Чем объясняется грануляция на солнце
Солнечные гранулы
На фото — не куча золотых слитков неправильной формы и не карамельный попкорн, а самое детальное на данный момент изображение фотосферы Солнца.
Снимок был сделан 10 декабря 2019 года при помощи солнечного телескопа Daniel K. Inouye Solar Telescope (DKIST) в обсерватории Халеакала (Haleakala Observatory) на острове Мауи (Гавайи, США). Телескоп ещё окончательно не введен в эксплуатацию, а уже не просто фотографирует Солнце, но делает это так, как раньше не удавалось ни одному инструменту. Главная «фишка» фотографии — разрешение: изображение покрывает область 36 500 на 36 500 километров (для сравнения: радиус Земли в среднем равен 6370 км), и мы впервые можем разглядеть детали размером около 30 километров на поверхности Солнца (по размеру это примерно как остров Манхэттен). Яркие образования на изображении, однако, побольше: поперечник одной такой «ячейки» составляет 700–1000 км, а площадь — примерно 700 тысяч квадратных километров (как Техас).
Эти «ячейки» называют гранулами (см. грануляция). Поверхность Солнца постоянно словно «кипит». Происходит конвекция: потоки горячей плазмы (светлые участки в центральной части гранул) поднимаются из более глубоких слоев солнечной атмосферы, а затем, охлаждаясь за счет потери энергии, «растекаются» и опускаются (темные области по краям гранул). Гранулы возникают хаотично и постоянно, в среднем одна такая гранула живет около восьми минут.
«Кипящая» плазма Солнца: запись конвекции в верхних слоях солнечной атмосферы, ускоренная в 45 раз. Показана область размером 19 000×10 700 км
Раньше рассмотреть процесс грануляции с Земли было проблематично из-за относительно низкого разрешения наземных солнечных телескопов. С появлением DKIST ситуация изменилась. Беспрецедентного разрешения позволяет добиться четырехметровое зеркало — самое большое зеркало наземного солнечного телескопа в мире — вкупе с отличным астроклиматом на вершине гавайского вулкана Халеакала (высота около 3 км над уровнем моря).
Обсерватория Халеакала стоит выше облаков — ничто не мешает ей наблюдать Солнце. Фото с сайта nso.edu
Зеркало телескопа изготовлено из специальной стеклокерамики толщиной 7,6 см, она сохраняет свою форму даже при сильных перепадах температуры. Стеклокерамика покрыта тонким слоем алюминия, который обеспечивает поверхность с высокой отражающей способностью, необходимую для оптических и инфракрасных волн, на которых работает телескоп. Изображение фотосферы Солнца получено на длине волны 789 нм, это инфракрасное излучение.
Слева — схема DKIST в разрезе. 1 — система задержки тепла: металлический «пончик», охлаждаемый жидкостью, пропускает только узкий луч света, задерживая более 95% тепла. 2 — апертура, через которую свет попадает на телескоп, ее размер тщательно регулируется. 3 — главное зеркало телескопа, диаметром четыре метра. 4 — оптические и механические системы телескопа, которые передают свет от апертуры на научные приборы. 5 — здание с пунктом управления, лабораториями и прочими нужными помещениями. 6 — пункт управления телескопом. 7 — 150-тонная платформа, которая вращается, чтобы нейтрализовать вращение Солнца в небе. Справа — апертура телескопа открыта, солнечный свет освещает четырехметровое зеркало. Проводки на задней поверхности зеркала питают приводы, которые поддерживают зеркало в правильном положении. Изображения с сайта nso.edu
С одной стороны, Солнце — гигантский термоядерный реактор, расположенный на крошечном в астрономических масштабах расстоянии примерно в 150 млн км от нас, что позволяет рассмотреть его во всех деталях, а с другой — вполне заурядная звезда. Изучая ее, можно понять процессы, происходящие в звездах. Согласно распространенной среди астрономов шутке, наблюдать Солнце в телескоп можно дважды в жизни: сперва одним глазом, потом оставшимся. Нынешние технологии позволяют сделать наблюдения ближайшей к нам звезды безопасными и информативными.
Сейчас солнечная астрономия переживает всплеск. DKIST только-только достроен, а в полноценную эксплуатацию его планируется ввести в июле 2020 года. Но, учитывая его текущие успехи, уже можно надеяться на новые открытия.
