Чем обусловлена необходимость установления в трубах теплосетей специальных устройств стабилизаторов
Устройства для стабилизации колебаний давления и расхода в тепловых сетях
К.т.н. А.Б. Роскин, ведущий специалист НПК «Вектор»
Введение
Процесс развития трубопроводных систем предъявляет высокие требования к безопасности их эксплуатации и обеспечения надежности работы.
Наиболее остро стоит вопрос безопасной и эффективной эксплуатации тепловых сетей (ТС) в связи с их изношенностью и недостаточным финансированием проведения работ по их обслуживанию и перекладке. Необходимо принять срочные меры, способные обеспечить смягчение остроты проблемы.
В мировой практике накоплен большой опыт по проектированию и эксплуатации средств защиты от колебательных процессов на гидромагистралях. Усилия научной и инженерной мысли направлены на поиск способов минимизации разрушающего воздействия на трубопроводы волновых и вибрационных процессов, а также создания устройств, обеспечивающих решение этой задачи (аккумуляторы давления, гасители колебаний различных типов, клапаны сброса, обратные клапаны и т.д.).
Рассмотрению схем таких устройств, применимых для систем теплоснабжения, посвящена данная публикация.
Как указывается в [6] и [7], во время переходного процесса (неустановившегося движения жидкости) из-за изменения сечения трубопровода (вследствие перекрытия сечения трубопровода или его открытия), остановки и пуска насосного агрегата и других элементов трубопроводной системы, сбросе давления и т.д. изменяется скорость движения жидкости. В результате этого возникают волны повышенного и пониженного давления, распространяющиеся по трубопроводу.
Резкое изменение скорости движения жидкости приводит к возникновению ГУ, которому присущи большие амплитуды колебания давления жидкости и высокая скорость распространения, она может быть близкой по значению к скорости звука в данной жидкости [8].
Н.Е.Жуковский вывел основное уравнение гидроудара: dP=A-p-dC,
Под рабочей средой понимается теплоноситель.
В системах теплоснабжения теплоноситель перекачивается по замкнутому контуру, поэтому авария на одной насосной станции может привести к распространению гидроудара по всей трубопроводной сети [7], [8]. Вследствие того, что трубопроводы систем теплоснабжения значительной длины, жидкость, находящаяся в них, обладает большой инерционностью (массой), что обуславливает возникновение в сети ГУ со значительным импульсом и амплитудой.
В сети теплоснабжения используются трубы разных диаметров. Как указывается в [1], возрастание ударного давления происходит при переходе ударной волны с труб большего диаметра на трубы с меньшим диаметром. Кроме того, при наличии волн давления в трубопроводе могут возникнуть условия резонанса, т.е. совпадение частоты собственных и вынужденных колебаний столба жидкости в трубопроводе. Этот процесс наблюдается в тупиковых точках трубопровода, например, во внутренних трубопроводных системах зданий. При этом разрушающее воздействие ГУ многократно усиливается.
Для нормальной эксплуатации трубопроводных систем необходимо, чтобы при переходных процессах величина давления жидкости в трубопроводе и скорость его нарастания не превышали допустимых значений, в противном случае, следствием таких процессов могут являться:
— снижение КПД насосного оборудования;
— снижение надежности и долговечности трубопроводной системы;
— разрушение отдельных участков трубопроводов от воздействия вибраций, вызванных пульсирующим потоком теплоносителя;
— утечка теплоносителя через стыки трубопроводов;
— снижение рабочего давления перекачиваемого теплоносителя.
Чтобы избежать аварийной ситуации, необходимо располагать эффективными способами и техническими средствами стабилизации давления в трубопроводе, схемы некоторых из них приведены ниже.
Поэтому проблема создания эффективных средств гашения волновых процессов и гидравлических ударов является очень актуальной.
Ресиверы (воздушные колпаки)
Как указывается в 7, в трубопроводах для защиты от волны повышенного давления часто применяют ресиверы (воздушные колпаки). Ресивер представляет собой герметическую емкость, заполненную упругой средой, например, воздухом, и сообщающуюся посредством отверстия с гидромагистралью. Принцип работы ресивера основан на сжимаемости воздуха в момент повышения давления и поступления избыточного количества жидкости из трубопровода в емкость ресивера. При рабочих давлениях трубопровода до 3 бар для увеличения полезного использования объема колпаки необходимо заполнять воздухом под давлением. Это усложняет их конструкцию, т.к. воздух в процессе эксплуатации растворяется в рабочей жидкости и постепенно уносится, следовательно, для поддержания работоспособности системы колпак приходится заряжать воздухом перед каждым пуском. Кроме того, воздух из колпака попадает в трубопровод при каждой остановке насоса.
Чтобы избежать этого, были предложены различные варианты конструкций разделения жидкой и газовой сред в ресивере.
В первых конструкциях роль разделителя двух сред исполнял пустотелый или выполненный из плавающего материала поплавок. Описание этих конструкций представлено в 4.
