсален. Пластиды характерны только растительным клеткам, следовательно, остаются митохондрии.

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клеткеОтвет: митохондрии

pазбирался: Ксения Алексеевна | обсудить разбор | оценить

Источник

Ядро строение функция

Ядро строение функция

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра|ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра|ядра — обычно от 3 до 10 мкм.

Строение ядра|ядра: 1 — наруж­ная мембрана; 2 — внут­ренняя мемб­рана; 3 — поры|поры; 4 — ядрышко; 5 — гетеро­хроматин; 6 — эухро­матин.

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра|ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки|белки (в том числе ферменты ядра|ядра), свободные нуклеотиды.

Хроматин — внутренние нуклеопротеидные структуры ядра|ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки|белки (30–50%), 3) негистоновые белки|белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо|слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотнённые) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра|ядра: 1) хранение наследственной информации и передача её дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путём регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Хромосомы

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки|белки (30–50%), 3) негистоновые белки|белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины|длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определённую трёхмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но ещё петли|петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 — метацентрическая; 2 — субметацентрическая; 3, 4 — акроцентрические. Строение хромосомы: 5 — центромера; 6 — вторичная перетяжка; 7 — спутник; 8 — хроматиды; 9 — теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары|пары; хромосомы одной пары|пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары|пары аутосом и 1 пару|пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера|номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Ядро строение функция

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Клетка как элементарная единица живого организма имеет сложную структуру. Всё|Все её органеллы взаимодействуют и работают слаженно. Причём регулирует их функции клеточное ядро. Благодаря ему клетка способна делиться и сохранять постоянство в каждом поколении. Из-за этого строение ядра|ядра клетки настолько сложное.

Строение ядра|ядра клетки реализовано таким образом, чтобы оно могло выполнять основные функции. Среди них сохранение и воспроизведение информации, заложенной в нуклеиновых кислотах. Также ядро синтезирует рибосомы, информационную РНК и отвечает за клеточное деление. Однако это лишь обобщённые задачи, которые нужно рассматривать детальнее в частном порядке. Итак, функции ядра|ядра клетки следующие:

Данный список более полный и детальный. При этом любая эукариотическая клетка играет важнейшую роль в реализации данных задач. Потому строение ядра|ядра эукариотической клетки настолько сложное. У прокариотических организмов упомянутый структурный элемент заменяется плазмидой, которая не всегда способна осуществлять всё|все указанные выше процессы.

Особенности строения ядра|ядра клетки

Ядро эукариотов представляет собой пространство, в котором осуществляются всё|все указанные выше процессы. Это участок изменённой цитоплазмы, где содержатся хромосомы или хроматин (в зависимости от фазы существования клетки), ядрышко и кариоматрикс. При этом ядро – это мембранная структура, которая содержит двуслойную билипидную кариолемму, имеющую поры|поры. Посредством последних из него выходят рибосомы, попадающие на шероховатый ретикулум клеточной эндоплазмы. Также через поры|поры ядро покидает информационная РНК.

Нуклеоплазма – это среда, на основе которой выполнено строение ядра|ядра клетки. Она по консистенции очень похожа на цитоплазму, но имеет другой показатель кислотности. В ядре присутствуют в основном кислые белки|белки, тогда как в цитоплазме – основные. Всю толщу|толщу нуклеоплазмы пронизывает кариоматрикс — структура трёхмерного типа, созданная из фибриллярных белков. Они играют роль опоры и поддерживают постоянную форму ядра|ядра. Это препятствует деформации последнего в результате многочисленных механических воздействий.

Основная особенность, согласно закономерностям которой заложено строение ядра|ядра клетки, заключается в наличии механического и химического барьера, отделяющего нуклеус от цитоплазмы. Это необходимо для разграничения сред с разной реакцией (кислой и основной).

Кариолемма – это двухслойная мембрана, наружная сторона которой прикреплена к шероховатой эндоплазматической сети. К внутренней же прикреплены фибриллярные белки|белки ядерного матрикса. При этом между мембранами ядра|ядра существует перинуклеарное пространство. Функциональная его роль не выяснена. Предполагается, что оно возникло в результате отталкивания глицериновых остатков, имеющих одинаковый заряд. И главное: в кариолемме существует система пор, позволяющих рибосомам и информационной РНК попадать|попадать в эндоплазматическую сеть, а лигандам внутриядерных рецепторов передавать сигналы о необходимости синтеза определённых белков.

Существует компетентное, научно обоснованное мнение, объясняющее строение клетки: клеточная мембрана, ядро, эндоплазматическая сеть (гладкая и шероховатая) – это цельная структура. Она образована извитием мембраны и не имеет структурных разграничений. То есть одна и та же мембрана покрывает одновременно клетку снаружи, а за счёт выпячиваний формирует место для ядра|ядра и эндоплазматической сети.