Солнце изучают, конечно, не только с помощью наземных телескопов, но и благодаря аппаратам на околоземной орбите. С 1995 года изучением Солнца занимается орбитальная обсерватория SOHO; в 2010 была запущена обсерватория солнечной динамики (Solar Dynamic Observatory, SDO). Научные приборы этих миссий работают в разных диапазонах спектра: в видимом, инфракрасном и в ультрафиолетовом. Им не мешает земная атмосфера, но расстояние от них до Солнца так же велико, как и от наземных обсерваторий, а разрешение оставляет желать лучшего (к примеру, установленный на SDO инструмент AIA обладает максимальным разрешением в 1 угловую секунду, — наземный DKIST превосходит его по этому показателю примерно в 20 раз: его разрешение 0,05 угловых секунд), поэтому было решено отправить исследовательские миссии непосредственно к звезде. Прямо сейчас к Солнцу направляется солнечный зонд «Паркер» (Parker Solar Probe; см. картинку дня Солнечный зонд «Паркер»), запущенный 12 августа 2018 года, а на 10 февраля 2020 года назначен старт европейской миссии Solar Orbiter, которая будет укомплектована научными инструментами для изучения Солнца в еще более широкой области спектра — от рентгеновского излучения до радиоволн. В дальнейшем планируется комбинировать данные DKIST, «Паркера» и Solar Orbiter — таким образом ученые смогут получить более детальную и точную картину.
Эти космические аппараты позволяют не только получать фундаментальные научные знания (и красивые картинки), но и, например, предсказывать так называемую космическую погоду — солнечную активность, которая может влиять и на повседневную жизнь. Потоки заряженных частиц высоких энергий, которые рождаются во время всплесков этой активности, долетая до Земли, вызывают возмущения в магнитном поле — полярные сияния в высоких широтах, сбои в работе навигационных спутниковых систем и даже перебои в работе наземной электросети (в случае особо яростного шторма).
Солнечная активность
Потоки плазмы, обусловленные солнечными вспышками и корональными выбросами, через сутки-двое достигают окрестностей Земли. Вещество, выбрасываемое из солнечной короны, представляет собой плазму с магнитным полем (так называемые магнитные облака). Взаимодействие такого облака с магнитосферой Земли вызывает аномальное возмущение — магнитную бурю. Магнитные бури вызывают возмущение ионосферы, что приводит к нарушениям в прохождении радиосигналов, в частности, от навигационных спутников. Изменение геомагнитного поля приводит к появлению индуцированных токов в линиях электропередачи и трубопроводах.
Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определенной, хотя и не очень строгой периодичностью — в среднем этот период составляет примерно 11,2 года (рис. 5.11). Отмечается определённая связь процессов жизнедеятельности растений и животных, состояния здоровья людей и погодно-климатических аномалий с уровнем солнечной активности, однако механизм воздействия этих процессов на земные явления ещё не вполне ясен.
В настоящее время для изучения Солнца используются все средства космической техники. Метеоспутники на геостационарной орбите уже более 30 лет ведут общий мониторинг солнечной активности, измеряя потоки рентгеновского излучения и солнечных космических лучей. Для мониторинга корональных выбросов массы используется пара КА СТЕРЕО, которые находятся в разных точках орбиты Земли и помогают взглянуть на магнитное облако, летящее к Земле, «со стороны». КА СОХО позволяет отслеживать появление пятен, вспышек и корональных выбросов массы и по их местоположению и динамике давать трёхдневный прогноз, представляют ли они опасность для Земли.
1. Из каких химических элементов состоит Солнце и каково их соотношение? 2. Каков источник энергии излучения Солнца? Какие изменения с его веществом происходят при этом? 3. Какой слой Солнца является основным источником видимого излучения? 4. Каково внутреннее строение Солнца? Назовите основные слои его атмосферы. 5. В каких пределах изменяется температура на Солнце от его центра до фотосферы? 6. Какими способами осуществляется перенос энергии из недр Солнца наружу? 7. Чем объясняется наблюдаемая на Солнце грануляция? 8. Какие проявления солнечной активности наблюдаются в различных слоях атмосферы Солнца? С чем связана основная причина этих явлений? 9. Чем объясняется понижение температуры в области солнечных пятен? 10. Какие явления на Земле связаны с солнечной активностью?
1. Можно ли заметить невооружённым глазом (через тёмный фильтр) на Солнце пятно размером с Землю, если глаз различает объекты, видимые размеры которых 2—3′? 2. Какова вторая космическая скорость на уровне фотосферы Солнца? 3. Какая мощность излучения приходится в среднем на 1 кг солнечного вещества?
1. Нельзя, так как его угловые размеры всего 18″.