При остановке насоса поплавок закрывал отверстие, соединяющее компенсатор колебаний и трубопровод. Плотность закрытия отверстия была недостаточна, кроме того, при резком снижении давления в трубопроводной магистрали, поплавок под действием сил инерции мог разрушаться (рис. 1).
С целью уменьшения действия сил инерции поплавок стали соединять с одной или двух сторон пружинами с корпусом компенсатора.
Посадка клапана в таких конструкциях не обеспечивала достаточной герметичности, и воздух при остановках насосного агрегата вымывался из компенсатора. Поэтому для герметизации были применены эластичные диафрагмы из кожи или резины, которые соединялись с поршнем-поплавком и корпусом компенсатора.
Несовершенством компенсаторов с разделительной поверхностью двух сред является быстрое повреждение мембраны в результате больших усталостных напряжений в материале из-за многократных деформаций и температурного воздействия на материал мембраны.
Во «ВНИПИЭнергопром» разработана конструкция компенсатора гидравлического удара (лишенная вышеперечисленных недостатков), снабженного клапаном с разрывной мембраной, отделяющей объем колпака от теплоносителя.
Устройства для борьбы с волнами повышенного давления с помощью сброса части жидкости из трубопровода
Как указывается в [6], для борьбы с волновыми процессами в трубопроводах различного назначения широкое распространение получил способ сброса избыточного количества перекачиваемой жидкости в безнапорную емкость. Реализация этого способа борьбы с волновыми явлениями осуществляется с помощью клапанов сброса, открытие которых происходит в момент формирования ударной волны давления. Продолжительность сброса регулируется с помощью специальной системы управления.
Устройства гашения волны повышенного давления, принцип работы которых основан на сбросе части жидкости, состоят из датчика возмущений, клапана сброса и блока управления работой клапана.
Датчик возмущений предназначен для подачи команды на открытие клапана сброса в момент возникновения в трубопроводе гидравлического удара.
Основными требованиями, предъявляемыми к конструкциям клапанов сброса, являются:
— достаточная пропускная способность;
— надежность в эксплуатации. Существующие конструкции клапанов сброса
условно можно разделить натри группы:
— с подвижным жестким поршнем;
— с эластичным запирающим элементом;
Работу клапана с подвижным жестким поршнем можно рассмотреть на примере поршневого противоударного клапана с автоматической гидравлической настройкой (рис. 2).
Устройство состоит из цилиндрического корпуса 1, внутри которого размещен поршень 2, соединенный при помощи штока 3 с клапаном 4. Пространство над поршнем соединено с напорным трубопроводом трубкой 5. Внутри трубки установлен дроссель 6.
При возникновении в трубопроводе ГУ, волна повышенного давления воздействует на клапан 4 снизу. В пространство над поршнем импульс давления приходит с некоторым запаздыванием, вызванным гидравлическим сопротивлением трубки 5. На поршне возникает перепад давления, в результате чего поршень перемещается вверх, сжимая пружину 7 и поднимая клапан 4, начинается сброс жидкости из напорного трубопровода. При отсутствии ударной волны клапан прочно прижимается к седлу. При плавном изменении режима течения жидкости по трубопроводу, давление в пространстве над и под поршнем 2 успевают выравниться, и клапан остается закрытым. При эксплуатации данного устройства необходимо соблюдать требования к чистоте жидкости в трубопроводе, что не всегда реально в ТС.
Cтраницы: 1 | 2 | читать дальше>>
О вопросах внедрения защиты оборудования систем теплоснабжения от повышения давления теплоносителя и гидравлических ударов
Журнал «Новости теплоснабжения», № 3, (19), март, 2002, С.22 – 25, www.ntsn.ru
Мартынов С.М., государственный инспектор, ГУ «Брянскгосэнергонадзор»
Из опыта эксплуатации крупных систем теплоснабжения (СТ), которые оснащены большим объемом запорной арматуры, насосного оборудования, а так же имеющих большую протяженность сетей и высокое гидравлическое сопротивление, известны трудности при обеспечении высокой степени их надежности. В частности, это относится как к крупным квартальным или районным котельным, так и к присоединенным сетям и системам теплопотребления. В таких СТ существует высокая вероятность возникновения аварийных либо переходных гидравлических процессов, характеризуемых колебаниями либо повышением давления сетевой воды, значения которых выходят за пределы допустимых значений прочностных характеристик оборудования и сетей. Подобные процессы возможны и в СТ невысокой мощности и протяженности, и кроме того могут иметь характер гидравлического удара. Степень же надежности проектируемых и, в большей степени эксплуатируемых СТ, является одним из важнейших факторов при осуществлении договорных отношений между теплоснабжающими организациями (ТСО) и потребителями тепловой энергии.
Отсутствие в составе СТ специализированных устройств защиты от названных явлений в значительной степени усугубляет аварийную ситуацию, приводит к цепному характеру ее распространения и серьезным последствиям для системы теплоснабжения, таким как:
— повреждение тепломеханического оборудования источников теплоснабжения;
— разрыв сетевых трубопроводов с затоплением помещений источников теплоснабжения, выводом из строя электрооборудования и потерей собственных нужд;
— прекращение теплоснабжения объектов ЖКХ и социальной сферы, предприятий, влекущее с серьезные социальные последствия и нанесение материального ущерба;
— разрыв отопительных приборов внутренних систем теплопотребления с затоплением помещений.
Подобные инциденты могут сопровождаться травматизмом обслуживающего персонала ТСО и третьих лиц.
Нарушения нормального гидравлического режима СТ имеют следующие технические причины:
— аварийные отключения сетевых и подпиточных насосов ТСО;
— закрытие (открытие) регуляторов, запорной, предохранительной и обратной арматуры на источниках теплоснабжения, в тепловых сетях и в тепловых пунктах потребителей (причем разрывы коррозионно-ослабленных трубопроводов могут происходить даже в случае плановых переключений в тепловых схемах, при перепуске насосов, уменьшении или увеличении подпитки сети);
— вскипание воды в котлах и оборудовании ТСО;
— разрывы магистральных сетевых трубопроводов.
В зависимости от инерционности системы трубопроводов и характеристик возмущения переходные гидравлические режимы можно подразделить на условно-стабильные и на гидравлические удары. Обе разновидности могут носить характер затухающего колебательного процесса.
Последние отличаются высокими значениями мгновенных давлений, высокой скоростью нарастания и спада давления (т.е. динамическим воздействием на оборудование) и высокой скоростью распространения. Вероятность гидравлического удара в СТ выше с увеличением длин и диаметров трубопроводов, а так же при оснащении СТ такими устройствами, отказ или срабатывание которых приводит к быстротечному знакопеременному изменению скорости теплоносителя (в т.ч. локальному), нарушению неразрывности потока, локальному понижению давления с достижением температуры кипения, вскипанию и последующей конденсации теплоносителя. Кроме того, величина скачкообразного приращения давления и скорость распространения ударной волны, вызванной гидроударом, находятся в пропорциональной зависимости от скорости и расхода теплоносителя в трубопроводе, а так же от степени упругости материала трубопровода.
Условно-стабильные режимы характеризуются монотонными нарушениями стационарного гидравлического режима, при которых скорость изменения (в т.ч. нарастания) давления невысока. Подобные режимы наиболее часто являются следствием операций с регулирующими клапанами, закрытия или открытия арматуры с электроприводом.
Кроме того, СТ обладают следующей особенностью: существует значительный разброс допустимых давлений для оборудования и трубопроводов, установленных в ТСО, тепловых сетях и системах теплопотребления. Например, системы теплопотребления, укомплектованные чугунными радиаторами, имеют допустимое давление 0,6 МПа и присоединены по зависимой схеме к тепловым сетям, имеющим допустимое давление 1,6 МПа. А эта разница обусловливает необходимость применения защиты от повышения давления, так как колебания последнего, возникающие, к примеру при отключении сетевых насосов, недопустимы для такой отопительной системы.
Таким образом, учитывая вероятность возникновения названных аварийных режимов необходимо разработать принципы практического применение для СТ комплекса работ по расчету параметров переходных гидравлических процессов и режимов, выявлению необходимости оснащения системы специальными устройствами защиты с определенными характеристиками (быстродействие; пропускная способность; простота в настройке и эксплуатации; стоимость). Следует сделать вывод, что приступать к проектированию и монтажу защитных устройств рационально только после проведения анализа гидравлического режима СТ.
Помимо технических проблем существуют и организационные. Заключаются они в необходимости разграничения степени ответственности субъектов теплоснабжения единой СТ, по соблюдению требований НТД, которые регламентируют предельные отклонения параметров и объем оснащения элементов СТ устройствами автоматики, регулирования и защиты, а так же договорных обязательств сторон по качеству тепловой энергии, в т. ч. и в аварийных ситуациях. Такие вопросы необходимо решать в порядке, определяемом Гражданским кодексом РФ (гл. 6 «Энергоснабжение»). Действующие же НТД предписывают установку специальных защитных устройств на всех элементах единой СТ, что вызывает многочисленные споры на всех стадиях взаимоотношений субъектов теплоснабжения:
· выдача технических условий на присоединение систем теплопотребления;
· заключение договоров теплоснабжения;
· подготовка к ОЗП и получение акта готовности к эксплуатации систем теплопотребления;
· расследование технологических нарушений;
· определение долей ущерба, подлежащего погашению различными ведомствами.
Юридические взаимоотношения между субъектами теплоснабжения регламентируются следующими основными документами: Гражданским кодексом РФ, часть 2-я, в основном главой 6 «Энергоснабжение», а также договорами теплоснабжения, исходя из которых, требования, учитываемые при решении вопросов по защите оборудования СТ от недопустимого повышения давления теплоносителя, таковы:
· надежность теплоснабжения, т.е. глубина и длительность ограничений, а также количество и длительность отключений;
· требования к режимам теплопотребления, т.е. соблюдение потребителем обусловленных договором максимального часового расхода теплоносителя в подающем трубопроводе, максимального часового расхода теплоносителя, не возвращенного абонентом в тепловую сеть ТСО (в т.ч. несанкционированный водоразбор) и др.
