Чем обусловлены погрешности измерений
Погрешности измерений и их классификация
Полученное из опыта значение измеряемой величины может отличаться от ее действительного (истинного) значения.
Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой величины.
Это может быть обусловлено конструктивными недостатками прибора, несовершенством технологии его изготовления, а также влиянием различных внешних факторов.
Таким образом, погрешности классифицируют:
По источнику возникновения (метод, инструмент, субъект)
-Методические (зависят от метода измерения и способа включения приборов в электрическую цепь)
-Инструментальные (зависят от средства измерения)
-Субъективные (зависят от измерителя)
По условиям проведения измерений (температура, давление, влажность)
-Дополнительные (условия отличны от нормальных)
По характеру проявления (систематические, случайные, промахи)
Систематические – погрешности, остающиеся постоянными или закономерно изменяющимися при повторных измерениях тем же способом и средствами. Т.е. они заранее известны и их легко исключить.
Случайные – погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Обычно выявляются в результате многократных измерений (не менее 10).
Промах – грубая ошибка, обусловленная неправильным отсчетом или расчетом, небрежностью измеряющего, поломки прибора, неправильно собранной схемы, невнимательности и т.д. Такие данные необходимо исключать.
По временному поведению измеряемой величины (статическая, динамическая)
Статическая – когда измеряемая величина не меняется за время измерения
Динамическая – когда прибор не успевает реагировать на изменения измеряемой величины.
По способу выражения измеряемой величины
Абсолютной погрешностью D Х называется разность между измеренным и действительным значениями.
– действительное значение измеряемой величины.
Выражается D Х в единицах измеряемой величины.
Относительная погрешность – отношение абсолютной погрешности к действительному значению измеряемой величины.
Выражается в процентах или относительных единицах. Относительная погрешность характеризует точность измерений.
Приведенная погрешность g пр – отношение абсолютной погрешности к номинальному (нормированному) значению – верхнему пределу диапазона или поддиапазона измерения прибора.
Пределом измерения прибора называется наибольшая величина, на которую рассчитан данный прибор.
Прибор может иметь несколько пределов измерений (например, вольтметр).
Чем меньшую погрешность дает прибор, тем он точнее.
Выражается в процентах.
Максимальная приведенная погрешность определяет класс точности прибора.
Электроизмерительные приборы изготавливаются нескольких классов точности
Погрешность измерений. Классификация
Погрешность средств измерения и результатов измерения.
Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.
Инструментальные и методические погрешности.
Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.
Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.
Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.
Статическая и динамическая погрешности.
Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.
Систематическая и случайная погрешности.
Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.
Причинами возникновения систематических составляющих погрешности измерения являются:
Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.
Погрешности адекватности и градуировки.
Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.
Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.
Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.
Абсолютная, относительная и приведенная погрешности.
Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.
Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.
Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле
где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:
Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.
Аддитивные и мультипликативные погрешности.
Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).
Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.
Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).
Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:
– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).
Чем обусловлены погрешности измерений
Всероссийский научно-исследовательский институт
оптико-физических измерений
ПОИСК И НАВИГАЦИЯ
МЫ НА YOUTUBE
Погрешности измерений
Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010) |