ГРАНУЛЯЦИЯ Солнце
Смотреть что такое «ГРАНУЛЯЦИЯ Солнце» в других словарях:
Солнце — (справа разрез). СОЛНЦЕ, типичная звезда Галактики, центральное тело Солнечной системы. Масса MС = 2´1030 кг, радиус RS = 696 тыс. км, светимость (мощность излучения) L =3,86´1023 кВт, эффективная температура поверхности (фотосферы) около 6000 К … Иллюстрированный энциклопедический словарь
СОЛНЦЕ — СОЛНЦЕ, типичная звезда Галактики, центральное тело Солнечной системы. Масса MС = 2?1030 кг, радиус RS = 696 тыс. км, светимость (мощность излучения) L =3,86?1023 кВт, эффективная температура поверхности (фотосферы) около 6000 К. Период вращения… … Современная энциклопедия
СОЛНЦЕ. — СОЛНЦЕ. Содержание: 1. Введение 2. Внутреннее строение 3. Атмосфера 4. Магнитные поля 5. Излучение 1. Введение С. газовый, точнее плазменный, шар. Радиус С. см, т. е. в 109 раз больше экваториального радиуса Земли; масса С. г, т. е. в 333000 раз… … Физическая энциклопедия
Солнце — 1. Движение и размеры С. 2. Свет и теплота С. 3. Методы наблюдения С. 4. Фотосфера, грануляция, пятна и факелы. 5. Вращение С. 6. Периодичность пятен. 7. Связь явлений на С. с земным магнетизмом. 8. Хромосфера и выступы. 9. Корона С. 10. Гипотеза … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
СОЛНЦЕ — звезда, вокруг которой обращаются Земля и другие планеты Солнечной системы. Солнце играет исключительную роль для человечества как первоисточник большинства видов энергии. Жизнь в известной нам форме была бы невозможна, если бы Солнце светило… … Энциклопедия Кольера
грануляция — и; ж. 1. к Гранулировать. 2. Астрон. Видимая зернистость поверхностного слоя Солнца. 3. Мед. Постепенное зарастание раны, язвы и т.п. новой соединительной тканью, имеющей зернистую поверхность; сама такая ткань. ◁ Грануляционный, ая, ое. * * *… … Энциклопедический словарь
Солнце — центральное тело Солнечной системы (См. Солнечная система), представляет собой раскалённый плазменный шар; С. ближайшая к Земле Звезда. Масса С. 1,990 1030 кг (в 332 958 раз больше массы Земли). В С. сосредоточено 99,866% массы Солнечной… … Большая советская энциклопедия
Грануляция — в астрономии, зернистое строение фотосферы Солнца (См. Солнце) … Большая советская энциклопедия
ГРАНУЛЯЦИЯ — на Солнце, видимая в телескоп зернистая структура солнечной фотосферы. Представляет собой совокупность большого числа тесно расположенных гранул ярких изолированных образований диам. 500 1000 км, покрывающих весь диск Солнца. Отд. гранула… … Естествознание. Энциклопедический словарь
Проверочная работа по астрономии на тему «Строение атмосферы Солнца»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Учитель: Елакова Галина Владимировна.
Место работы: Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №7» г Канаш Чувашской Республики
Проверочная работа по теме «Строение атмосферы Солнца».
Проверка и оценка знаний – обязательное условие результативности учебного процесса. Тестовый тематический контроль может проводиться письменно или по группам с разным уровнем подготовки. Подобная проверка достаточно объективна, экономна по времени, обеспечивает индивидуальный подход. Кроме того, учащиеся могут использовать тесты для подготовки к зачетам и ВПР. Использование предлагаемой работы не исключает применения и других форм и методов проверки знаний и умений учащихся, таких как устный опрос, подготовка рефератов, эссе, проектных работ, презентаций и т.д.
1. Что является причиной грануляции?
А. Газы, поднимающиеся из горячих внутренних областей Солнца.
Б. Очень сильные магнитные поля в районах солнечных пятен.
В. Потоки электрически заряженных частиц высокой энергии.
2. При каких процессах на Солнце возникают корпускулярные потоки и космические лучи?
А. При солнечном ветре.
Б. При конвекционном движении.
В. При хромосферных вспышках.
3. Какой слой Солнца является основным источником видимого излучения?
А. … это внешняя область Солнца, которую мы видим; это горячий, разреженный газовый слой, разогретый примерно 6000 К, из которого в космос излучается энергия.
Б. … это самая внутренняя часть солнечной атмосферы, простирается на несколько тысяч километров и становится видимым с Земли только во время полного солнечного затмения, когда светит красным светом благодаря наличию там водорода.
В. … это внешняя атмосфера Солнца, расположенная над хромосферой, она содержит разреженный горячий газ, который простирается на миллионы километров от Солнца и становится прекрасно видимой во время полного солнечного затмения.
5. Какими способами осуществляется перенос энергии из недр Солнца наружу?
В. Лучеиспусканием и конвекцией.
6. Что является наиболее вероятной причиной сильных выбросов материи, происходящих на Солнце?
А. Очень сильные магнитные поля в районах солнечных пятен.
Б. Массы яркого газа, как пламя, поднимающиеся над сотни тысяч километров над лимбом.
7. При каких процессах на Солнце возникают корпускулярные потоки и космические лучи? Чем они отличаются друг от друга?
А. При конвекционном движении. Различаются энергией, температурой и давлением.
Б. При вспышках (взрывных, нестационарных процессах). Различаются температурами и давлением, которые приобрели частицы.
В. При вспышках (взрывных, нестационарных процессах). Различаются скоростями, которые приобрели частицы.
8. Какова температура звезды по сравнению с температурой Солнца (6000 К), если ее размеры такие же как у Солнца, а светимость больше солнечной в 16 раз?
9. Во сколько раз отличаются светимости двух звезд одинакового цвета, если радиус одной из них больше, чем другой, в 25 раз?
10. Каковы по сравнению с Землей размеры солнечного пятна, которые можно увидеть на поверхности Солнца невооруженным глазом, если разрешающая способность глаза 2′? (Радиус Солнца 7·10 5 км, радиус Земли 6400 км, угловой радиус Солнца 15′.)
А. Примерно в 5 раз больше Земли.
Б. Примерно в 10 раз больше Земли.
В. Примерно в 8 раз больше Земли.
1. Чем объясняется наблюдаемое на Солнце грануляция?
А. Сильным магнитным полем в окрестностях солнечных пятен.
В. Конвекционными движениями.
2. Чем объясняется понижение температуры в области солнечных пятен?
А. Сильным магнитным полем в районах солнечных пятен.
Б. Конвекционными движениями.
В. Подавлением конвекции магнитным полем.
3. Какие проявления солнечной активности наблюдаются в различных слоях атмосферы Солнца?
А. В фотосфере пятна, в короне факелы и протуберанцы, вспышки захватывают и хромосферу, и корону.
Б. В фотосфере факелы, в короне пятна и протуберанцы, вспышки захватывают и хромосферу, и корону.
В. В фотосфере пятна и факелы, в короне протуберанцы, вспышки захватывают и хромосферу, и корону.
А. … это внешняя область Солнца, которую мы видим; это горячий, разреженный газовый слой, разогретый примерно 6000 К, из которого в космос излучается энергия.
Б. … это самая внутренняя часть солнечной атмосферы, простирается на несколько тысяч километров и становится видимым с Земли только во время полного солнечного затмения, когда светит красным светом благодаря наличию там водорода.
В. … это внешняя атмосфера Солнца, расположенная над хромосферой, она содержит разреженный горячий газ, который простирается на миллионы километров от Солнца и становится прекрасно видимой во время полного солнечного затмения.
5. В каких точках горизонта восходит Солнце в дни весеннего равноденствия, летнего солнцестояния, осеннего равноденствия, зимнего солнцестояния?
А. а) в дни весеннего и осеннего равноденствий Солнце восходит в точке востока.
б) на широте Москвы (56 o ) в день летнего солнцестояния Солнце восходит на северо-востоке, а в день зимнего солнцестояния – на юго-востоке.
Б. а) в дни весеннего и осеннего равноденствий Солнце восходит в точке запада.
б) на широте Москвы (56 o ) в день летнего солнцестояния Солнце восходит на северо-востоке, а в день зимнего солнцестояния – на юго-востоке.
В. а) в дни весеннего и осеннего равноденствий Солнце восходит в точке востока.
б) на широте Москвы (56 o ) в день летнего солнцестояния Солнце восходит на северо- западе, а в день зимнего солнцестояния – на юго-западе.
6. Какие явления характерны для Земли и Солнца в период высокой солнечной активности?
А. а) для Солнца: большое количество солнечных пятен (в хромосфере), вспышек
(в фотосфере) и протуберанцев (в короне). Усиленный солнечный ветер.
б) для Земли: повышенное количество и интенсивность полярных сияний и возмущений геомагнитного поля («магнитных бурь»).
Б. а) для Солнца: большое количество солнечных пятен (в фотосфере), вспышек
(в хромосфере) и протуберанцев (в короне). Усиленный солнечный ветер.
б) для Земли: повышенное количество и интенсивность полярных сияний и возмущений геомагнитного поля («магнитных бурь»).
В. а) для Солнца: большое количество солнечных пятен (в фотосфере), вспышек
(в фотосфере) и протуберанцев (в хромосфере).
б) для Земли: повышенное количество и интенсивность полярных сияний и возмущений геомагнитного поля («магнитных бурь»).
А. Да, так к как по своим физическим характеристикам очень похожая на Солнце и ближайшая к Солнцу звезда, а все остальные яркие звезды находятся в несколько раз дальше и от Солнца, и от Cen.
Б. Нет, так как у звезд физические характеристики одинаковы.
8. Какова средняя плотность красного сверхгиганта, если его диаметр в 300 раз больше солнечного, а масса в 30 раз больше, чем масса Солнца?
А. Примерно 1,5 ·10 3 кг/м 3
9. Во сколько раз красный гигант больше красного карлика, если их светимость отличается в 10 8 раз?
А. Красный гигант больше красного карлика в 10 6 раз.
Б. Красный гигант больше красного карлика в 10 5 раз.
В. Красный гигант больше красного карлика в 10 4 раз.
10. Звезда имеет одинаковую с Солнцем температуру, но ее диаметр в 2 раза меньше солнечного. На каком расстоянии от этой звезды должна находиться планета, чтобы получать от нее столько же энергии, сколько Земля получает от Солнца?
Задание №8: Так как размеры звезды и Солнца одинаковы, различие светимостей вызвано только различием температур: L / L солнца = T 4 / T 4 солнца ; Т = 12000 К
Задание №9: Так как цвет звезд одинаков, то одинаковы их температуры. Поэтому
Задание №10: Линейные размеры пятна, имеющий угловой диаметр 2′, можно определить зная линейные размеры Солнца и его угловой радиус: d / R = ρ1/ ρ2 ;
Где d =7·10 5 км · 2’/ 15′ = 10 5 км, т.е. пятно примерно в 8 раз больше Земли.
Задание №10: Светимость звезды в 4 раза меньше светимости Солнца. Следовательно, и расстояние от планеты до звезды должно быть в 4 раза меньше.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Солнечная активность
Потоки плазмы, обусловленные солнечными вспышками и корональными выбросами, через сутки-двое достигают окрестностей Земли. Вещество, выбрасываемое из солнечной короны, представляет собой плазму с магнитным полем (так называемые магнитные облака). Взаимодействие такого облака с магнитосферой Земли вызывает аномальное возмущение — магнитную бурю. Магнитные бури вызывают возмущение ионосферы, что приводит к нарушениям в прохождении радиосигналов, в частности, от навигационных спутников. Изменение геомагнитного поля приводит к появлению индуцированных токов в линиях электропередачи и трубопроводах.
Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определенной, хотя и не очень строгой периодичностью — в среднем этот период составляет примерно 11,2 года (рис. 5.11). Отмечается определённая связь процессов жизнедеятельности растений и животных, состояния здоровья людей и погодно-климатических аномалий с уровнем солнечной активности, однако механизм воздействия этих процессов на земные явления ещё не вполне ясен.
В настоящее время для изучения Солнца используются все средства космической техники. Метеоспутники на геостационарной орбите уже более 30 лет ведут общий мониторинг солнечной активности, измеряя потоки рентгеновского излучения и солнечных космических лучей. Для мониторинга корональных выбросов массы используется пара КА СТЕРЕО, которые находятся в разных точках орбиты Земли и помогают взглянуть на магнитное облако, летящее к Земле, «со стороны». КА СОХО позволяет отслеживать появление пятен, вспышек и корональных выбросов массы и по их местоположению и динамике давать трёхдневный прогноз, представляют ли они опасность для Земли.
1. Из каких химических элементов состоит Солнце и каково их соотношение? 2. Каков источник энергии излучения Солнца? Какие изменения с его веществом происходят при этом? 3. Какой слой Солнца является основным источником видимого излучения? 4. Каково внутреннее строение Солнца? Назовите основные слои его атмосферы. 5. В каких пределах изменяется температура на Солнце от его центра до фотосферы? 6. Какими способами осуществляется перенос энергии из недр Солнца наружу? 7. Чем объясняется наблюдаемая на Солнце грануляция? 8. Какие проявления солнечной активности наблюдаются в различных слоях атмосферы Солнца? С чем связана основная причина этих явлений? 9. Чем объясняется понижение температуры в области солнечных пятен? 10. Какие явления на Земле связаны с солнечной активностью?
1. Можно ли заметить невооружённым глазом (через тёмный фильтр) на Солнце пятно размером с Землю, если глаз различает объекты, видимые размеры которых 2—3′? 2. Какова вторая космическая скорость на уровне фотосферы Солнца? 3. Какая мощность излучения приходится в среднем на 1 кг солнечного вещества?
1. Нельзя, так как его угловые размеры всего 18″.