В случае если в договоре теплоснабжения не отображены обязательства сторон по качеству тепловой энергии и режимам теплопотребления, могут быть приняты требования действующих НТД, устанавливающих допускаемые пределы отклонений указанных выше параметров. В соответствии требований п. 4.11.8 «ПТЭ электрических станций и сетей РФ» (ПТЭ) на каждом источнике теплоснабжения «должна быть предусмотрена защита обратных трубопроводов от внезапного повышения давления», при этом должно быть обеспечено поддержание заданного давления на всасывающей стороне сетевых насосов в рабочем режиме тепловой сети и при останове сетевых насосов. Эксплуатационный режим работы СТ определяется требованиями п. 4.11.1 и п. 4.12.38 ПТЭ, в которых оговорены пределы отклонения давления в рабочем режиме. Кроме того, п. 4.12.36 и 4.12.39 определяют требования к качеству тепловой энергии в случае отсутствия таковых в договорах теплоснабжения. Пункт 4.12.40 ПТЭ содержит также требования по необходимости оснащения тепловых сетей «специальными устройствами, предохраняющими систему теплоснабжения от гидроударов при аварийном прекращении электроснабжения сетевых и перекачивающих насосов». Таким образом, ПТЭ не допускают отклонений давления сетевой воды в статических и переходных режимах во всех точках подающих и обратных трубопроводов, для всех видов оборудования по тракту сетевой воды вне зависимости от места нахождения оборудования и, соответственно, его балансовой принадлежности.
«Правила эксплуатации теплопотребляющих установок и тепловых сетей потребителей» (п. 2.2.17); СНиП 2.04.07-86 «Тепловые сети» (п. 12.14); СП 41-101-95 «Проектирование тепловых пунктов» (п.п.3.5; 4.47) так же требуют безусловной установки на тепловых пунктах потребителей автоматических устройств, которые в т.ч.: «должны обеспечивать. заданное давление в обратном трубопроводе… защиту систем теплопотребления от повышенного давления и температуры воды в случае превышения допустимых предельных параметров». «Правила и нормы технической эксплуатации жилищного фонда» (1998г.) изд. п.п. 5.1.5 и 5.2.15 так же устанавливают требования к ТСО в части выдерживания параметров теплоносителя и недопустимости повышения давления.
Обобщая сказанное, можно сделать вывод: каждый элемент единой СТ (источник тепла, тепловые сети, системы теплопотребления) должен быть оборудован специальными устройствами защиты от недопустимого повышения (колебания; изменения ) давления теплоносителя, обеспечивающими поддержание заданного давления на границах эксплуатационной ответственности субъектов теплоснабжения при внезапных изменениях гидравлического режима, вызванных оборудованием данного элемента СТ. То есть, устройства защиты должны обеспечить поддержание давления в допустимых предел
Cтраницы: 1 | 2 | читать дальше>>
Компенсаторы для трубопроводов отопления и водоснабжения: их виды, назначение и установка
Компенсатор — это устройство предназначенное компенсировать температурные расширения, вибрационные воздействия, перепады давления, смещения. Позволяет избежать, стабилизировать или свести к минимуму нежеланные последствия, возникающие в результате действия этих факторов. Применяется в магистральных трубопроводах различного назначения.
Одним из способов решения этой задачи стали компенсаторы для трубопроводов отопления. Такие компенсаторы применяются не только на магистральных трубах и распределительных сетях, но и внутри домовых тепловых (и не только) разводках.
Виды компенсаторов
Конструктивно такие приспособления бывают следующих видов:
Уже было сказано, что эти устройства отличаются высокой возможностью компенсирования, и она увеличивается пропорционально увеличению объема сети.
Важно! Сальниковый вид механизмов отлично выдерживает температурный режим, но их не разрешают применять в сеть, где проходит агрессивная химическая среда. Дело в том, что их набивка плохо противостоит такому влиянию. В таких условиях рекомендуют применение сильфонных или резиновых видов.
Установка компенсирующих систем весьма желательна на трубопроводах систем отопления и разводках горячего водоснабжения внутридомовых тепловых сетей частного дома.
Установка компенсаторов обязательна независимо от материала трубопровода;
Кроме основной функции гашения вибраций успешно работает при тепловых деформациях трубопроводов для отопления, а также в случае возникновения радиальных смещений и угловых деформаций.
Ответ: при дрожании мышцы сокращаются и вырабатывают энергию.
БИЛЕТ №1
2.Где в квартире устанавливают предохранители? В распределительном щите перед квартирой.
3.Имеют ли автономные электрические устройства, например телевизоры, предохранители? Да.
Существуют ли другие конструкции предохранителей? Существуют. По своей конструкции предохранители могут быть резьбового типа (пробочные) или трубчатые.
БИЛЕТ№ 2
1. Какую гипотезу пытался проверить Ампер своими опытами? Что надо пони- мать под словами «электрический конфликт»? Если проводник тока всегда окружен магнитными силами, то «электрический конфликт» должен выступать не только между проводом и магнитной стрелкой, но и между двумя проводами, по которым течет ток. «электрический конфликт»-взаимодействие
2. Играет ли роль в проверке взаимодействия между проводниками с током расстояние между ними? Да, т.к. сила убывает с ростом расстояния.
3. Как ведут себя два соленоида с током, установленные рядом?что соленоиды, установленные рядом, при пропускании через них тока ведут себя, подобно двум магнитам.
Билет №3
1. Как зависит температура плавления льда от внешнего давления?Однако расчеты показывают, что человек массой 60 кг, стоя на коньках, оказывает на лед давление примерно в 15 атм. Это означает, что под коньками температура плавления льда уменьшается только на 0,11 °С. Такого повышения температуры явно недостаточно для того, чтобы лед стал плавиться под давлением коньков при катании, например, при –10 °С
2. Приведите два примера, которые иллюстрируют возникновение избыточного давления при замерзании воды. Лед разрывает стеклянную бутылку в морозилке.
3. При протекании какого процесса может выделяться теплота, которая идет на плавление льда при катании на коньках?Трение.
БИЛЕТ № 4
1.Зачем в описанном опыте применяли батарею конденсаторов?По мере заряжения конденсаторов увеличивается разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе
2.К какому виду разрядов можно отнести молнию? Искровой разряд.
3.Когда между облаками проскакивает молния?При достаточной напряженности поля
4.Может ли возникнуть молния между облаками и Землей? Объясните.Грозовые облака несут в себе большие электрические заряды
Билет №5
1. Знали ли вы, что в нашей стране накопилось много радиоактивного «мусора» и что он теперь — реальная и грозная опасность для нашей жизни и здоровья? Откуда берется этот «мусор»?Ядерная энергетика, широко используемая в последние десятилетия, оставляет много радиоактивных отходов.
2. Какие могут быть экологические последствия, если эту проблему не решить?Эти отходы накапливаются и представляют чрезвычайную радиационную опасность для обширных районов России и сопредельных стран.
3. Как вы думаете: какой метод захоронения отходов дороже — метод стеклования взрывом или традиционный, требующий сооружения бетонных могильников? Почему? (Ответ. Традиционный метод дороже: для его осуществления требуется возвести помимо могильников комплекс обслуживающих предприятий и поддерживать постоянные параметры захоронений — давление, температуру, влажность.)
4. Можно ли, с вашей точки зрения, «совместить» предлагаемый проект захоронения отходов с помощью подземных ядерных взрывов и Договор о всеобщем запрещении ядерных испытаний, который подписан Россией и за бессрочное продление которого выступает наша страна? Можно, т.к. захоронение это не испытания.
Билет №6.
1 Почему опыт не удается, если воздух в цилиндре сжимать медленно?Так как топливо не сможет самовозгорется.
4. Почему у двигателей Дизеля больше КПД, чем у карбюраторных двигателей? Больше топлива идет на совершение работы.
Билет 7
1.В чем заключается явление электромагнитной индукции? Возникновение индукционного тока при изменении магнитного потока или вихревого поля.
2. Может ли трансформатор работать от постоянного тока? Трансформатор преобразует переменный электрический ток
3.Каковы потери передаваемой мощности в трансформаторах? В среднем 15-20%.
4. Почему сердечник трансформатора набирается из пластин? Чтобы избежать нагревания от токов Фуко.
БИЛЕТ № 8
1.Какое физическое явление лежит в основе появления огней святого Эльма? Коронный разряд.
2.Почему не возникает такого свечения на плоской металлической крыше? Нет острия.
3.Опасно ли находиться вблизи возникших огней святого Эльма на корабле? Да, если высокая напряженность поля.
4. Как можно получить огни святого Эльма? Ножницы и лист оргстекла.
Билет №9
1.Одинакова ли скорость движения маятника? Нет, меняется по синусоидальному закону
2.Постоянно ли ускорение при движении маятника? Нет, меняется по синусоидальному закону
3.Отчего зависит период колебаний?От длины нити.
4.В чем заключается свойство изохронности? Свойство независимости периода колебаний маятника от амплитуды называется изохронностью.
Билет №10
1. Что представляет собой явление гидравлического удара? Каковы условия его возникновения?Явление гидравлического удара, заключающегося в резком увеличении давления при внезапном падении скорости потока жидкости, нашло свое воплощение в устройствах, называемыми гидравлическими таранами.
2. Назовите причину возникновения повышения давления в нижнем конце трубопровода гидравлического тарана?. Под действием нарастающего динамического напора воды закрывается отбойный клапан, расположенный на нижнем конце трубопровода, и вследствие инерции движущейся воды и её не сжимаемости давление здесь резко повышается.
3. Чем обусловлена необходимость установления в трубах теплосетей специальных устройств — стабилизаторов давления?
Для предотвращения разрыва.
4.Где можно применять гидротаран?использует только потенциал небольшой плотины или даже просто естественного рельефа реки.
Билет №11.
1.Что означает слово синтез?Заставить сблизиться ядра можно с помощью нагрева до высоких температур, когда в результате обычных столкновений ядра смогут сблизиться на столь малые расстояния, чтобы ядерные силы вступили в реакцию, и произошел синтез
2.Всегда ли при ядерной реакции выделяется энергия? Да
3. Каковы проблемы управления термоядерным синтезом?Проблема использования синтеза ядер в мирных целях, например для производства электрической энергии, упирается в очень трудную проблему удержания реакции.
Билет №12
1. Для чего, для каких целей используют металлодетекторы?Её, например, уменьшают, если необходимо произвести досмотр только с целью обнаружения крупных металлических предметов. А небольшие предметы — ключи, оправы очков, ручки — сигнализацию детектора не вызовут.
2. Как вы понимаете характеристику «рабочая частота» прибора?(частота изменения направления тока в секунду)Велика ли она?(низкая)
3. Какой закон физики лежит в основе действия описанного металлодетектора? Какими другими словами мы называем «наведенный ток»?(индукционный) Закон электромагнитной индукции
БИЛЕТ № 13
1.Какой уровень шума безвреден для человека 0 20-30 дБ
2.Какой допустимый уровень шума для человека? Допустимая граница поднимаемся примерно до 80 дБ
3.Как называется наука, изучающая воздействие звука и шума на человека? аудиология
4.Как влияют сверхдопустимые уровни шумов на человека?психологическое воздействие, усталости, стойкой бессоннице и атеросклерозу
Билет №14
1.Какие еще тепловые двигатели, кроме двигателей внутреннего сгорания, оказывают отрицательное влияние на окружающую среду? газовый, реактивный, паровой
2.К каким последствиям приводят широкое применение тепловых машин в энергетике и транспорте? к загрязнению окружающей среды
3.К чему может привести повышение температуры Земли? Дальнейшее увеличение концентрации углекислого газа в атмосфере может привести к так называемому «парниковому эффекту».
4.Что предпринимается для охраны природы? использование дизелей, применение электродвигателей на транспорте или двигателей, в которых топливом является водород, создание автомобилей, работающих на солнечной энергии.
Билет №15
1. В чем отличие ультразвука от звуковых волн, воспринимаемых человеком? Ультразвуковые волны люди не слышат, а звуковые волны слышим
2. Что называют кавитанционным пузырьком? Какой эффект получается при «схлопывании» кавитанционных пузырьков? кавитацией — образованием в растворе огромного количества микроскопических пузырьков, заполненных газом, паром и их смесью, эти пузырьки возникают при прохождении акустической волны во время полупериода разрежения. Под действием перепада давления при появлении и «схлопывании» пузырьков нарушается сцепление загрязненных микрочастиц с волокнами изделий и облегчается их удаление поверхностно-активными веществами моющего раствора стирального порошка или мыла.
3. Почему излучатель ультразвуковых колебаний имеет чаще всего форму шара или диска? Потому что там большая площадь поверхности излучения.
4. Попробуйте объяснить, зачем на блоках питания установлены светодиодные индикаторы. Ответ: Для определения рабочего состояния устройства.
Билет №16
1.Каким образом некоторые насекомые, например stenus, удерживаются на воде и даже используют силы поверхностного натяжения для того, чтобы двигаться? В результате поверхность служит как бы пленкой, стягивающей всю массу жидкост
2.Почему пузырь имеет всегда шарообразную форму? Наружный слой воды давит на воздух и сжимает его
3.Зависят ли силы поверхностного натяжения от температуры? Зависят, потому, что увеличивается скорость движения молекул на поверхности воды.
4. Как можно измерить силу поверхностного натяжения? С помощью специального динамометра ДПН. К пружине прикреплена пластина, которая опускается на поверхность жидкости. При поднятии пластины пружина растягивается и на шкале динамометра регистрируется сила, удерживающая пластину. Это и будет сила поверхностного натяжения.
Билет №17
1. Назовите отличительную особенность теплопроводности как вида теплопередачи. Почему воздух является плохим проводником тепла? Ответ: Существует два вида теплопередачи: теплопроводность и конвекция. Теплопроводность зависит от вида вещества. Воздух-это газ, расстояние между молекулами большое, соударения редкие, передача энергии минимальная. Это свойство воздуха используется в стеклопакетах.
2. В сильный мороз птицы чаще замерзают на лету, чем сидя на месте. Чем это можно объяснить? Почему в холодную погоду многие животные спят, свернувшись клубком? Ответ.1. Во время полета крылья птицы расправлены и тело не защищено от мороза. Когда птица сидит на месте, крылья мешают теплопередаче. 2. Животные спят, свернувшись клубком, чтобы уменьшить площадь поверхности тела, участвующую в теплопередаче.
3. У человека замерзают быстрее всего конечности, уши и нос, так как эти части тела имеют тонкие стенки. А еще почему? В эти части тела меньше поступает крови, нет мышц.
4. Когда человеку холодно, он начинает дрожать. Какую роль играют эти защитные механизмы для увеличения внутренней энергии человека?
Ответ: при дрожании мышцы сокращаются и вырабатывают энергию.
Билет №18
1. С какой целью проводился эксперимент, описанный в тексте?Для объяснения принципа действия пузырьковой камеры.
2. Почему в пробирке с водопроводной водой пузырьки образуются в основном на кусочке мела? Что является «кипелкой» для процесса кипения воды в обычном чайнике? Мел-неоднородность. Неровности, накипь.
3. Объясните, как вы понимаете смысл понятия «перегретая жидкость». В идеально чистом сосуде с однородной жидкостью кипение не наступает вплоть до температуры 140°С..
4. Почему важнейшим условием работы камеры Глейзера является однородность жидкости и чистота ампулы? Чтобы жидкость была перегретой.
Билет №19
1. Почему для осаждения облака необходимо получение крупных капель и кристаллов? Для этого над облаком разбрасывают кристаллы «сухого льда» (СО2), которые, охлаждая облако, вызывают усиленную конденсацию с образованием крупных капель и кристаллов льда.
3. Каким образом кристаллы «сухого льда» усиливают конденсацию? В чём суть этого явления? Можно разбрасывать в облаках микроскопические крупинки гигроскопических солей (NaCl или КС1), которые, попав в облако, будут притягивать к себе влагу и разбухать, становясь зародышами больших капель.
4. Объясните необходимость разумного влияния человека на атмосферные процессы. В честь какова нибудь праздика разогнать облака, что бы была хорошая погода.
БИЛЕТ № 20
1.Какова причина броуновского движения? Беспорядочные удары молекул о частицу, попавшую в газ или жидкость.
2.Как влияет температура вещества на броуновское движение? С увеличением температуры скорость движения частиц увеличивается.
3.Наблюдается ли броуновское движение в твердых телах? Да, дрожание стрелок чувствительных приборов.
4.Кто окончательно построил теорию броуновского движения и экспериментально ее подтвердил? Молекулярно-кинетическая теория броуновского движения была создана А. Эйнштейном в 1905 г.
БИЛЕТ №21
1.Как определяется химический состав звезд? спектральныйанализ их излучения
2. Как определяется качественный состав звезд? спектральныйанализ их излучения
3.Можно ли считать качественный анализ по спектрам излучения точным? Да.
БИЛЕТ № 22
3. Текст по разделу «Механика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи имеющихся знаний
Звуки
Задумайтесь о происхождении звуков — вот стукнула дверь, ударили кулаком по столу, проехала машина, стучат каблучки по полу. Звук всегда вызывается каким-либо механическим движением. Доски,стол, стены, большинство других предметов от толчков не приходят в видимое движение, если только они не очень сильны. Но они способны несколько прогибаться, и в результате возникает их легкое движение вперед-назад (вибрация). Хорошо иллюстрирует природу колебаний туго натянутая струна или резиновый шнур. Предположим, что мы оттянули середину струны гитары из нормального положения. Струна натягивается, и когда мы ее отпустим, она вернется назад, но в момент возвращения в свое нормальное положение она будет двигаться. Продолжая движение, постепенно замедляясь, она остановится, но уже по другую сторону от своего первоначального положения. Теперь струна снова натянута и должна двигаться назад. Со временем, после многих таких колебаний струна вернется в состояние покоя.
Подобным способом происходят колебания твердых упругих предметов, если какой-то участок тела толкнуть и вывести из нормального состояния. Колебания одной части предмета оказывают влияние на остальные части. Колеблющиеся участки тянут и толкают соседние, а те тоже начинают колебаться. В свою очередь, они приводят в движение окружающие их участки и т.д. Таким образом, колебания, созданные в одной точке тела, передаются другим его точкам по всем направлениям, так что через какое-то время колеблются все точки внутри сферы с центром в источнике колебаний. Так распространяется звуковая волна в твердом материале.
Ответьте на вопросы к тексту и выполните задание:
1.Одинакова ли скорость распространения звука в различных твердых материалах? Скорость распространения звука зависит от вида твердого материала
2.Только ли в твердых материалах распространяется звук? В любых средах можем услышать звук (кроме вакуума)
3. Можно ли на Земле услышать гул двигателя космического корабля, пролетающего в открытом космосе? Нет, не можем
4. Получите звуковые колебания на одном из физических приборов.Можно получить звук с помощью камертона
БИЛЕТ № 23
1.Что вы чувствуете, когда протираете кожу своей руки спиртом? Чувствуется охлаждение
2.При одной и той же температуре, когда нам кажется теплее — в сырую погоду или в сухую? В сухую.
3.Когда быстрее растает кусочек льда — закутанный в теплый шарф или положенный на тарелку? На тарелке
4.Каков принцип работы холодильника?
Работа холодильника основана на использовании теплового насоса, переносящего тепло из рабочей камеры холодильника наружу, где оно рассеивается во внешнюю среду.
БИЛЕТ № 24
1.Для чего понижается давление в газоразрядных трубках?Если из трубок, которым можно придать разную форму, откачать воздух до давления порядка десятых и сотых долей миллиметров ртутного столба и на впаянные в трубку электроды подать напряжение порядка нескольких сотен вольт, то в трубке возникает свечение
2.От чего зависит цвет свечения?Если трубка наполнена неоном, возникает красное свечение, аргоном — синевато-зеленое свечение. В лампах дневного света используют разряд в парах ртути
3.Почему при возникшем тлеющем разряде не вся трубка заполнена положительным столбом?При тлеющем разряде почти вся трубка, за исключением небольшого участка возле катода, заполнена однородным свечением, называемым положительным столбом
4.Где применяют трубки с тлеющим разрядом? квантовых генераторах — газовых лазерах.
БИЛЕТ № 25
1. Что объединяло все эти опыты?Во всех опытах стало отсутствовать давление верхних слоев воды на нижние
2.Почему при свободном падении отсутствовало давление внутри падающей системы? (Потому что когда тело падает отсутствует вес, поэтому отсутствует давление)
3.Как называется состояние свободного падения? (Невесомость)
4.Где встречается состояние невесомости? (В лифте во время прыжка))
БИЛЕТ № 26
3. Текст по теме «Электромагнитные поля», содержащий информацию об электромагнитном загрязнении окружающей среды. Задание на определение степени воздействия электромагнитных полей на человека и обеспечение экологической безопасности
Невидимое загрязнение
В последнее время отмечено резкое увеличение количества и видов новой техники, оборудования и устройств, эксплуатация которых сопровождается излучением электромагнитной энергии в окружающую среду. Это оборудование развивающегося радио- и телевизионного вешания, систем подвижной и персональной радиосвязи, энергетическое оборудование, современная бытовая техника, линии электропередачи.
Являясь биологически активным фактором, электромагнитное поле искусственного происхождения оказывает неблагоприятное воздействие на человека и окружающую природную среду, что и было отмечено в 1989 г. Всемирной организацией здравоохранения, включившей этот фактор в число значимых экологических проблем.
Помните, что электромагнитные поля различаются по длине волны и частоте колебаний. Чем короче длина волны, тем больше частота колебаний и наоборот. Их подразделяют на высокочастотные, ультравысокочастотные и сверхвысокой частоты. Биологическая активность электромагнитных излучений возрастает с уменьшением длины волны, что приводит к большей «агрессивности» действия полей радиочастот по сравнению с полями промышленной частоты.
По предварительным оценкам, в России электромагнитному облучению гигиенически значимых уровней подвергаются приблизительно 70 % обшей численности населения, облучаемого вне производственной сферы (проживающие вблизи воздушных линий электропередачи, в домах с электроплитами и т.д.).
Самые опасные —, волны миллиметровые, сантиметровые и дециметровые. По санитарным нормам в диапазоне СВЧ при круглосуточном
Между интенсивностью электромагнитных полей, продолжительностью их воздействия и состоянием здоровья населения имеется однозначная связь. Она выражается в снижении иммунологической реактивности организма, увеличении общей заболеваемости, распространенности болезней органов дыхания, нервной системы, болезней кожи, разрушения сетчатки глаз, увеличения онкологических заболеваний.
Применение американскими полицейскими радиотелефонов, работающих в СВЧ диапазоне, привело к значительному увеличению числа заболеваний раком мозга.
Размещение садовых и дачных участков вблизи ЛЭП и радарных установок приводит к тому, что электромагнитные поля воздействуют на человека не только снаружи, но и внутри здания.
Дети в возрасте до 15 лет в 2.7 раза чаще страдают злокачественными заболеваниями, подвергаясь действию электромагнитного поля с индукцией свыше 0,2 мкТл.
Регулярная работа с компьютером без применения защитных средств приводит к заболеванию органов зрения, к болезням сердечно-сосудистой системы и желудочно-кишечного тракта.
Не до конца изучено воздействие ЭМП на сельскохозяйственные объекты.
Недооценка электромагнитных полей как загрязнителя окружающей природной среды привела к ухудшению экологической ситуации в стране. Необходимо научно обосновать нормативные оценки степени загрязнения окружающей среды электромагнитными полями.
Чтобы в дальнейшем обеспечить экологическую безопасность и защитить население и природную среду от повреждающего действия ЭМП, необходимо детальное нормирование уровня электромагнитных полей различных диапазонов в жилых помещениях, общественных зданиях и на прилегающих к источникам ЭМП территориях.
Ответьте на вопросы к тексту.
1.Какие из бытовых приборов создают наиболее опасные электромагнитные поля? поля СВЧ диапазона
2.Почему магнитные поля создаются лишь работающими приборами и установками? (т.к. при выключенном приборе нет тока, который порождает магнитное поле. Зная основные свойства магнитного поля, устанавливаемые экспериментально: