Чем объясняется цвет предметов
Топ-10 фактов о свете и цвете
Свет — лишь небольшая видимая частица огромного электромагнитного спектра излучения. В этот спектр входят радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолет, рентгеновское излучение и гамма-лучи. Один лишь видимый свет человек может разглядеть в виде цветов, которые он образует на поверхности предметов. Разные цвета получаются из-за разных частот световых волн, путешествующих сквозь пространство. Чем ближе друг к другу вершины волн, тем выше их частота. Наименьшую частоту и самую большую длину волны среди всех световых волн имеют радиоволны, в то время как гамма-излучение напротив, обладает самой высокой частотой.
Для того, чтобы разглядеть всю прелесть цветов, которые способен образовывать видимый спектр излучения, вам достаточно фонарика, экрана телевизора или просто солнечного дня. Кроме того, необходимо найти ровную поверхность, которая могла бы отражать свет, и, конечно же, необходим наблюдатель. Трудно недооценить важность цвета в повседневной жизни. Без него мы не могли бы отличить многие вещи друг от друга.
10. Видимый спектр света
Сам по себе свет — пучок невидимой энергии, путешествующий через пространство. Чтобы мы смогли разглядеть его, необходимо, чтобы свет прошел сквозь плотные облака пыли или тумана. Мы также можем наблюдать взаимодействие света с окружающим миром, когда он отражается от встречных объектов. Наши глаза улавливают его отраженные волны и преобразуют их в цвета. Сэр Исаак Ньютон обнаружил, что, когда луч света пропускают сквозь призму, он преломляется и распадается на цвета, расположенные в одном и том же порядке: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.
Наша сетчатка содержит два типа светочувствительных клеток: палочки и колбочки. Палочки определяют интенсивность света и его яркость, в то время как колбочки отвечают за цветовосприятие. Всего в наших глазах находится три типа колбочек, которые различают красный, синий и зеленый цвета соответственно. Именно комбинации этих трех основных цветов и образуют все остальные, вторичные цвета. Если вам необходим наглядный пример, то представьте, что весь спектр электромагнитного излучения занимает расстояние от Нью-Йорка до Лос-Анджелеса (что примерно составляет около 2500 миль), тогда видимый спектр будет в длину равен примерно одному дюйму.
9. Необходимость темноты
Иоганн Вольфганг фон Гете заметил, что, глядя сквозь призму на темные объекты, расположенные на светлом фоне, вокруг них появляется цветной ореол. Такой эффект обычно происходит при переходе от белого к черному, когда цвет меняется поэтапно на желтый, затем красный, а от черного — на фиолетовый, синий и бирюзовый. Наблюдая за закатом, вы наверняка замечали, как меняется цветовая гамма на вечернем небе. По мере приближения к горизонту, солнце становится краснее и краснее, это явление обусловлено тем, что из-за изменения угла солнца, его свет проходит через более низкие и плотные слои атмосферы. Красный цвет получается в результате того, что свету приходится преодолевать более плотную среду.
Если же мы посмотрим в противоположную сторону, то увидим, как меняется вечернее небо от темно-голубого к синему и фиолетовому. Чем больше света находится в атмосфере, тем более ярким будет небо, а то, что мы наблюдаем ночью — не что иное, как тьма и пустота космоса вверху над нами.
8. Цветные тени
Если смотреть на окно несколько секунд, а затем закрыть глаза, то можно увидеть его негатив — светлую раму, окружающую темное стекло. Этот трюк работает с любыми цветными предметами. Это объясняется тем, что каждый цвет обладает дополняющим цветом. Красный обладает голубым, зеленый — пурпурным, а синий — желтым.
Если вы будете светить на вазу двумя разными источниками света, находящимися на некотором расстоянии друг от друга, то у вазы появится две тени. Если один из источников света будет светить красным, то противоположная ему тень станет тоже красной, а основная — голубой. На самом же деле все тени серого цвета, а то, что вы видите — лишь оптический обман.
7. Какой же настоящий цвет предметов?
Все зависит от освещения. Разноцветные огни — это лишь видимая часть спектра, но сами-то предметы сделаны не из света. К примеру, у вас есть зеленая рубашка, и пока вы идете по улице — все хорошо, она по прежнему зеленая, но что вы скажете о ней, когда войдете в помещение с красным освещением? Обычно красный смешиваясь с зеленым создает желтый цвет, но рубашка окрашена пигментным красителем, где зеленый был получен путем смешивания синего и желтого красителей, которые не будут отражать красный. Таким образом, ваша рубашка будет казаться черного цвета. В неосвещенном помещении рубашка также будет казаться черной, равно как и остальные предметы.
В качестве еще одного примера возьмем банан. Что делает его желтым? Когда белый свет попадает на банан, все его составляющие кроме желтого поглощаются. Желтый, тем временем, отражается у нас в глазах. В некотором смысле, бананы могут быть любого другого цвета, но не желтого, поскольку мы видим лишь тот цвет, который они отразили. Так какого же цвета банан на самом деле? Ответ прост: он синий. Теоретически, конечно же. Синий цвет является дополнительным к желтому. Таким образом, можно прийти к заключению, что цвет не является свойством предмета, это всего лишь интерпретация невидимых волн разных частот, порождаемая нашим мозгом.
6. Розовый
Если взглянуть на цветовой круг, то можно увидеть первичные и вторичные цвета в альтернативном порядке. Каждый вторичный цвет производится путем объединения соседних основных цветов. Объединив красный и зеленый цвета, мы получим желтый, объединив зеленый и синий — получим голубой, а объединив красный и синий — получим розовый. Вы никогда не задумывались, почему розового нет в радуге? Ответ прост: такого цвета в природе нет. Есть желтый и голубой, но не розовый. Это обусловлено тем, что красный и синий цвета находятся в противоположных концах видимого спектра. Розовый цвет, по своей сути, олицетворяет собой все в мире, невидимое человеческому глазу.
5. Вантаблэк
Всем известно, что черный придает особую загадочность образу и стройнит, но слышали ли вы о новом черном — так называемом Вантаблэке? Этот цвет похож на настоящую черную дыру. Его невозможно увидеть, он становится видим только из-за своего фона. Можно увидеть его границы, но если смотреть прямо на пятно этого цвета, то это будет подобно взгляду в пустоту. Да, это даже не черный, это — ничто. Он поглощает весь видимый спектр света, за исключением 0,035% излучения. Для сравнения, этот показатель у черного угля никогда не опускается ниже 0,5%.
4. Это мой красный, а не твой!
Наблюдая за кем-то в красном платье, помните ли вы, что кто-то из ваших друзей видит его вовсе не как красное, а, к примеру, как синее или зеленое. Все мы с детства обучены названиям цветов, поэтому принимаем как должное, что тот конкретный цвет — красный. Но не следует забывать, что в мире есть тысячи людей, страдающих от разных типов дальтонизма. Он мешает им различать красный, зеленый и синий цвета, поэтому они видят мир не совсем таким, каким видим его мы.
3. Запрещенные цвета
При помощи красного, желтого, зеленого и синего цветов в различных комбинациях можно описать все остальные цвета видимого спектра. Фиолетовый, к примеру, может быть описан как красно-синий, цвет лайма — как желто-зеленый, оранжевый — как красновато-желтый, а бирюзовый — как голубовато-зеленый. Но как бы вы назвали что-то оранжево-зеленого цвета? А голубовато-желтого? Вы не знаете, а все это потому что на самом деле этих цветов не существует в теории, они называются запрещенными. Все сводится к тому, как мы воспринимаем цвет. Колбочки в наших глазах определяют красный, зеленый и синий цвета по разным длинам волн. Когда их длины пересекаются, мы видим уже новые цвета. Идея запрещенных цветов настолько сильно засела в головах Хьюитта Крэйна и Томаса Пиантанида, что в 1983 году им удалось совершить невозможное. Проводя ряд экспериментов, им удалось воссоздать такие цвета, у которых не было названия. Этот эффект был достигнут путем расположения рядом друг с другом красных и зеленых полосок (а также желтых и синих). Убедившись в том, что свет, отраженный каждым цветом активизирует лишь определенные колбочки, они принялись смешивать цвета таким образом, что у них получилось сформировать абсолютно новые цвета, до того момента не виданные никем.
2. Что же видят животные?
Наверняка все слышали о том, что собаки — дальтоники, и что летучие мыши на самом деле полностью слепы. Но это не совсем верно. Летучие мыши способны видеть, просто у них не самое хорошее зрение, а собаки, в свою очередь, не различают цвета так, как это делаем мы. У человека есть три цветовых рецептора, в то время как у собаки всего лишь два, таким образом, они лишены удовольствия видеть красный цвет. Но все относительно. Будет ли собака считаться дальтоником для кальмара, который различает лишь синий цвет? В то же время, змеи слабо различают обычный спектр цветов, в то время как отлично справляются с этой задачей в инфракрасном диапазоне. Пчелы, в свою очередь, различают синий, желтый и ультрафиолет. Вы ведь помните, насколько мал видимый для нас спектр света, в сравнении с общим спектром электромагнитного излучения? Вы не сможете представить себе какой-то новый цвет, также, как и не сможете объяснить слепому от рождения человеку, как выглядит красный цвет. У нас просто нет слов, которые смогли бы донести истинный смысл до человека, никогда в жизни не видевшего тот или иной цвет. Если вам нужны примеры, то некоторые бабочки обладают тремя рецепторами цвета, как и люди, а также еще двумя дополнительными, которые различают неизвестные человеку цвета.
1. Личное свечение
Вы, наверное, слышали, фразы, подобные этой: «О, у вас прекрасная фиолетовая аура!» или «Ты просто светишься!» Оказывается, есть в этих фразах доля истины. Ученые Киотского университета обнаружили, что люди в самом деле излучают видимый свет, но этот свет в 1000 раз менее мощный, чем видимый невооруженным глазом. Они также обнаружили, что наша аура достигает максимальной яркости ближе к 4 часам дня. Они приписывают это явление побочным продуктам нашего метаболизма — свободным радикалам.
Чем больше расстояние между источником света и наблюдателем, тем более тусклым становится свет. Это не потому, что тот теряет свою силу по пути или впитывается различными объектами, а потому что энергия света рассеивается по большей площади, прежде чем доходит до вас. Солнце одинаково ярко светит во всех направлениях, поскольку его свет распространяется во все стороны в равных количествах. Чем дальше расстояние, тем более рассеянным становится свет, этот процесс может длиться до тех пор, пока он не рассеется до состояния миллиардов отдельных фотонов, разлетающихся во всех направлениях. Свет также несет в себе информацию. Мы узнаем о расположении других звезд и галактик, их составе и направлении движения по свету, отраженному ими.
Поддержи Бугага.ру и поделись этим постом с друзьями! Спасибо! 🙂
ПОЧЕМУ МИР РАЗНОЦВЕТНЫЙ
Кандидат химических наук О. БЕЛОКОНЕВА.
Представьте, что вы стоите на залитом солнцем лугу. Сколько вокруг ярких красок: зелёная трава, жёлтые одуванчики, красная земляника, сиренево-синие колокольчики! Но мир ярок и красочен только днём, в сумерках все предметы становятся одинаково серыми, а ночью и вовсе невидимыми. Именно свет позволяет увидеть окружающий мир во всём его разноцветном великолепии.
Главный источник света на Земле — Солнце, громадный раскалённый шар, в глубинах которого непрерывно идут ядерные реакции. Часть энергии этих реакций Солнце посылает нам в виде света.
Что же такое свет? Учёные спорили об этом на протяжении столетий. Одни считали, что свет — поток частиц. Другие проводили опыты, из которых с очевидностью следовало: свет ведёт себя как волна. Правы оказались и те и другие. Свет — это электромагнитное излучение, которое можно представить как бегущую волну. Волна создаётся колебаниями электрического и магнитного полей. Чем выше частота колебаний, тем большую энергию несёт излучение. И в то же время излучение можно рассматривать как поток частиц — фотонов. Пока нам важнее, что свет — это волна, хотя в конце концов придётся вспомнить и о фотонах.
Человеческий глаз (к сожалению, а может быть, и к счастью) способен воспринимать электромагнитное излучение только в очень узком диапазоне длин волн, от 380 до 740 нанометров. Этот видимый свет излучает фотосфера — относительно тонкая (менее 300км толщиной) оболочка Солнца. Если разложить «белый» солнечный свет по длинам волн, получится видимый спектр — хорошо известная всем радуга, в которой волны разной длины воспринимаются нами как разные цвета: от красного (620—740 нм) до фиолетового (380—450 нм). Излучение с длиной волны больше 740 нм (инфракрасный) и меньше 380—400 нм (ультрафиолетовый) для человеческого глаза невидимо. В сетчатке глаза есть специальные клетки — рецепторы, отвечающие за восприятие цвета. Они имеют коническую форму, поэтому их называют колбочками. У человека три типа колбочек: одни лучше всего воспринимают свет в сине-фиолетовой области, другие — в жёлто-зелёной, третьи — в красной.
Что же определяет цвет окружающих нас вещей? Для того чтобы наш глаз увидел какой-либо предмет, нужно, чтобы свет сначала попал на этот предмет, а уже затем на сетчатку. Мы видим предметы, потому что они отражают свет, и этот отражённый свет, пройдя через зрачок и хрусталик, попадает на сетчатку. Свет, поглощённый предметом, глаз, естественно, увидеть не может. Сажа, например, поглощает почти всё излучение и кажется нам чёрной. Снег, напротив, равномерно отражает почти весь падающий на него свет и потому выглядит белым. А что будет, если солнечный свет упадёт на выкрашенную синей краской стену? От неё отразятся только синие лучи, а остальные будут поглощены. Поэтому мы и воспринимаем цвет стены как синий, ведь у поглощённых лучей просто нет шанса попасть на сетчатку глаза.
Разные предметы, в зависимости от того, из какого вещества они сделаны (или какой краской покрашены), поглощают свет по-разному. Когда мы говорим: «Мячик красный», то имеем в виду, что отражённый от его поверхности свет воздействует только на те рецепторы сетчатки глаза, которые чувствительны к красному цвету. А это значит, что краска на поверхности мячика поглощает все световые лучи, кроме красных. Предмет сам по себе не имеет никакого цвета, цвет возникает при отражении от него электромагнитных волн видимого диапазона. Если вас попросили отгадать, какого цвета бумажка лежит в запечатанном чёрном конверте, вы нисколько не погрешите против истины, если ответите: «Никакого!». И если красную поверхность осветить зелёным светом, то она покажется чёрной, потому что зелёный свет не содержит лучей, отвечающих красному цвету. Чаще всего вещество поглощает излучение в разных частях видимого спектра. Молекула хлорофилла, например, поглощает свет в красной и голубой области, а отражённые волны дают зелёный цвет. Благодаря этому мы можем любоваться зеленью лесов и трав.
Почему одни вещества поглощают зелёный свет, а другие — красный? Это определяется структурой молекул, из которых вещество состоит. Взаимодействие вещества со световым излучением происходит таким образом, что за один приём одна молекула «заглатывает» только одну порцию излучения, иначе говоря, один квант света или фотон (вот нам и пригодилось представление о свете как о потоке частиц!). Энергия фотона напрямую связана с частотой излучения (чем выше энергия — тем больше частота). Поглотив фотон, молекула переходит на более высокий энергетический уровень. Энергия молекулы повышается не плавно, а скачком. Поэтому молекула поглощает не любые электромагнитные волны, а только те, которые подходят ей по величине «порции».
Вот и получается, что ни один предмет не окрашен сам по себе. Цвет возникает из выборочного поглощения веществом видимого света. А поскольку способных к поглощению веществ — и природных, и созданных химиками — в нашем мире великое множество, мир под Солнцем расцвечен яркими красками.
Частота колебаний ν, длина волны света λ и скорость света c связаны между собой простой формулой:
Cкорость света в вакууме постоянна (300млнм/с).
Длину волны света принято измерять в нанометрах.
В одном миллиметре содержится миллион нанометров.
Частоту колебаний измеряют в герцах (Гц). 1 Гц — это одно колебание в секунду.
Чем объясняется цвет предметов
Что можно сказать о величине коэффициента отражения видимого света для сажи?
Вопрос о причине различной окраски тел занимал ум человека уже давно. Большое значение в понимании этого вопроса имели работы Ньютона (начавшиеся около 1666 г.) по разложению белого света в спектр (см. рисунок).
Свет от фонаря освещает узкое прямоугольное отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде узкого белого прямоугольника S’. Поместив на пути лучей призму Р, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.
В таблице приведены в качестве примера значения показателя преломления в зависимости от длины волны для двух сортов стекла и воды.
(цвет)
флинт
Цвет окружающих нас предметов может быть различным благодаря тому, что световые волны разной длины в луче белого цвета рассеиваются, поглощаются и пропускаются предметами по-разному. Доля светового потока, участвующая в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения ρ, пропускания и поглощения α.
Если, например, у какого-либо тела для красного света коэффициент пропускания велик, коэффициент отражения мал, а для зелёного — наоборот, то это тело будет казаться красным в проходящем свете и зелёным в отражённом. Такими свойствами обладает, например, хлорофилл — вещество, содержащееся в листьях растений и обусловливающее их цвет. Раствор (вытяжка) хлорофилла в спирту оказывается на просвет красным, а на отражение — зелёным.
Для очень белого непрозрачного тела коэффициент отражения близок к единице для всех длин волн, а коэффициенты поглощения и пропускания очень малы. Прозрачное стекло имеет малые коэффициенты отражения и поглощения, а коэффициент пропускания близкий к единице для всех длин волн.
Различие в значениях коэффициентов и ρ и их зависимость от цвета (длины волны) падающего света обусловливают чрезвычайное разнообразие в цветах и оттенках различных тел.
Есть ли у предметов цвет?
Цветов не существует самих по себе. То есть тело бесцветно, но в результате отражения от него световых волн, оно излучает ответные волны в соответствие с цветом спектром.
Теоретически, из этого исходить куча разных прикольных для демагогии вещей, но в частности: если тело всегда улучает определённый цветовой спектр, то оно имеет конкретный цвет.
В то же время, в зависимости от освещения, цвет окружающих предметов для нас меняется.
Я пытался разобраться в волновой теории и оптике, но мои знания недостаточно хороши, чтобы точно утверждать что либо. По крайней мере я не считаю, что могу это делать. Потому и запрашиваю слова людей, которые точно знают, что говорят.
Споры о науке
143 поста 1.2K подписчиков
Правила сообщества
Уважайте оппонентов и аргументируйте свои доводы. Ссылки на соответствующую литературу приветствуются.
Абстрактного цвета не существует. Цвет — это специфическая реакция живого существа на электромагнитное излучение той или иной длины волны.
Вот в той же википедии определение цвета дано с хорошей поправкой на физику:
Цвет — качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Так что, согласно определению, цвет есть =)
Для начала стоит перестать мешать в одну кучу оттенок и яркость.
У них есть свойство материала отражать световые волны определенного спектра, какие-то более широкого, какие-то более узкого и не более. Наш мозг интерпретирует в какой-либо из цветов.
Поэтому бумага в зеленом свете покажется нам зеленой, в дневном белой (потому что он содержит весь спектр цветов)
Так, задрали. Что за кретины и мрази минусуют?
Я задал вполне конкретный вопрос, сам ничего не утверждаю и не навязываю. Сделал запрос информации после неудачных попыток самому разобраться. Да ещё и в нужном сообществе.
Что тут минусовать?
Всё от Бога, братуха. И цвет, и вкус.
Попытка определить это понятие универсально как некое философское скорее всего бессмысленна и приведёт разве только к длинному флейму.
Стивен Хокинг
8 января 1942 года родился величайший физик-теоретик современности Стивен Хокинг. Автор ряда научных трудов, в том числе совместной с Роджером Пенроузом работы по теоремам о гравитационной сингулярности в рамках общей теории относительности и теоретическому предсказанию выделения чёрными дырами излучения, часто именуемого излучением Хокинга. Хокинг первым изложил космологическую теорию, в которой были объединены представления общей теории относительности и квантовой механики. Активно поддерживал многомировую интерпретацию квантовой механики. Хотя эта область до сих пор толком не изучена, так как в ней нет коммерческого смысла, на ней невозможно заработать много денег.
Хокинг был почётным членом Королевского общества искусств, был удостоен Президентской медали Свободы — высшей награды для гражданских лиц в США. В 2002 году в результате опроса Би-би-си по определению ста величайших британцев всех времён Хокинг занял 25-е место. Учёный был Лукасовским профессором математики Кембриджского университета в 1979—2009 годах, добился коммерческого успеха благодаря научно-популярным произведениям, в которых он рассуждает о собственных теориях и космологии в целом. Книга Хокинга «Краткая история времени» входила в список бестселлеров британского издания The Sunday Times на протяжении рекордных 237 недель.
У Хокинга была редкая медленно развивающаяся форма болезни моторных нейронов (также известна как боковой амиотрофический склероз или болезнь Лу Герига), которая постепенно на протяжении десятилетий парализовала его. В 1985 году Стивен Хокинг тяжело заболел, у него было воспаление лёгких. После серии операций ему была проведена трахеостомия, и Хокинг утратил способность говорить. Друзья-механики модифицировали инвалидное кресло Стивена, установив на нём бортовой компьютер с синтезатором речи, которым Хокинг управлял сперва с помощью указательного пальца правой руки, а впоследствии — мимической мышцей щеки, напротив которой ему закрепили датчик.
14 марта 2018 года Стивен Хокинг умер в возрасте 76 лет. Только наука помогает мне жить и чувствовать жизнь, любил говорить Стивен Хокинг.
Стивен Хокинг был одним из из наиболее влиятельных и известных широкой общественности физиков-теоретиков нашего времени, один из основоположников квантовой космологии. Основная область исследований Хокинга — космология и квантовая гравитация. Его главные достижения:
1. применение термодинамики к описанию чёрных дыр;
2. разработка в 1975 году теории о том, что чёрные дыры «испаряются» за счёт явления, получившего название излучение Хокинга.
«Перспектива рано умереть заставила меня понять, что жизнь стоит того, чтобы её прожить, а многие даже не пытаются жить по-настоящему».
(Стивен Хокинг)
Информация для дополнительного изучения:
Хокинг С., Эллис Дж. «Крупномасштабная структура пространства-времени»
С. Хокинг и Р. Пенроуз. «Природа пространства и времени»