Чем ниже теплоемкость тем

Удельная теплоемкость вещества

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

Нагревание и охлаждение

Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.

Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.

Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.

В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.

А вот теперь поговорим о видах теплопередачи.

Виды теплопередачи

Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.

Теплопроводность

Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.

Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.

Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.

Конвекция

Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.

Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

Излучение

Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.

Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.

Удельная теплоемкость: понятие и формула для расчета

Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.

С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:

Удельная теплоемкость вещества

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Также ее можно рассчитать через теплоемкость вещества:

Удельная теплоемкость вещества

c — удельная теплоемкость вещества [Дж/кг*˚C]

C — теплоемкость вещества [Дж/˚C]

Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:

Количество теплоты, необходимое для нагревания тела

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Таблица удельных теплоемкостей

Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.

Источник

Таблицы удельной теплоемкости веществ (газов, жидкостей и др.)

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

Представлены таблицы удельной теплоемкости веществ: газов, металлов, жидкостей, строительных и теплоизоляционных материалов, а также пищевых продуктов — более 400 веществ и материалов.

Удельной теплоемкостью вещества называется отношение количества тепла, сообщенного единице массы этого вещества в каком-либо процессе, к соответствующему изменению его температуры.

Удельная теплоемкость веществ зависит от их химического состава, термодинамического состояния и способа сообщения им тепла. В Международной системе единиц эта величина измеряется в Дж/(кг·К).

Необходимо отметить, что экспериментальное определение удельной теплоемкости жидкостей и газов производится при постоянном давлении или при постоянном объеме. В первом случае удельная теплоемкость обозначается Cp, во втором — Cv. Для жидкостей и газов наиболее часто применяется удельная теплоемкость при постоянном давлении Cp.

Для твердых веществ теплоемкости Cp и Cv не различаются. Кроме того, по отношению к твердым телам, помимо удельной массовой теплоемкости применяются также удельная атомная и молярная теплоемкости.

Таблица удельной теплоемкости газов

В таблице приведена удельная теплоемкость газов Cp при температуре 20°С и нормальном атмосферном давлении (101325 Па).

Таблица удельной теплоемкости газов

ГазыCp, Дж/(кг·К)
Азот N21051
Аммиак NH32244
Аргон Ar523
Ацетилен C2H21683
Водород H214270
Воздух1005
Гелий He5296
Кислород O2913
Криптон Kr251
Ксенон Xe159
Метан CH42483
Неон Ne1038
Оксид азота N2O913
Оксид азота NO976
Оксид серы SO2625
Оксид углерода CO1043
Пропан C3H81863
Сероводород H2S1026
Углекислый газ CO2837
Хлор Cl520
Этан C2H61729
Этилен C2H41528

Таблица удельной теплоемкости некоторых металлов и сплавов

В таблице даны значения удельной теплоемкости некоторых распространенных металлов и сплавов при температуре 20°С. Значения теплоемкости большинства металлов при других температурах вы можете найти в этой таблице.

Таблица удельной теплоемкости металлов и сплавов

Металлы и сплавыC, Дж/(кг·К)
Алюминий Al897
Бронза алюминиевая420
Бронза оловянистая380
Вольфрам W134
Дюралюминий880
Железо Fe452
Золото Au129
Константан410
Латунь378
Манганин420
Медь Cu383
Никель Ni443
Нихром460
Олово Sn228
Платина Pt133
Ртуть Hg139
Свинец Pb128
Серебро Ag235
Сталь стержневая арматурная482
Сталь углеродистая468
Сталь хромистая460
Титан Ti520
Уран U116
Цинк Zn385
Чугун белый540
Чугун серый470

Таблица удельной теплоемкости жидкостей

В таблице представлены значения удельной теплоемкости Cp распространенных жидкостей при температуре 10…25°С и нормальном атмосферном давлении.

Таблица удельной теплоемкости жидкостей

ЖидкостиCp, Дж/(кг·К)
Азотная кислота (100%-ная) NH31720
Анилин C6H5NH22641
Антифриз (тосол)2990
Ацетон C3H6O2160
Бензин2090
Бензин авиационный Б-702050
Бензол C6H61050
Вода H2O4182
Вода морская3936
Вода тяжелая D2O4208
Водка (40% об.)3965
Водный раствор хлорида натрия (25%-ный)3300
Газойль1900
Гидроксид аммония4610
Глицерин C3H5(OH)32430
Даутерм1590
Карборан C2H12B101720
Керосин2085…2220
Кефир3770
Мазут2180
Масло АМГ-101840
Масло ВМ-41480
Масло касторовое2219
Масло кукурузное1733
Масло МС-202030
Масло подсолнечное рафинированное1775
Масло ТМ-11640
Масло трансформаторное1680
Масло хлопковое рафинированное1737
Масло ХФ-221640
Молоко сгущенное с сахаром3936
Молоко цельное3906
Нефть2100
Парафин жидкий (при 50С)3000
Пиво3940
Серная кислота (100%-ная) H2SO41380
Сероуглерод CS21000
Силикон2060
Скипидар1800
Сливки (35% жирности)3517
Сок виноградный2800…3690
Спирт метиловый (метанол) CH3OH2470
Спирт этиловый (этанол) C2H5OH2470
Сыворотка молочная4082
Толуол C7H81130
Топливо дизельное (солярка)2010
Топливо реактивное2005
Уротропин C6H12N41470
Фреон-12 CCl2F2840
Эфир этиловый C4H10O2340

Таблица удельной теплоемкости твердых веществ

В таблице дана удельная теплоемкость твердых веществ: стройматериалов (песка, асфальта и т.д.), теплоизоляции различных типов и других распространенных материалов в интервале температуры от 0 до 50°С при нормальном атмосферном давлении.

Таблица удельной теплоемкости пищевых продуктов

В таблице приведены значения средней удельной теплоемкости пищевых продуктов (овощей, фруктов, мяса, рыбы, хлеба, вина и т. д.) в диапазоне температуры 5…20°С и нормальном атмосферном давлении.

Кроме таблиц удельной теплоемкости, вы также можете ознакомиться с подробнейшей таблицей плотности веществ и материалов, которая содержит данные по величине плотности более 500 веществ (металлов, пластика, резины, продуктов, стекла и др.).

Источник

Теплоёмкость

Теплоемкость газов, твердых тел. Примеры значений. Методы определения теплоемкости индивидуальных веществ. Экспериментальное измерение теплоемкости для разных интервалов температур – от предельно низких до высоких. Производные потенциалы Гиббса.

по дисциплине Теплофизика

на тему: «Теплоёмкость»

Количество теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их температуры), но и от способа, которым был осуществлен процесс перехода между ними. Соответственно от способа нагревания тела зависит и его теплоемкость.

Обычно различают теплоемкость при постоянном объёме (Cv) и теплоемкость при постоянном давлении (Ср), если в процессе нагревания поддерживаются постоянными соответственно его объём или давление.

1. ТЕПЛОЕМКОСТЬ ГАЗОВ

При достаточно низких температурах теплоемкость вообще должна вычисляться с помощью квантовой статистики. Как оказывается, теплоемкость убывает с понижением температуры, стремясь к нулю в согласии с так называемым принципом Нернста (третьим началом термодинамики).

2. ТЕПЛОЕМКОСТЬ ТВЕРДЫХ ТЕЛ

У металлов определённый вклад в теплоемкость дают также и электроны проводимости. Эта часть теплоемкости может быть вычислена с помощью квантовой статистики Ферми, которой подчиняются электроны. Электронная теплоемкость металла пропорциональна первой степени абсолютной температуры. Она представляет собой, однако, сравнительно малую величину, её вклад в теплоемкость становится существенным лишь при температурах, близких к абсолютному нулю (порядка нескольких градусов), когда обычная теплоемкость, связанная с колебаниями атомов кристаллической решётки, представляет собой ещё меньшую величину.

3. ПРИМЕРЫ ЗНАЧЕНИЙ ТЕПЛОЕМКОСТИ

Ниже приводятся значения теплоемкость [ккал/(кгЧ град)] некоторых газов, жидкостей и твёрдых тел при температуре 0 °С и атмосферном давлении (1 ккал =4,19кдж).

4. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕПЛОЕМКОСТИ ИНДИВИДУАЛЬНЫХ ВЕЩЕСТВ

Основным экспериментальным методом является калориметрия. Теоретический расчет теплоемкости веществ осуществляется методами статистической термодинамики, но он возможен только для сравнительно простых молекул в состоянии идеального газа и для кристаллов, причем в обоих случаях для расчета требуются экспериментальные данные о строении вещества.

Эмпирические методы определения теплоемкости веществ в состоянии идеального газа основаны на представлении об аддитивности вкладов отдельных групп атомов или химических связей. Имеются различные таблицы групповых атомных вкладов в значение Ср. Для жидкостей, помимо аддитивно-групповых, применяют методы, основанные на использовании термодинамических циклов, позволяющих перейти к теплоемкости жидкости от теплоемкости идеального газа через температурную производную энтальпии испарения.

Для раствора вычисление теплоемкости как аддитивной функции теплоемкости компонентов в общем случае некорректно, т.к. избыточная теплоемкость раствора, как правило, значительна. Для ее оценки требуется привлечение молекулярно-статистической теории растворов. Экспериментально избыточная теплоемкость может быть определена по температурной зависимости энтальпии смешения, после чего возможен расчет Ср раствора.

Теплоемкость гетерогенных систем представляет наиболее сложный случай для термодинамического анализа. На диаграмме состояния перемещение вдоль кривой равновесия фаз сопровождается изменением и р, и Т. Если в процессе нагрева происходит смещение точки фазового равновесия, то это дает дополнительный вклад в теплоемкость, поэтому теплоемкость гетерогенной системы не равна сумме теплоемкостей составляющих ее фаз, но превосходит ее. На фазовой диаграмме при переходе от гомогенного состояния к области существования гетерогенной системы теплоемкость испытывает скачок.

теплоемкость гиббс потенциал тело

1. Кикоин И. К., Кикоин А. К., Молекулярная физика. М., 1963.

2. Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5).

3. Рид Р., Праусниц Дж., Шервуд Т., Свойства газов и жидкостей, пер. с англ., 3 изд., Л., 1982.

4. Шульц М. М., Филиппов В. К., «Ж. Весе. хим. об-ва им. Д.И. Менделеева», 1982, т. 27, с. 485-94.

5. Панов М.Ю., Белоусов В.П., в сб.: Химия и термодинамика растворов, в. 5, Л., 1982, с. 56-87.

6. Термодинамические свойства индивидуальных веществ, под ред. В. П. Глушко, 3 изд., т. 1-4, М., 1978-82.

Подобные документы

Определение удельной и молярной теплоемкости. Уравнение Менделеева-Клапейрона. Расчет теплоемкости газа, сохраняющего неизменным объем. Метод наименьших квадратов. Отношение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме.

лабораторная работа [42,3 K], добавлен 21.11.2013

Газовая постоянная воздуха. Изотермическое сжатие и адиабатное расширение воздуха. Измерение теплоемкости твердых тел. Измерение теплопроводности твердых тел. Теплопроводность однослойных и многослойных стенок. Соотношения между единицами давления.

методичка [2,3 M], добавлен 22.11.2012

Динамика и теплоемкость кристаллической решетки. Особенности объяснения зависимости теплоемкости от температуры с помощью закона Дюлонга–Пти, модели Эйнштейна, модели приближения Дебая. Основные положения квантовой теории гармонического кристалла.

реферат [123,6 K], добавлен 06.09.2015

Особенности и алгоритм определения теплоемкости газовой смеси (воздуха) методом калориметра при постоянном давлении. Процесс определения показателя адиабаты газовой смеси. Основные этапы проведения работы, оборудование и основные расчетные формулы.

лабораторная работа [315,4 K], добавлен 24.12.2012

Физика низких температур. Низкотемпературные проблемы и возможности сжижения газов. Интенсивность тепловых движений. Свойства газов и жидкостей при низких температурах. Получение низких температур. Сверхтекучесть и другие свойства жидкого гелия.

курсовая работа [988,1 K], добавлен 16.08.2012

Тепловые свойства твердых тел. Классическая теория теплоемкостей. Общие требования к созданию анимационной обучающей программы по физике. Ее реализация для определения удельной теплоемкости твердых тел (проверка выполнимости закона Дюлонга и Пти).

дипломная работа [866,2 K], добавлен 17.03.2011

реферат [81,5 K], добавлен 25.01.2009

Объяснение перехода теплоты от одного тела к другому на основе калориметрических опытов, произведенных русским ученым М.В. Ломоносовым. Определение теплоемкости металлов (алюминия и железа) при комнатной температуре, сравнение с теоретическими данными.

презентация [1,6 M], добавлен 19.12.2013

Виды теплоемкости и соотношение между теплоёмкостями при постоянном давлении и постоянном объеме. Расчет численного значения адиабаты в уравнении Пуассона для одноатомного и многоатомного газов. Теплоемкость в изотермическом и адиабатном процессах.

методичка [72,7 K], добавлен 05.06.2011

Определение политропного процесса. Способы определения показателя политропы. Вычисление теплоемкости и количества теплоты процесса. Расчет термодинамических свойств смеси, удельных характеристик процесса. Проверка расчётов по первому закону термодинамики.

контрольная работа [170,2 K], добавлен 16.01.2013

Источник

Чем ниже теплоемкость тем

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Чем ниже теплоемкость тем. Смотреть фото Чем ниже теплоемкость тем. Смотреть картинку Чем ниже теплоемкость тем. Картинка про Чем ниже теплоемкость тем. Фото Чем ниже теплоемкость тем

Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *