Чем объясняется наблюдаемое различие спектров звезд кратко
Почему спектры звезд различны!
Самый простой ответ на поставленный вопрос состоит, казалось бы, в том, что различие спектров объясняется различием химических составов звезд, и преобладание линий какого-нибудь элемента в спектре звезды является следствием преобладания этого элемента в атмосфере звезды. Однако основное свойство совокупности спектров звезд — ее линейная последовательность — указывает, что такой ответ является ошибочным. Действительно, если предположить, что звезды спектрального класса АО состоят главным образом из водорода, а звезды класса М2 — из окиси титана, то должно было бы существовать несколько последовательностей спектров, соединяющих эти спектральные классы. Например, можно было бы перейти от подкласса АО к подклассу М2 и через спектры, в которых преобладают линии металлов, и минуя такие спектры.
Если бы звезды сильно отличались одна от другой химическим составом и это определяло бы их спектры, то вследствие возможности самых различных комбинаций в пропорциях различных элементов ни о какой линейной последовательности спектров не могло бы быть и речи. Спектры звезд зависели бы от множества факторов — от процентного содержания каждого элемента. Явление линейной последовательности спектров указывает на то, что спектры звезд зависят главным образом от какого-то одного фактора. Как удалось выяснить, этим фактором является температура звезды.
Чтобы объяснить столь важную роль температуры, необходимо познакомиться с механизмом образования линий в спектрах звезд.
Известно, что атом всякого элемента может поглощать свет. При этом он поглощает свет в совершенно определенных частотах. В каких частотах — зависит от устройства этого атома, т. е. от того, из каких и в каком количестве элементарных частиц он состоит.
Когда атом поглотит необходимую порцию световой; энергии или, как говорят, световой квант данной частоты, он переходит в возбужденное состояние, определяемое; тем, что его внешний электрон из того положения, которое он занимает в атоме в обычном состоянии, переходит в другое положение, более удаленное, от ядра атома.] В возбужденном состоянии атом находится ничтожную» долю секунды, после чего электрон возвращается на свое; обычное место, а атом при этом излучает ту же самую порцию световой энергии: либо излучается тот же самый квант той же частоты, который поглотил атом, либо же (что случается реже) атом излучает два или несколько квантов меньших частот, но так, что сумма их энергий равна энергии поглощенного кванта (энергия кванта пропорциональна его частоте).
Направление, в котором будет вновь излучен квант, не будет тем же самым, по которому квант двигался до его поглощения. Он может быть излучен в любом направлении, причем каждый раз это направление является случайным.
Когда свет от раскаленной поверхности звезды проходит через ее более холодную атмосферу, находящиеся там атомы различных элементов поглощают свет в определенных, двойственных этим атомам частотах. Эта световая энергия тут же снова излучается атомами, но уже в различных направлениях. Часть ее возвращается обратно, часть отсылается в сторону и лишь у незначительной части направление будет совпадать с первоначальным. Поэтому в соответствующих местах спектров звезд мы наблюдаем резкое ослабление света — темные линии,
Если атом поглотит квант достаточно высокой частоты, обладающий высокой энергией, то внешний электрон будет не просто перемещен Несколько дальше, а будет оторван от ядра; атом станет ионизованным. Ионизованные атомы поглощают свет в иных частотах, чем неионизованные, у них внешним становится другой электрон, поэтому в спектрах звезд ионизованные атомы обнаруживают себя иначе, чем неионизованные, обычные атомы.
Чем, выше температура звезды, тем больше световой энергии излучает в секунду квадратный сантиметр ее поверхности. Но от температуры зависит и состав квантов
в ее излучении. Чем выше температура, тем больше доля высокочастотных квантов и меньше доля низкочастотных.
Различие температур светящихся поверхностей звезд, вследствие которого излучение не одинаково по мощности и по распределению в нем квантов высоких и низких частот, влечет за собой различное состояние атомов химических элементов в атмосферах, а это определяет разнообразие спектров звезд.
Поясним, как это происходит. Предположим, что в атмосферах звезд имеются все элементы, которые вообще дают о себе знать в звездных спектрах и притом для всех звезд пропорция элементов примерно одна и та же. Начнем рассмотрение условий в атмосферах звезд со спектрального класса М. Звезды, принадлежащие к этому спектральному классу, имеют температуру на поверхности около 3000° и являются сравнительно холодными звездами.
При температурах около 3000° еще могут существовать некоторые химические соединения, например, окись титана, и хотя окиси титана в атмосферах звезд ничтожное количество, его молекулы весьма интенсивно поглощают свет во множестве частот, создавая, таким образом, в спектрах звезд класса М целые полосы поглощения.
При более высоких температурах ускоряются движение атомов и молекул. Усиливаются столкновения молекул между собой и молекул с атомами. В результате этих столкновений молекулы распадаются и потому в спектрах звезд класса К полос поглощения молекул почти нет.
В спектрах звезд Кий сильны линии неионизованных металлов, линии же ионизованных металлов и линии водорода еще слабы. Это объясняется тем, что для ионизации атомов металлов и для возбуждения атомов водорода требуются высокочастотные кванты, которых в излучении звезд К и О, имеющих температуру 4000—6000К, еще сравнительно мало. Но в излучении этих звезд достаточно квантов менее высокой частоты для возбуждения атомов металлов.
В звездах класса Р с температурой до 7500 К доля высокочастотного излучения заметно возрастает, большая часть атомов металлов ионизуется, и поэтому мы наблюдаем линии поглощения ионизованных металлов. Соответственно в атмосферах Р-звезд уменьшается число неионизованных металлов, что влечет ослабление в спектре линий их поглощения. Усиление высокочастотного излучения вызывает и усиление линий поглощения водорода. В спектральном классе А температура поверхности 8000—10 500 К. Здесь атомы металлов ионизованы дважды и большее число раз, т. е. от них оторваны два или больше электронов. Такие многократно ионизованные атомы металлов для возбуждения должны поглощать очень высокочастотные кванты из ультрафиолетовой части спектра. Эта часть спектра звезд нам почти неизвестна, так как ультрафиолетовая область излучения звезд поглощается земной атмосферой и до телескопов наблюдателей не доходит. Только теперь, в последние годы, в связи с космическими полетами появилась возможность выноса астрономических инструментов за пределы атмосферы Земли и изучения ультрафиолетовых областей спектров звезд. Линии водорода в спектрах звезд класса А становятся наиболее интенсивными.
У звезд спектрального класса В температура поверхности еще более высока: 11 000—15 0001С. Мощность высокочастотного излучения здесь так велика, что ионизуются кислород и азот, вследствие чего в спектрах появляются линии ионизованных кислорода и азота. В звездах класса В ионизуется и водород. Но атом водорода имеет только один электрон, поэтому после ионизации он не содержит электронов, уже не может поглощать свет и не дает о себе знать в спектре звезды. Число же неионизованных атомов водорода в В-звездах становится меньше и линии водорода в их спектрах ослабевают.
Наконец, в самых горячих звездах класса О, с температурами от 15 000 до 50000 К и более, ионизуется уже и гелий, появляются линии ионизованного гелия. Кислород ионизуется дважды, о чем свидетельствуют соответствующие линии. Линии водорода резко ослабевают, так как подавляющая часть водорода переходит в ионизованное состояние.
В спектрах звезд класса О интенсивность линий водорода примерно такая же, как и в классе М. То обстоятельство, что водородные линии видны в спектрах звезд всех классов, хотя условия для их появления в некоторых из них, например, в крайних классах О и М, весьма неблагоприятны, указывает на обилие атомов водорода в атмосферах звезд. Исследования показывают, что атмосферы звезд не менее чем на 80% состоят из водорода.
Мы дали объяснение различию спектров различных классов качественно. Количественная теория была разработана индийским, астрономом и физиком Саха. Наблюдения отлично согласуются с теорией Саха и показывают, что химический состав звезд действительно почти (но не совсем) одинаков. Характер спектров зависит главным образом от температуры. Некоторый отпечаток на спектры накладывает и величина ускорения силы тяжести на поверхности звезды, но влияние этого фактора гораздо слабее, чем влияние температуры звезды.
Спектральные классы звезд
Звезды разных спектральных классов в сравнении
Звезды делятся на спектральные классы в зависимости от их спектра электромагнитного излучения. Из него можно получить такую важную информацию о космическом теле как температура и давление верхних слоев, химический состав, скорость вращения и прочие физические характеристики.
Получение спектров
Спектры излучения разных источников света
В простом случае спектр можно получить следующим образом: свет, излучаемый объектом, пропускается через узкое отверстие, позади которого располагается призма. Последняя преломляет свет, который после направляется на экран или специальную фотопленку. Полученное изображение представляется в виде плавного градиента цветов от фиолетового к красному. Спектр без каких-либо черных линий называется непрерывным. Подобная картина наблюдается при излучении света твердыми или жидкими телами, к примеру – лампой накаливания.
Рассмотрим следующий случай: пусть имеется горелка, в пламя которой поместили некоторую массу соли. В описанном случае в свете пламени будет наблюдаться ярко-желтый цвет. И если посмотреть через спектроскоп на эти испарения, то мы увидим яркую желтую линию. Это означает, что разогретые пары натрия излучают свет с длиной волны желтого цвета. Данное свойство присущее любому веществу в газообразном состоянии, а его спектр называется линейчатым.
При наблюдении за Солнцем немецкий оптик Йозеф Фраунгофер отметил, что в его непрерывном спектре излучения имеются некие тонкие черные линии. Позже Густав Кирхгоф определил, что всякий разреженный газ поглощает лучи света именно тех длин волн, которые испускает сам, находясь в состоянии свечения. Получаемые на непрерывном спектре черные линии были названы как линии поглощения. Применив упомянутые законы к Солнцу, ученые, смогли выявить химический состав атмосферы звезды. Так как газы в атмосфере поглощали излучение с определенными длинами волн.
40 различных спектров Солнца
В дальнейшем в спектроскопии появилось множество методов изучения других свойств звезд, то бишь смещение спектра в определенную сторону, сравнение со спектром абсолютно черного тела, раздвоение линий наложения и прочее.
Сегодня приборы ученых позволяют измерять спектры звезд, в любых диапазонах помимо оптического, при помощи различных фильтров и окуляров, например в рентгеновском или ультрафиолетовом.
Классы Анджело Секки
Впервые классифицировал звездные спектры священник и астроном из Италии — Анджело Секки. В 1866-м году он разделил все небесные светила на три группы, в зависимости от температуры поверхности звезды и соответствующего ей цвета. За последующие 11 лет астроном добавил еще два класса.
Вега из созвездия Лиры
Гарвардская спектральная классификация
Разработана в 1890 — 1924 годах учеными обсерватории Гарварда, и постепенно заменившая классификацию Анджело Секки, став основной и использующейся сегодня. Гарвардская классификация строится на относительной интенсивности линий поглощения и фраунгофервских линий, а также на цвете звезд.
Таблица спектральных классов звезд
Каждый из перечисленных классов включает 10 подклассов от 0 до 9, где 0 – это наиболее горячие звезды, а 9 – наиболее холодные. Лишь класс O делится иначе — от 4 до 9,5.
Йеркская классификация с учётом светимости
В 1943 г. в одноименной обсерватории была разработана еще Йеркская классификация, которая учитывает светимость звезд, что отражается в ее названии. Иначе ее называют МКК — по первым буквам фамилий ученых: В.В. Морган, П.К. Кинан и Э. Келлман. Дело в том, что Гарвардская классификация не принимает в расчет такую важную характеристику небесного светила как светимость. Позже Йеркская классификация была отображена Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США) в виде диаграммы с зависимостью спектрального класса от светимости. Таким образом, мы можем визуально наблюдать закономерность в свойствах звезд разного рода.
Материалы по теме
Диаграмма Герцшпрунга-Рассела
Звезды разных классов
Данная диаграмма позволяет также определить светимость звезды, при наличии ее спектра. Исходя из вышеописанных классификаций сегодня Солнце относят к классу G2V.
Существует множество дополнительных спектральных классов для более экзотических объектов. Например, Q – для молодых звезд, P – для планетарных туманностей, D – для белых карликов, W для самых горячих светил, температура которых превышает температуру звезд класса O, и может достигать около 100 000 К.
Характеристические особенности в классе
Очевидно, каждая звезда хоть и относится к определенному классу, все же остается индивидуальным и неповторимым объектом, как и человек. Потому существует ряд дополнительных буквенных обозначений, которые указывают на особенности светила. Тип звезды обозначается буквой, которая стоит перед спектральным классом: карлик (d от dwarf), сверхгигант (с), гигант (g), субгигант (sg), субкарлик (sd), белый карлик (w или wd).
Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик
Многие свойства звезды выражаются особенностями его спектра, для них существует множество буквенных обозначений, которые располагаются после спектрального класса, например сильные линии металлов буквой m, а резкие и узкие линии – s.
Используя вышеописанные спектральные классы, астрономы могут кратко изложить основные свойства и особенности космического объекта. Так ярчайшая точка ночного небосвода – Сириус АB представляет собой систему из двух звезд и имеет спектральный класс A1Vm/DA2. Это означает, что видимая звезда (Сириус А) относится к классу А с подклассом температуры 1, является карликом главной последовательности и имеет сильные линии металлов, о чем говорят буквы «V» и «m». Ее компаньон Сириус Б – желтый карлик с подклассом 2, имеющий в атмосфере водород, и не имеющий гелий, линии которых соответственно присутствуют/отсутствуют в спектре, на что указывает буква А.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Спектры, цвет и температура звёзд
Всю информацию о звёздах можно получить только на основе исследования приходящего от них излучения. Наблюдая звёзды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости дает изучение звездных спектров. Для большинства звёзд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются тёмные линии.
Температуру наружных слоев звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14), а также по интенсивности разных спектральных линий. Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Ви́на:
где λmах — длина волны (в см), на которую приходится максимум излучения, а Т — абсолютная температура.
Как оказалось, эта температура для различных типов звёзд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звёзд, что отражается в их спектрах. По ряду характерных особенностей спектров звезды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: О, В, A, F, G, К, М.
У наиболее холодных (красных) звёзд класса М в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звёзд, температура которых около 3000 К, являются Антарес и Бетельгейзе.
В спектрах жёлтых звёзд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.
Для спектров белых звёзд класса А, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звёзд появляются линии нейтрального и ионизованного гелия.
Различия звёздных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звёзд. Изучение спектров показывает, что преобладают в составе звёздных атмосфер (и звёзд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.
Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звёзд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью v, то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения υ и скорости света с выражается следующей формулой:
где λ0 — длина волны спектральной линии для неподвижного источника, а λ — длина волны в спектре движущегося источника.
Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.
Урок 18
Спектр излучения — это электромагнитное излучение всякого нагретого тела, наблюдаемое с помощью спектральных приборов.
Спектр поглощения — спектр, получающий при прохождении и поглощении электромагнитного излучения в веществе.
Спектральный анализ — метод исследования химического состава и физических характеристик небесных объектов, основанный на изучении их спектров.
Спектрограмма — фотографический снимок спектра небесного тела или график зависимости интенсивного изучения в зависимости от длины волны или частоты.
Непрерывный (сплошной) спектр испускают все твёрдые тела, расплавленные металлы, светящиеся газы и пары, находящиеся под очень большим давлением.
Линейчатый спектр образуется при нахождении газа в атомарном состоянии и когда его давление мало отличается от нормального.
Спектральными линиями называют узкие участки спектра, на которых интенсивность излучения усилена либо ослаблена.
Непрерывный спектр образует фотосфера, спектр поглощения — атмосфера.
Закон смещения Вина записывается в виде формулы:
где буквами обозначены: λ — длина волны, которой соответствует максимум в распространении энергии; T — абсолютная температура; b — постоянная Вина.
Закон Вина можно применять не только для оптического диапазона электромагнитного излучения, но и для любого другого диапазона волн.
Мощность излучения абсолютно чёрного тела определяется законом Стефана—Больцмана, который записывается следующим образом:
где буквами обозначены: ε — мощность излучения единицы поверхности нагретого тела; σ — постоянная Стефана—Больцмана; T — абсолютная температура.
При движении источника излучения относительно относительно наблюдателя возникает эффект Доплера. Сущность эффекта состоит в следующем: если источник излучения движется по лучу зрения наблюдателя со скоростью v (лучевая скорость), то вместо длины волны λ(0) (её излучает источник) наблюдатель фиксирует длину волны λ.
Лучевой скоростью называют проекцию пространственной скорости небесного объекта на луч зрения (на направление от объекта к наблюдателю).
Лучевая скорость связана со сдвигом спектральных линий формулой
где λ0 — длина волны, которую излучает источник; Δλ — разность между λ и λ0; υr — лучевая скорость; c — скорость света.
Из чего состоят звезды (спектры звезд)?
Как мы узнали из чего состоят звезды
Спектральный анализ звезд и других космических объектов
Луч света, проходящий через стеклянную призму преломляется, и после выхода из призмы идет уже по другому направлению. При этом лучи разного цвета преломляются различно. Из семи цветов радуги сильнее всего отклоняются световые лучи фиолетового цвета, в меньшей степени — синего, еще меньше — голубые лучи, затем — зеленые, желтые, оранжевые, меньше всего отклоняются красные лучи.
Любое светящееся тело испускает в пространство лучи разного цвета. Но так как они накладываются один на другой, то для человеческого глаза все они сливаются в один цвет.
Например, Солнце испускает лучи белого цвета, но если мы пропустим такой луч через призму и тем самым разложим его на составные части, то окажется, что белый цвет луча сложный: он состоит из смеси всех цветов радуги. Смешав эти цвета вместе, мы опять получим белый цвет.
В астрономии, для изучения того как устроены звезды, активно используются так называемые спектры звезд. Спектром называется луч какого-нибудь источника света, пропущенный через призму и разложенный ею на свои составные части. Немного отвлекшись, можно сказать, что обычная земная радуга есть ничто иное, как спектр Солнца, ведь своим появлением она обязана преломлению солнечного света в капельках воды, действующих в данном случае подобно призме.
Для того чтобы получить спектр в более чистом виде, ученые пользуются не простой стеклянной призмой, а специальным прибором — спектроскопом.
Принцип работы спектроскопа: мы знаем как «светится» совершенно «чистый» (идеальный) поток света, также мы знаем какие «помехи» вносят различные примеси. Сравнивая спектры, мы можем видеть температуру и химический состав тела, испустившего анализируемый световой поток
Если мы осветим щель спектроскопа светящимися парами какого-нибудь вещества, то увидим, что спектр этого вещества состоит из нескольких цветных линий на темном фоне. При этом цвета линий для каждого вещества всегда одни и те же – независимо от того, говорим мы о Земле или Альфа Центавра. Кислород или водород всегда остаются самим собой. Соответственно, зная как выглядит каждый из привычных нам химических элементов на спектрографе, мы можем очень точно определить их наличие в составе далеких звезд, просто сравнив спектр их излучения с нашим земным “эталоном”.
Располагая списком спектров разных веществ, мы сможем каждый раз точно определить, с каким же веществом мы имеем дело. Достаточно малейшей примеси какого-либо вещества в металлическом сплаве или в горной породе, и это вещество выдаст свое присутствие, заявит о себе цветным сигналом в спектре.
Смесь паров нескольких химических элементов, не образующих химического соединения, дает наложение их спектров один на другой. По таким спектрам мы и распознаем химический состав смеси. Если светятся не разложенные на атомы молекулы сложного химического вещества, то есть химического соединения, то их спектр состоит из широких ярких цветных полос на темном фоне. Для всякого химического соединения эти полосы тоже всегда определенные, и мы их умеем распознавать.
Вас может заинтересовать
Так выглядит спектр нашей «родной» звезды – Солнца
Спектр в виде полоски, состоящей из всех цветов радуги, дают твердые, жидкие и раскаленные вещества, например нить электрической лампочки, расплавленный чугун и раскаленный прут железа. Такой же спектр дают огромные массы сжатого газа, из которого состоит Солнце.
Вскоре после того как в спектре Солнца были обнаружены темные линии, некоторые из ученых обратили внимание на такое явление: в желтой части этого спектра есть темная линия, которая имеет ту же длину волны, что и яркая желтая линия в спектре разреженных светящихся паров натрия. Что это означает?
Для выяснения вопроса ученые провели опыт.
Был взят раскаленный кусок извести, дающий непрерывный спектр без всяких темных линий. Затем перед этим куском извести было помещено пламя газовой горелки, содержащей пары натрия. Тогда в непрерывном спектре, полученном от раскаленной извести, свет которой прошел через пламя горелки, появилась в желтой части темная линия. Стало ясно, что сравнительно более холодные пары натрия поглощают или задерживают лучи той же самой длины волны, какую эти пары сами по себе способны испускать.
Опытным путем, было установлено, что светящиеся газы и пары поглощают свет тех самых длин волн, которые они сами способны испускать, будучи достаточно нагретыми.
Так вслед за первой тайной — причиной окрашивания пламени в тот или другой цвет парами определенных веществ — была раскрыта и вторая тайна: причина появления темных линий в солнечном спектре.
Спектральный анализ в исследовании Солнца
Очевидно, Солнце — раскаленное тело, испускающее белый свет, спектр которого непрерывен — окружено слоем более холодных, но все же раскаленных газов. Эти газы и образуют вокруг Солнца его оболочку, или атмосферу. А в этой атмосфере содержатся пары натрия, которые и поглощают из лучей солнечного спектра лучи с гой самой длиной волны, которую натрий способен испускать. Поглощая, задерживая эти лучи, пары натрия создают в свете Солнца, прошедшем сквозь его атмосферу и дошедшем до нас, недостаток желтых лучей с этой длиной волны. Вот почему в соответствующем месте желтой части спектра Солнца мы находим темную линию.
Так, не побывав никогда на Солнце, находящемся от нас на расстоянии 150 миллионов километров, мы можем утверждать, что в составе солнечной атмосферы есть натрий.
Таким же образом, определив длины волн других темных линий, видимых в спектре Солнца, и сравнив их с длинами волн ярких линий, испускаемых парами различных веществ и наблюдаемых в лаборатории, мы точно определим, какие еще другие химические элементы входят в состав солнечной атмосферы.
Так было выяснено, что в солнечной атмосфере присутствуют те же химические элементы, что и на земле: водород, азот, натрий, магний, алюминий, кальций, железо и даже золото.
Спектры звезд, свет которых тоже можно направить в спектроскоп, похожи на спектр Солнца. И по темным линиям их мы можем определить химический состав звездных атмосфер так же, как мы определили химический состав солнечной атмосферы по темным линиям спектра Солнца.
Таким путем ученые установили, что даже количественно химический состав атмосфер Солнца и звезд очень похож на количественный химический состав земной коры.
Самый легкий из всех газов, из всех химических элементов — водород — составляет на Солнце 42% по весу. На долю кислорода приходится 23% по весу. Столько же приходится на долю всех металлов, вместе взятых. Углерод, азот и сера составляют вместе 6% от состава солнечной атмосферы. И только 6% приходится на все остальные элементы, вместе взятые.
Надо учесть, что атомы водорода легче всех остальных. Поэтому их число далеко превосходит число всех других атомов. Из каждой сотни атомов в атмосфере Солнца 90 атомов принадлежит водороду.
Средняя плотность Солнца на 40% больше плотности воды и все-таки оно ведет себя во всех отношениях как идеальный газ. Плотность на внешнем видимом краю Солнца составляет приблизительно одну миллионную от плотности воды, в то время как плотность вблизи его центра примерно в 50 раз выше плотности воды.
Спектральный анализ и температура звезд
Спектры звезд — это их паспорта с описанием всех звездных примет, всех их физических свойств. Надо лишь уметь в этих паспортах разобраться. Многое еще мы не умеем из них извлечь в будущем, но уже и сейчас мы читаем в них немало.
По спектру звезды мы можем узнать ее светимость, а следовательно, и расстояние до нее, температуру, размер, химический состав ее атмосферы, скорость движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести.
Спектральный анализ дает ученым также возможность определять скорость движения светил к нам или от нас даже в тех случаях, когда эту скорость и вообще движение светил никакими другими способами обнаружить невозможно.
Если какой-нибудь источник колебаний, распространяющихся в виде волн, движется по отношению к нам, то, понятно, длина волны колебаний, воспринимаемая нами, меняется. Чем быстрее приближается к нам источник колебания, тем короче делается длина его волны. И наоборот, чем быстрее источник колебаний удаляется, тем длина волны по сравнению с той длиной волны, которую воспринял бы наблюдатель, неподвижный по отношению к источнику, увеличивается.
То же самое происходит и со светом, когда источник света — небесное светило — движется по отношению к нам. Когда светило приближается к нам, длина волны всех линий в его спектре становится короче. А когда источник света удаляется, то длина волны тех же самых линий становится больше. В соответствии с этим в первом случае линии спектра сдвигаются в сторону фиолетового конца спектра (то есть в сторону коротких длин волн), а во втором случае они смещаются к красному концу спектра.
Точно так же путем изучения распределения яркости в спектре звезд мы узнали их температуру.
Звезды красного цвета — самые «холодные». Они нагреты до 3 тысяч градусов, что примерно равняется температуре в пламени электрической дуги.
Температура желтых звезд составляет 6 тысяч градусов. Такова же температура поверхности нашего Солнца, которое тоже относится к разряду желтых звезд. Температуру в 6 тысяч градусов наша техника пока не может искусственно создать на Земле.
Белые звезды еще более горячие. Температура их составляет от 10 до 20 тысяч градусов.
Наконец, самыми горячими среди известных нам звезд являются голубые звезды, раскаленные до 30, а в некоторых случаях даже до 100 тысяч градусов.
Классификация звезд по цвету и температуре
В недрах звезд температура должна быть значительно выше. Определить ее точно мы не можем, потому что свет из глубины звезд до нас не доходит: свет звезд, наблюдаемый нами, излучается их поверхностью. Можно говорить лишь о научных расчетах, о том, что температура внутри Солнца и звезд составляет примерно 20 миллионов градусов.
Несмотря на раскаленность звезд, нас достигает лишь ничтожная доля испускаемого ими тепла — так далеки от нас звезды. Больше всего тепла доходит к нам от яркой красной звезды Бетельгейзе в созвездии Ориона: меньше Одной десятой от миллиардной доли малой калории 1 на квадратный сантиметр за минуту.
Иными словами, собирая с помощью 2,5 – метрового вогнутого зеркала это тепло, в течение года мы бы могли нагреть им наперсток воды всего лишь на два градуса!