Лишь наличие митохондрий и хлоропластов объясняется другим образом. Принято считать, что митохондрия в филогенезе была отдельной клеткой, которая была захвачена эукариотами (или прокариотами). Частичное доказательство теории получено после открытия митохондриальной ДНК и нуклеиновой кислоты|кислоты хлоропластов. Очевидно, что ранее эти органеллы были отдельными бактериями.

При электронном микроскопировании строение ядра|ядра эукариотической клетки выглядит более детальным, чем при рассмотрении под световым микроскопом. В частности, становятся заметны нити конденсированного и деспирализованного хроматина и ядрышко. Роль последнего заключается в синтезе рибосомальных субъединиц – комплексов белка|белка и рибосомальных РНК.

Структура ядрышка двойственная. В его центре располагается фибриллярный компонент. Он представляет собой совокупность нитевидных молекул РНК, которые будут использованы для образования рибосом. К ним транспортируются белки|белки, синтезированные на шероховатом ретикулуме эндоплазмы. Взаимодействуя, они образуют гранулярный компонент ядрышка – готовые субъединицы рибосом. Одна малая и одна большая|большая субъединицы соединяются в цельную рибосому, которая выводится через поры|поры кариолеммы в эндоплазматическую сеть. Там она будет синтезировать белки|белки.

Важно, что строение и функции ядра|ядра клетки взаимосвязаны. Это значит, что в структуре реализованы те элементы, которые играют важную роль в жизнедеятельности клетки. При этом не следует рассматривать ядро отдельно от остальных клеточных структур, потому как оно получает от них информацию и посредством экспрессии генов регулирует их функции. Это одно из важнейших свойств данного элемента.

Всё|Все гены – это строгая|строгая последовательность соединённых нуклеотидов двуспиральной ДНК. Это огромная молекула, которая располагается по всему объёму ядра|ядра. А для удобства и сохранения целостности молекулярных связей она организована в строгой последовательности. Во-первых, соединена с гистонами для образования кластерной структуры. Во-вторых, она затем конденсируется с образованием двух видов хроматина (гетерохроматина и эухроматина).

Гетерохроматин – это плотно укомплектованная наследственная информация. Она не может считываться и воспроизводиться, а когда это потребуется, то сначала нужный участок должен освободиться от гистонов. Эухроматин – менее плотный тип нуклеопротеида. Он может реплицироваться и транскрибироваться.

Существует и более плотная компоновка наследственного материала – хромосомная. Сами хромосомы можно заметить только при делении клетки. Они представляют собой максимально плотно организованный хроматин. Выглядит он так, будто ядро собирает всё|все важное в одном месте и осуществляет «переезд». По сути, так и случается, но немного по-другому. Хромосомы удваиваются, а потом распределяются так, чтобы у каждой клетки, которая получится после деления, оказался такой же набор генетического материала. После этого в «новом» ядре хромосомы снова деспирализуются в гетерохроматин и в эухроматин.

Таблица морфофункциональных особенностей ядра|ядра

Для удобства изучения вопроса весь вышеизложенный материал следует представить в систематизированном виде. Итак, что же собой представляет строение ядра|ядра клетки? Таблица, расположенная ниже, состоит из трёх блоков, в которых содержится вся основная информация.

ЭлементСтроениеФункции

При оценке всех биохимических процессов, протекающих в ядре, любой|любой учёный поражается их сложности. И очевидно, что из-за этого была создана такая сложная морфология нуклеуса. Однако строение и функции ядра|ядра клетки сбалансированы. То есть максимально простая структура обеспечивает протекание необходимых биохимических реакций. Лишних составляющих здесь нет, а задействованы только те элементы, которые могут быть полезны клетке.

Видео по теме : Ядро строение функция

Ядро строение функция

Чем окружено ядро в клетке. Смотреть фото Чем окружено ядро в клетке. Смотреть картинку Чем окружено ядро в клетке. Картинка про Чем окружено ядро в клетке. Фото Чем окружено ядро в клетке

Ядро клетки — важнейшая её органелла, место хранения и воспроизведения наследственной информации. Это мембранная структура, занимающая 10-40 % клетки, функции которой очень важны для жизнедеятельности эукариотов. Однако даже без наличия ядра|ядра реализация наследственной информации возможна. Примером данного процесса является жизнедеятельность бактериальных клеток. Тем не менее особенности строения ядра|ядра и его предназначение очень важны для многоклеточного организма.

Расположение ядра|ядра в клетке и его структура

Ядро располагается в толще цитоплазмы и непосредственно контактирует с шероховатой и гладкой эндоплазматической сетью. Оно окружено двумя мембранами, между которыми находится перинуклеарное пространство. Внутри ядра|ядра присутствует матрикс, хроматин и некоторое количество ядрышек.

Для удобства изучения клетки ядра|ядра, последнее следует воспринимать как пузырьки, ограниченные оболочками от других пузырьков. Ядро — это пузырёк с наследственной информацией, находящийся в толще клетки. От её цитоплазмы он ограждается бислойной липидной оболочкой. Строение оболочки ядра|ядра похожее на клеточную мембрану. В действительности их отличает только название и количество слоёв. Без всего этого они являются одинаковыми по строению и функциям.

Строение кариолеммы (ядерной мембраны) двуслойное: она состоит из двух липидных слоёв. Наружный билипидный слой кариолеммы непосредственно контактирует с шероховатым ретикулумом эндоплазмы клетки. Внутренняя кариолемма — с содержимым ядра|ядра. Между наружной и внутренней кариомембраной существует перинуклеарное пространство. Видимо, оно образовалось из-за электростатических явления — отталкивания участков глицериновых остатков.

Функцией ядерной мембраны является создание механического барьера, разделяющего ядро и цитоплазму. Внутренняя мембрана ядра|ядра служит местом фиксации ядерного матрикса — цепи белковых молекул, которые поддерживают объёмную структуру. В двух ядерных мембранах существуют специальные поры|поры: через них в цитоплазму к рибосомам выходит информационная РНК. В самой|самой толще ядра|ядра находятся несколько ядрышек и хроматин.

Внутреннее строение нуклеоплазмы

Особенности строения ядра|ядра позволяют сравнить его с самой|самой клеткой. Внутри ядра|ядра также присутствует особая среда (нуклеоплазма), представленная гель-золем, коллоидным раствором белков. Внутри неё есть нуклеоскелет (матрикс), представленный фибриллярными белками|белками. Основное отличие состоит только в том, что в ядре присутствуют преимущественно кислые белки|белки. Видимо, такая реакция среды|среды нужна для сохранения химических свойств нуклеиновых кислот и протекания биохимических реакций.

Строение клеточного ядра|ядра не может быть завершённым без ядрышка. Им является спирализованная рибосомальная РНК, которая находится в стадии созревания. Позднее|Позднее из неё получится рибосома — органелла, необходимая для белкового синтеза. В структуре ядрышка выделяют два компонента: фибриллярный и глобулярный. Они различаются только при электронной микроскопии и не имеют своих мембран.

Фибриллярный компонент находится в центре ядрышка. Он представляет собой нити РНК рибосомального типа, из которых будут собираться рибосомные субъединицы. Если рассматривать ядро (строение и функции), то очевидно, что из них впоследствии будет образован гранулярный компонент. Это те же созревающие рибосомальные субъединицы, которые находятся на более поздних стадиях своего развития. Из них вскоре образуются рибосомы. Они удаляются из нуклеоплазмы через ядерные поры|поры кариолеммы и попадают|попадают на мембрану шероховатой эндоплазматической сети.

Хроматин и хромосомы

Строение и функции ядра|ядра клетки органично связаны: здесь присутствует только те структуры, которые нужны для хранения и воспроизведения наследственной информации. Также существует кариоскелет (матрикс ядра|ядра), функцией которого является поддержание формы органеллы. Однако самой|самой важной составляющей ядра|ядра является хроматин. Это хромосомы, играющие роль картотек различных групп генов.

Хроматин представляет собой сложный белок|белок, который состоит из полипетида четвертичной структуры, соединённого с нуклеиновой кислотой (РНК или ДНК). В плазмидах бактерий хроматин также присутствует. Почти четверть от всего веса|веса хроматина составляют гистоны — белки|белки, ответственные за «упаковку» наследственной информации. Эту особенность структуры изучает биохимия и биология. Строение ядра|ядра сложное как раз из-за хроматина и наличия процессов, чередующих его спирализацию и деспирализацию.

Наличие гистонов даёт возможность уплотнять и укомплектовать нить ДНК в небольшом месте — в ядре клетки. Это происходит следующим образом: гистоны образуют нуклеосомы, которые представляю собой структуру наподобие бус. Н2В, Н3, Н2А и Н4 — это главные гистоновые белки|белки. Нуклеосома образована четырьмя парами|парами каждого из представленных гистонов. При этом гистон Н1 является линкерным: он связан с ДНК в месте е входа в нуклеосому. Упаковка ДНК происходит в результате «наматывания» линейной молекулы на 8 белков гистоновой структуры.

Строение ядра|ядра, схема которого представлена выше, предполагает наличие соленоидподобной структуры ДНК, укомплектованной на гистонах. Толщина данного конгломерата составляет порядка 30 нм. При этом структура может уплотняться и далее, чтобы занимать меньше места|места и менее подвергаться механическим повреждениям, неизбежно возникающим в процессе жизни клетки.

Структура, строение и функции ядра|ядра клетки зациклены на том, чтобы поддерживать динамические процессы спирализации и деспирализации хроматина. Потому существует две главные его фракции: сильно спирализованная (гетерохроматин) и малоспирализованная (эухроматин). Они разделены как структурно, так и функционально. В гетерохроматине ДНК хорошо защищена от любых воздействий и не может транскрибироваться. Эухроматин защищён слабее, однако гены могут удваиваться для синтеза белка|белка. Чаще всего участки гетерохроматина и эухроматина чередуются на протяжении длины|длины всей хромосомы.

Клеточное ядро, строение и функции которого описываются в данной публикации, содержит хромосомы. Это сложный и компактно упакованный хроматин, увидеть который можно при световой микроскопии. Однако это возможно только в случае, если на предметном стекле расположена клетка в стадии митотического или мейотического деления. Одним их этапов является спирализация хроматина с образованием хромосом. Их структура предельно проста: хромосома имеет теломеру и два плеча. У каждого многоклеточного организма одного вида одинаковое строение ядра|ядра. Таблица хромосомного набора у него также аналогичная.

Реализация функций ядра|ядра

Основные особенности строения ядра|ядра связаны с выполнением некоторых функций и необходимостью их контроля. Ядро играет роль хранилища наследственной информации, то есть это своего рода|рода картотека с записанными последовательностями аминокислот всех белков, которые могут синтезироваться в клетке. Значит, для выполнения какой-либо функции клетка должна синтезировать белок|белок, структура которого закодирована в гене.

Чтобы ядро «понимало», какой конкретно белок|белок нужно синтезировать в нужный час, существует система наружных (мембранных) и внутренних рецепторов. Информация от них поступает к ядру посредством молекулярных передатчиков. Наиболее часто это реализуется посредством аденилатциклазного механизма. Так на клетку воздействуют гормоны (адреналин, норадреналин) и некоторые лекарства с гидрофильной структурой.

Вторым механизмом передачи информации является внутренний. Он свойственен липофильным молекулам — кортикостероидам. Это вещество проникает через билипидную мембрану клетки и направляется к ядру, где взаимодействует с его рецептором. В результате активации рецепторных комплексов, расположенных на клеточной мембране (аденилатциклазный механизм) или на кариолемме, запускается реакция активации определённого гена. Он реплицируется, на его основании строится информационная РНК. Позднее|Позднее по структуре последней синтезируется белок|белок, выполняющий некоторую функцию.

Ядро многоклеточных организмов

В многоклеточном организме особенности строения ядра|ядра такие же, как и в одноклеточном. Хотя существуют некоторые нюансы. Во-первых, многоклеточность подразумевает, что у ряда клеток будет выделена своя специфическая функция (или несколько). Это значит, что некоторые гены постоянно будут деспирализованы, тогда как другие находятся в неактивном состоянии.

К примеру, в клетках жировой ткани синтез белков будет идти малоактивно, а потому большая|большая часть хроматина спирализована. А в клетках, к примеру, экзокринной части поджелудочной железы, процессы биосинтеза белка|белка идут постоянно. Потому их хроматин деспирализован. На тех участках, гены которых реплицируются чаще всего. При этом важна ключевая особенность: хромосомный набор всех клеток одного организма одинаков. Только из-за дифференциации функций в тканях некоторые из них выключаются из работы, а другие деспирализуются чаще прочих.

Безъядерные клетки организма

Существуют клетки, особенности строения ядра|ядра которых могут не рассматриваться, потому как они в результате своей жизнедеятельности либо угнетают его функцию, либо вовсе избавляются от него. Простейший пример — эритроциты. Это кровяные клетки, ядро у которых присутствует только на ранних стадиях развития, когда синтезируется гемоглобин. Как только его количества достаточно для переноса кислорода, ядро удаляется из клетки, дабы облегчить её не мешать транспорту кислорода.

В общем виде эритроцит представляет собой цитоплазматический мешок, наполненный гемоглобином. Похожая структура характерна|характерна и для жировых клеток. Строение клеточного ядра|ядра адипоцитов предельно упрощено, оно уменьшается и смещается к мембране, а процессы белкового синтеза максимально угнетаются. Эти клетки также напоминают «мешки», наполненные жиром, хотя, разумеется, разнообразие биохимических реакций в них чуть большее, чем в эритроцитах. Тромбоциты также не имеют ядра|ядра, однако их не стоит|стоит считать полноценными клетками. Это осколки клеток, необходимые для реализации процессов гемостаза.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *