Чем объясняется периодичность свойств элементов

Закономерности изменения химических свойств элементов. Характеристика элементов

Теория к заданию 2 из ЕГЭ по химии

Закономерности изменения химических свойств элементов и их соединений по периодам и группам

Перечислим закономерности изменения свойств, проявляемые в пределах периодов:

— металлические свойства уменьшаются;

— неметаллические свойства усиливаются;

— оксиды от основных через амфотерные сменяются кислотными оксидами;

— гидроксиды от щелочей через амфотерные сменяются кислотами.

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов.

Систематизируя химические элементы на основе их относительных атомных масс, Менделеев уделял большое внимание также свойствам элементов и образуемых ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы — группы.

Иногда, в нарушение выявленной им закономерности, Менделеев ставил более тяжелые элементы с меньшими значениями относительных атомных масс. Например, он записал в свою таблицу кобальт перед никелем, теллур перед йодом, а когда были открыты инертные (благородные) газы, — аргон перед калием. Такой порядок расположения Менделеев считал необходимым потому, что иначе эти элементы попали бы в группы несходных с ними по свойствам элементов, в частности щелочной металл калий попал бы в группу инертных газов, а инертный газ аргон — в группу щелочных металлов.

Д. И. Менделеев не мог объяснить эти исключения из общего правила, не мог объяснить и причину причину периодичности свойств элементов и образованных ими веществ. Однако он предвидел, что эта причина кроется в сложном строении атома, внутреннее строение которого в то время не было изучено.

В соответствии с современными представлениями о строении атома, основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка периодического закона такова:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер.

Периодичность в изменении свойств элементов объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в Периодической системе символику, т.е. раскрывают физический смысл номера периода, номера группы и порядкового номера элемента.

Строение атома позволяет объяснить и причины изменения металлических и неметаллических свойств элементов в периодах и группах.

Периодический закон и Периодическая система химических элементов Д. И. Менделеева обобщают сведения о химических элементах и образованных ими веществах и объясняют периодичность в изменении их свойств и причину сходства свойств элементов одной и той же группы. Эти два важнейших значения Периодического закона и Периодической системы дополняет еще одно, которое заключается в возможности прогнозировать, т.е. предсказывать, описывать свойства и указывать пути открытия новых химических элементов.

Общая характеристика металлов главных подгрупп I±III групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

Химические элементы — металлы

Все металлы, кроме ртути, в обычном состоянии — твердые вещества и имеют ряд общих свойств.

Металлы — это ковкие, пластичные, тягучие вещества, имеющие металлический блеск и способны проводить тепло и электрический ток.

Атомы элементов-металлов отдают электроны внешнего (а некоторые и предвнешнего) электронного слоя, превращаясь в положительные ионы.

Вы уже знаете, что в Периодической системе химических элементов Д. И. Менделеева металлы находятся ниже диагонали бор — астат, а также выше ее, в побочных подгруппах. В периодах и главных подгруппах действуют известные вам закономерности в изменении металлических, а значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор — астат ($Be, Al, Ti, Ge, Nb, Sb$), обладают двойственными свойствами: в одних своих соединениях ведут себя как металлы, в других проявляют свойства неметаллов.

В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются.

Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов этих металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Особенности строения металлов главных подгрупп I–III групп.

Щелочные металлы — это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы — сильные восстановители. Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т.е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами — окислителями. В реакциях с водой они образуют растворимые в воде основания (щелочи).

Характеристика переходных элементов ± меди, цинка, хрома, железа по их положению в Периодической системе химических элементов Д. И. Менделеева и особенностям строения их атомов

Большинство элементов-металлов находится в побочных группах Периодической системы.

Общая характеристика неметаллов главных подгрупп IV±VII групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

Химические элементы – неметаллы

Самой первой научной классификацией химических элементов было деление их на металлы и неметаллы. Эта классификация не утратила своей значимости и в настоящее время.

Неметаллы — это химические элементы, для атомов которых характерна способность принимать электроны до завершения внешнего слоя благодаря наличию, как правило, на внешнем электронном слое четырех и более электронов и малому радиусу атомов по сравнению с атомами металлов.

Свойства атомов элементов – неметаллов

У атомов неметаллов преобладают окислительные свойства, т.е. способность присоединять электроны. Эту способность характеризует значение электроотрицательности, которая закономерно изменяется в периодах и подгруппах.

Фтор — самый сильный окислитель, его атомы в химических реакциях не способны отдавать электроны, т.е. проявлять восстановительные свойства.

Конфигурация внешнего электронного слоя.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

В периоде:
— заряд ядра увеличивается;
— радиус атома уменьшается;
— число электронов на внешнем слое увеличивается;
— электроотрицательность увеличивается;
— окислительные свойства усиливаются;
— неметаллические свойства усиливаются.
В главной подгруппе:
— заряд ядра увеличивается;
— радиус атома увеличивается;
— число электронов на внешнем слое не изменяется;
— электроотрицательность уменьшается;
— окислительные свойства ослабевают;
— неметаллические свойства ослабевают.

Другие неметаллы могут проявлять восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами; в периодах и подгруппах их восстановительная способность изменяется в обратном порядке по сравнению с окислительной.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Источник

Периодический закон

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Период, группа и электронная конфигурация

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Длина связи

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Основные и кислотные свойства

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Восстановительные и окислительные свойства

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Тема №2 «Закономерности изменения химических свойств элементов»

В данном уроке рассматриваются основные законы периодичности таблицы Менделеева, изменения свойств элементов по группам и периодам, основные свойства различных групп.

Закономерности изменения химических свойств элементов.

Оглавление

Периодичность свойств химических элементов

Радиусы атомов, их периодические изменения в системе химических элементов

В одной и той же группе с увеличением номера периода атомные радиусы возрастают, т. к. увеличение заряда атома оказывает противоположный эффект. С точки зрения теории строения атомов принадлежность элементов к металлам или неметаллам определяется способностью их атомов отдавать или присоединять электроны. Атомы металлов сравнительно легко отдают электроны и не могут их присоединять для достраивания своего внешнего электронного слоя.

Закономерности изменения химических свойств элементов и их соединений по периодам и группам

a) Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.

г) Закономерности, связанные с валентностью элементов.

Итак, подытожим закономерности изменения свойств, проявляемые в пределах периодов:

Изменение некоторых характеристик элементов в периодах слева направо:

Изменение некоторых характеристик элементов в группе сверху вниз:

Шпаргалки

Справочный материал для прохождения тестирования:

Источник

Периодический закон Д.И. Менделеева и периодичность свойств атомов. Конспект

Оглавление

1. Современная формулировка периодического закона и структура периодической системы Д.И.Менделеева

В 1869 г. Д.И. Менделееву удалось сформулировать периодический закон – важнейший закон природы:

свойства химических элементов, а, следовательно, и свойства образуемых ими простых и сложных веществ состоят в периодической зависимости от их атомного веса.

Согласно этой формулировке наблюдалось несоответствие положения некоторых элементов в периодической системе Менделеева:

В начале 20 века закон Менделеева и его система были обоснованы на квантово-механическом уровне. Существо этого закона было полностью сохранено, а в качестве фундаментальной константы атома стал использоваться

заряд ядра атома

(соответствующий порядковому номеру элемента),

что позволило устранить наблюдавшиеся несоответствия.

Исходя из структуры электронной оболочки атомов число элементов

в III периоде – должно было бы быть 18;

в IV периоде – должно было бы быть 32;

в V периоде – должно было бы быть 50.

Это обусловлено тем, что заполнение d-состояний электронами запаздывает на один период, а заполнение f-состояний – на два периода.

Отличие реальной системы от теоретически возможной заключается в том, что в первой не учитывалось электрон-электронное взаимодействие. Теоретический учет этого взаимодействия – чрезвычайно сложная задача. На качественном уровне приходится учитывать три эффекта –

эффект экранирования электронами ядра атома,

эффект проникновения электронов к ядру,

взаимное отталкивание электронов, принадлежащих одному и тому же энергетическому слою

Эффект экранирования ядра связан с тем, что внутренние электроны атома частично заслоняют ядро, в результате чего уменьшается его воздействие на внешний электрон. Эффект экранирования учитывается некоторой постоянной Sэкр, называемой константой экранирования. Заряд ядра с учетом экранирования называется эффективным зарядом и определяется соотношением Zэфф. = Z – Sэкр. Экранирование внешнего электрона возрастает с увеличением общего числа электронов в атоме.

Эффект проникновения электронов к ядру обусловлен тем, что электрон, согласно положениям квантовой механики, может находиться в любой точке атома. Это означает, что внешний электрон часть времени находится вблизи ядра, проникая через слои внутренних электронов, и не испытывает при этом их экранирующего действия.

Распределение электронной плотности относительно ядра изображают кривой распределения вероятности нахождения электрона в шаровом слое радиуса r толщиной dr, объем которого dV = 4pr 2 dr.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Для одного и того же энергетического слоя наибольшую проникающую способность проявляют s-электроны, меньшую – p-электроны, еще меньшую – d-электроны (рис.1). Число максимумов на кривой определяется числом n. Для 3s-электрона Nmax = n, для р-электрона Nmax = (n – 1), для d-электрона Nmax = (n – 2). Эффект проникновения увеличивает прочность связи электрона с ядром.

Взаимное отталкивание электронов, принадлежащих одному и тому же энергетическому слою, оказывает большое влияние на прочность связи электрона с ядром. Это отталкивание особенно сильно проявляется между двумя электронами с противоположными спинами, находящимися на одной орбитали.

Эти эффекты приводят к изменению эффективного заряда ядра атома, что позволяет объяснить реальную структуру электронной оболочки атома.

В настоящее время система Д.И. Менделеева представляет собой предельно краткую и четкую физико-химическую энциклопедию. В современной формулировке периодический закон Д.И.Менделеева звучит следующим образом: свойства элементов, а также свойства и формы образуемых ими соединений находятся в периодической зависимости от заряда ядра атомов элементов.

На основе периодического закона разработаны графические системы Д.И. Менделеева. В настоящее время их насчитывается более 3 тысяч.

Наиболее распространены два варианта таблицы – короткопериодный и длиннопериодный.

Периоды – горизонтальные ряды, объединяющие элементы с одинаковым значением главного квантового числа n. Номер периода соответствует числу заполненных электронами энергетических уровней атома каждого конкретного элемента.

Группы – вертикальные ряды, объединяющие элементы с одинаковым числом валентных электронов.

Современная периодическая таблица состоит из 7 периодов: первый содержит всего два элемента, второй и третий – по 8 элементов (малые периоды), четвертый и пятый – по 18 элементов, шестой – 32 элемента, седьмой период не завершен, но должен содержать также 32 элемента (большие периоды).

Каждый период начинается с двух s-элементов, в атомах которых впервые появляется электрон со значением n, соответствующим номеру заполняемого периода, и заканчивается шестью p-элементами. В больших периодах между s- и р-элементами размещается по десять d- элементов. Все f-элементы условно помещаются в ячейки лантана (лантаноиды) и актиния (актиноиды), а их символы обычно выносятся за пределы периодической таблицы в виде рядов.

2. Радиус атома и энергия ионизации

Периодичностью называется повторяемость химических и физических свойств атомов химических элементов, их простых веществ и сложных соединений при изменении порядкового номера элемента в периодической таблице Д.И.Менделеева. Основная причина периодичности свойств элементов связана с электронным строением их атомов.

Рассмотрим 2 вида периодичности (горизонтальную и вертикальную) на примере таких свойств атомов как орбитальный радиус и его энергия ионизации.

Горизонтальная периодичность проявляется в появлении максимальных и минимальных значений для различных свойств элементов и их соединений в пределах каждого периода. Связана горизонтальная периодичность с изменением числа электронов на внешних энергетических уровнях атома с ростом заряда атомного ядра при движении от начала периода к его концу.

Вертикальная периодичность – вид периодичности, по которому элементы объединяют в группы: элементы одной группы имеют одинаковые конфигурации валентных электронов. Вертикальная периодичность заключается в повторяемости свойств атомов и их соединений и закономерном их изменении при увеличении заряда ядра в пределах каждой группы элементов.

Размеры атомов обычно оценивают по величине их радиуса. Однако вследствие волнового характера движения электрона радиус атома невозможно точно определить. Поэтому за радиус принимают различные условно выбранные величины. Различают орбитальный, атомный (ковалентный, металлический), ван-дер-ваальсов, ионный радиусы.

За орбитальный радиус (rорб) свободного атома принимают расстояние от центра атома до максимума, соответствующего внешнему электронному облаку, на теоретически рассчитанной кривой распределения вероятности нахождения электрона в атоме от расстояния r (см. рис. 1, табл. 1).

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Рис.1. График зависимости величины 4πr 2 R 2 (r) от расстояния r для 1s-орбитали

На практике химиков больше интересуют радиусы атомов, связанных между собой. При рассмотрении простых веществ и органических соединений обычно пользуются понятием об атомном радиусе. Атомные радиусы (табл. 1) подразделяют на радиусы атомов металлов (металлический радиус), радиусы атомов неметаллов (ковалентные радиусы) и радиусы атомов благородных газов.

Под металлическим радиусом (rме) понимают половину расстояния между ближайшими соседними атомами металла в кристаллической решетке.

Радиусы атомов благородных газов (rблаг.г) рассчитаны из межатомных расстояний в кристаллах этих веществ, которые существуют при низких температурах.

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов

Рис. 2. Ковалентные и ван-дер-ваальсовы радиусы молекулы Cl2 в кристалле

Часто для оценки размеров групп атомов или выяснения того, как могут взаимодействовать отдельные части молекулы, бывает интересно знать размер атома в том направлении, в котором он не образует химической связи. Половина расстояния между несвязанными атомами называется ван-дер-ваальсовым радиусом (rВ). Другими словами, ковалентный радиус – это радиус атома в направлении химической связи, а ван-дер-ваальсов радиус – радиус атома в любом другом направлении. Из рис. 2 видно, что ван-дер-ваальсов радиус находят по расстоянию между двумя ядрами хлора в соседних молекулах, и величина его всегда больше, чем ковалентный радиус атома (табл. 1).

В неорганической химии чаще всего оперируют понятием ионного радиуса. Ионный радиус (rион) характеризует размер иона. Ионные радиусы оценивают различными способами из экспериментальных данных. Для положительно заряженного иона (катиона) ионный радиус всегда меньше, чем ковалентный, для отрицательно заряженного иона (аниона) – больше, чем ковалентный радиус (табл. 1). Ионные радиусы одного и того же элемента изменяются в зависимости от координационного числа (к.ч.) иона и степени его окисления.

Таблица 1. Значения радиусов (в пм) для атомов и ионов I – III периодов

(1пм = 10 -9 см =10 3 нм).

Способность атомов отдавать электроны характеризует величина, называемая энергией ионизации. Энергия ионизации Eи (energy of ionization) – это количество энергии, необходимое для отрыва электрона от невозбужденного атома в газообразном состоянии.

Элемент

Для d-элементов радиус увеличивается при переходе от IV к V периоду и уменьшается при переходе от V к VI периоду. Аналогичные тенденции наблюдаются и в изменении ван-дер-ваальсовых, атомных и ионных (при одинаковом заряде) радиусов. Уменьшение радиусов d-элементов при переходе от V к VI периоду обусловлено тем, что увеличение числа электронных слоев в них компенсируется f-сжатием, связанным с заполнением электронами 4f-подслоя у f-элементов VI периода. Отмеченным закономерностям не подчиняются d-элементы 3-й и 11-й групп. Для них типичны закономерности, наблюдаемые для s- и р-элементов.

Для d-элементов значения Eи1 в группе в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру.

3. Сродство атома к электрону

Сродство атомов к электрону определено для многих элементов. Положительное значение Есрод1 означает поглощение энергии при присоединении электрона (эндотермический процесс) – невыгодно, отрицательное значение Есрод1 – экзотермический процесс – выделение энергии при присоединении электрона (выгодно).

4. Электроотрицательность

Электроотрицательность (ЭО) характеризует способность атома притягивать к себе электроны при образовании химической связи. Электроотрицательность не является физическим свойством, которое можно измерить. Величину электроотрицательности вычисляют, используя различные свойства веществ (энергию ионизации, сродство атома к электрону, межъядерные расстояния, энергии связи электрона с ядром и др.).

Шкала электроотрицательности по Малликену. Р.Малликеном (США) был предложен способ вычисления ЭО как среднего арифметического первой энергии ионизации атома Eи и его сродства к электрону Eсрод.:

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов.

Из уравнения следует, что атомы с большими значениями Eи и Eсрод. сильнее притягивают к себе электроны, обобществляемые при образовании связи. Так, атомы металлов имеют низкие значения электроотрицательности, так как для них характерны небольшие значения энергии ионизации и сродства к электрону. Атомы неметаллов, наоборот, характеризуются высокой электроотрицательностью вследствие того, что имеют существенно большие значения Eи и Eсрод.. Недостаток этого подхода связан с тем, что сродство к электрону установлено не для всех элементов, поэтому электроотрицательность по Малликену определена также не для всех элементов.

Шкала электроотрицательности по Полингу. Допустим, что связь в молекуле АВ – ковалентная, тогда энергию связи ЕАВ в молекуле АВ можно представить как среднее между энергиями связи в молекулах А2 и В2, обозначенных соответственно ЕА-А и ЕВ-В. Однако найденная из опыта энергия связи ЕАВ обычно оказывается больше, то есть:

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов> 0

Причина этого заключается в некоторой поляризации связи А-В, т.е. по значению величины Δ можно судить о степени полярности ковалентной связи и, следовательно, о способности атомов притягивать к себе электроны. Л. Полинг предположил, что величина Δ зависит от разности электроотрицательностей Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементовэлементов следующим образом:

Чем объясняется периодичность свойств элементов. Смотреть фото Чем объясняется периодичность свойств элементов. Смотреть картинку Чем объясняется периодичность свойств элементов. Картинка про Чем объясняется периодичность свойств элементов. Фото Чем объясняется периодичность свойств элементов.

В группах р-элементов устойчивость высшей степени окисления уменьшается, но уменьшается немонотонно. Это связано с тем, что энергетическое различие между валентными s- и р-орбиталями в группах также изменяется немонотонно, то есть наблюдается четко выраженная вторичная периодичность. ΔЕsp для элементов 3-го и 5-го периодов ниже, чем для элементов 4-го периода (Ge, As, Se, Br). Поэтому устойчивость соединений в высшей степени окисления у элементов 3-го и 5-го периодов обычно выше, чем для аналогичных соединений 4р-элементов. Например, устойчивость галогенидов элементов 4-го периода мышьяка (AsСl5) и cелена (SeF6) в их высшей степени окисления меньше, чем устойчивость подобных галогенидов элементов 3-го (PCl5, SF6) и 5-го (SbCl5, TeF6) периодов. Для атомов р-элементов 6-го периода, имеющих большие различия между валентными s- и р-орбиталями, высшая степень окисления неустойчива.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *