Что значит составить задачу

Общая структура методики составления задач по математике

Разделы: Математика

Математическое образование необходимо как часть общей культуры для всех учащихся, а поэтому изучение математики в колледже в группах, готовящих квалифицированных бухгалтеров, товароведов на базе основной школы с получением среднего образования и специальности, является необходимым. Уровень математического образования, обеспечиваемый введением новых программ, становится одним из важных элементов подготовки учащихся, к общественно полезной деятельности. Задача для преподавателя математики в колледже непростая: в кратчайший срок, за один год, в отведенное по учебному плану время, а это в пределах 180 часов изучить программный материал в объеме математики 10-11 классов. И не только изучить, но и вооружить мобильными, ровными знаниями, которые при переходе на дальнейшую ступень учебы будут сразу востребованы при изучении высшей математики в технологических и бухгалтерских группах.

Цель преподавания заключается в том, чтобы учащийся овладел математикой. Термин “овладел” очень растяжимый. Во-первых, учащийся должен нечто знать. Во-вторых, он должен на некоторую глубину понимать, т.е. под знанием подразумевается не только умение повторить формулировку, а мотивировать, почему так, а не иначе. В-третьих, учащийся должен уметь применять изученную им математику по профилю специальности.

Для достижения этих целей необходимо изучать теорию и решать задачи. Решая задачи, применяем теорию и тем самым познаем ее. Изучать математику, не решая задач, совершенно бесполезно. В этом вряд ли кто-то сомневается, но многие неправильно понимают роль задач. Обучение математике нельзя разделить на теорию и решение задач. Невозможно без решения задач усвоить теорию. Цель не в том, чтобы ученик решил задачу (т.е. получил ответ), а в том чтобы получил от этой задачи пользу, т.е. продвинулся на одну ступеньку по длинной лестнице овладения математикой. Цель не в ответе, а в процессе решения. Решая задачи учащийся приобретает новые знания и навыки, развивает в себе настойчивость, приобщается к математическому творчеству.

Наиболее эффективно и результативно развитие математического творчества проявляется при составлении математических задач преподавателем и учащимися, где отражается систематическое применение материалов по специальности, элементов производственного процесса. Математическое творчество прослеживается на всех этапах составления задач по математике. Целесообразно давать учащимся задания на составление задач, связанных с той или другой специальностью, чтобы при их решении нужно было использовать изучаемый на уроках материал. Например, предлагаются для групп по специальности “товароведение” задачи на нахождение процентного содержания вещества, расчет наибольшего и наименьшего значения количества материала. Для групп по специальности “экономика и бухгалтерский учет” предлагаются задачи на определение величины дохода и возвращаемого займа, расчет прибыли, общей суммы дохода предприятия и т. д. После решения подобных задач учащиеся более подробно узнают об особенностях и значимости выбранной профессии, о трудностях в работе, об оплате.

Каждая решаемая задача имеет методическую цель. Поэтому преподаватель должен стремиться не к тому, чтобы задача была решена быстро и безошибочно или только на развитие тренировки, а к тому, чтобы она была решена творчески и чтобы из нее выжить как можно больше пользы для математического развития ученика.

Под составлением задачи по математике надо понимать не простую репродукцию задачи из сборника или учебного пособия, а самостоятельную постановку и решение проблемы учащимися, которая в общем случае решается с помощью логических умозаключений, математических действий на основе законов и методов математики.

Понимание взаимосвязи решения и составления задач позволит преподавателю добиться повышения эффективности и результативности составления и решения задач.

В перспективе, при овладении учащимися достаточно высокого уровня в составлении математических задач, по требованию преподавателя ученик сам выбирает задачную ситуацию, составляет, решает ее, а преподаватель проверяет и осуществляет отбор для дальнейшего использования.

Источник

Математика. 2 класс

Конспект урока

Математика, 2 класс

Урок № 10. Задачи, обратные данной

Перечень вопросов, рассматриваемых в теме:

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др. –8-е изд. – М.: Просвещение, 2017. – с.26, 27

2. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова А.Д.-М.: Просвещение, 2017, с. 16, 17

3. Математика. Рабочая тетрадь. 2 кл. 1 часть: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017.-с.31

Теоретический материал для самостоятельного изучения

Составим по рисунку первую задачу.

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

В классе 10 девочек и 8 мальчиков. Сколько всего детей в классе?

Составим схематический рисунок.

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Ответ: 18 детей в классе.

Составим вторую задачу.

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

В классе 18 детей. Девочек 10, остальные-мальчики. Сколько мальчиков в классе?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Ответ: 8 мальчиков в классе.

Составим третью задачу.

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Ответ: 10 девочек в классе.

Посмотрим еще раз на схемы к каждой задаче. Обратим внимание на то, что во всех задачах одинаковый сюжет, но то, о чем спрашивается в первой задаче стало известным во второй и третьей задачах, а узнать во второй задаче, сколько мальчиков и в третьей задаче сколько девочек в классе надо то, что известно в первой задаче.

Задачи, в которых известно то, о чем спрашивается в первой задаче и надо узнать то, что в первой задаче известно, называют обратными первой.

Сделаем вывод: задачи, обратные данной считаются те задачи, в которых говорится об одних и тех же предметах, но известное и неизвестное меняются местами.

1. Решите задачу. Выберите задачи, обратные данной.

Кате подарили 8 воздушных шариков красного и синего цвета. Красных шариков было 5. Сколько синих шариков у Кати?

1. Кате подарили 5 шариков красного цвета и 3 шарика синего цвета. Сколько шариков у Кати?

2. У Кати было 8 шариков. 3 шарика она подарила. Сколько шариков осталось у Кати?

3. Кате подарили 8 воздушных шариков красного и синего цвета. Синих шариков было 3. Сколько красных шариков у Кати?

1. Кате подарили 5 шариков красного цвета и 3 шарика синего цвета. Сколько шариков у Кати?

3. Кате подарили 8 воздушных шариков красного и синего цвета. Синих шариков было 3. Сколько красных шариков у Кати?

1.В июне было 10 пасмурных дней и 20 ясных дней. Сколько дней в ________?

2. В июне ____ дней. Из них 10 дней были пасмурными. Сколько______ дней было в июне?

3. В июне 30 дней. Ясными были ____ дней. Сколько ____ дней было в июне?

30, 20, ясных, пасмурных, июне

1. В июне было 10 пасмурных дней и 20 ясных дней. Сколько дней в июне?

2. В июне 30 дней. Из них 10 дней были пасмурными. Сколько ясных дней было в июне?

3. В июне 30 дней. Ясными были 20 дней. Сколько пасмурных дней было в июне?

Источник

Образцы оформления задачи

В разделе «Задачи» мы рассмотрели несколько видов задач. Теперь поучимся оформлять решения к ним.

В вопросе задач такого типа всегда есть «Сколько всего?»

На школьном участке ребята посадили 7 лип и 4 клёна.

Сколько всего деревьев посадили ребята?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

2. Задачи на нахождение остатка

Мама с Юлей посадили 7 кустов смородины. Затем они полили 4 куста.

Сколько кустов смородины осталось полить?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Сколько грибов нашёл Володя?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

У Ани было 10 рублей, а у Оли на 2 рубля меньше.

Сколько денег было у Оли?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

4. Задачи на разностное сравнение

Краски стоят 15 рублей, а альбом 8 рублей.

На сколько рублей краски дороже альбома?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Дыня весит 3 кг, а арбуз 7 кг.

На сколько кг дыня легче арбуза?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

5. Задачи на нахождение неизвестного слагаемого

В условии «Было. Стало. «

В вопросе «Сколько добавили?»

У Саши было 4 карандаша. Когда ему купили еще несколько карандашей, у него их стало 9.

Сколько карандашей купили Саше?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

6. Задачи на нахождение неизвестного вычитаемого

В условии «Было. Осталось. «

В вопросе «Сколько уехало?»

«Сколько человек вышло?»

В гараже было 9 машин. Когда несколько машин уехало, в гараже осталось 5 машин.

Сколько машин уехало?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

7. Задачи на нахождение неизвестного уменьшаемого

В условии «Убрали. Осталось. «

В вопросе «Сколько было сначала?»

После того, как Дима отдал 2 свои машинки младшему брату, у него осталось 6 машинок.

Сколько машинок было у Димы сначала?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Задачи в 2 и 3 действия

Бабушка испекла пончики и разложила их по тарелкам. На первую тарелку она положила 5 пончиков, а на вторую на вторую на 2 пончика меньше.

Сколько всего пончиков испекла бабушка?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Сколько рыбок в двух аквариумах?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

У Тани было 10 тетрадей. Она использовала 4 тетради.

На сколько больше тетрадей осталось, чем Таня использовала?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

У Юры было 12 счетных палочек. Для решения примеров он использовал сначала 3, а потом еще 4 палочки.

Сколько палочек у него осталось?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

У Вани было 20 рублей. На покупку карандаша и ручки он истратил 6 и 8 рублей.

Сколько рублей осталось у Вани?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Задачи с составлением таблиц по из условию:

I тип:

На 3 одинаковые шторы израсходовали 18 м ткани. Сколько таких штор можно сшить из 30 м такой же ткани?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

В двух одинаковых пакетах 4 кг муки. Сколько килограммов муки в пяти таких пакетах?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Задачи с составлением рисунка по условию:

Два года назад Юле было 10 лет. Сколько лет будет Юле через 6 лет?

Что значит составить задачу. Смотреть фото Что значит составить задачу. Смотреть картинку Что значит составить задачу. Картинка про Что значит составить задачу. Фото Что значит составить задачу

Поделись с друзьями в социальных сетях:

Источник

Обучение составлению задач по выражению, 1-4 классы.

Обучение составлению задач по выражению

Этапы обучения составлению задач по выражению

1. Подготовительный этап – обучение составлению задач по выражениям, включающим одно действие.
На данном этапе перед нами стоит цель обучить составлению задач по выражениям, включающим одно действие. Чтобы обучающиеся осознали, что одним и тем же арифметическим действием можно решить разные виды задач, предлагаются следующие задачи:
1. решающиеся действием сложения (задача разбирается устно всем классом, решения записываются на доске в столбики)
«Девочка вымыла 25 глубоких тарелок и 16 мелких. Сколько всего тарелок вымыла девочка?»
«Один дом построили за 3 недели, а на строительство второго дома затратили на 2 недели больше. Сколько недель затратили на строительство второго дома?»

После решения всех задач необходимо сделать вывод о том, что одним и тем же выражением можно записать решения различных задач. Для этого предлагается посмотреть на записи в столбиках и подумать, что можно сказать о записях в каждом столбике, какие задачи решались.
Следующий шаг – составление всевозможных задач по одному выражению.
Чтобы облегчить поиск сюжета, на доску вывешивается таблица с перечнем глаголов, которая была составлена совместно с учащимися в ходе беседы о том, какие действия можно совершать с игрушками, покупками, книгами, тканями и т.д.

Подарили Вылепили Покрасили
Заплатили Отрезали Погрузили
Убрали Вырастили Прочитали
Начертили Принесли Разложили
Полили Уехали Привезли

Так же следует отметить, что сюжет задачи, а, следовательно, и слова, обозначающие действия, обучающиеся могут придумать сами.

Для того чтобы добиться результативности в работе, необходимо предусмотреть при обучении составлению текстовых задач следующие этапы.

Поэтому вынесем на доску готовый алгоритм составления задачи:
1) придумаю сюжет задачи
2.назову объекты, о которых будет говориться в задаче
3.дам количественную характеристику объектам
4.сформулирую требование задачи
5.смоделирую текст задачи.

На доске записывается выражение а + в. Дается задание придумать как можно больше задач, которые можно решить с помощью данного выражения. Далее идет обсуждение придуманных задач.
Такая же работа проводится с выражениями а – в, а * в, а : в.

2. Обучение составлению задач по выражениям, включающим два действия.
Работа проводится в несколько этапов.
1, 2, 3, 4 этапы – фронтальная работа.
5 этап – групповая работа.
6 этап – индивидуальная работа.

1 этап – составление задачи по образцу учителя.

Предлагается решить задачу «В книжном шкафу на трех полках стоит по 10 книг, а на четвертой полке 5 книг. Сколько книг в шкафу?»
-О чем говорится в задаче? (О книгах.)
-Зная, что на трех полках по 10 книг, что можно найти? (Сколько всего книг на трех полках.)
-Зная, сколько всего книг на трех полках и сколько книг на четвертой полке, что можно найти? (Сколько всего книг в шкафу.)
-Запишем решение в виде выражения.
На доске появляется запись 10*3+5

Следующий шаг – объяснение учителем, как он будет составлять задачу.
Опять используется таблица со словами-подсказками.
-Посмотрите внимательно на выражение. Какое действие выполняем первым? (Действие умножения)
-По 10 взяли три раза.
-В решенной задаче назовите объект, к которому относится число 3? (Количество полок, на которых было по 10 книг).
-В решенной задаче назовите объект, к которому относится число 10? (Число книг на каждой из трех полок).
-Что обозначает число 5? (Отдельное число книг на четвертой полке).
-Таким образом, было книг по 10 три раза да еще 5.
-Придумаем задачу с такими же количественными характеристиками.
1. Придумаю сюжет задачи: привоз в магазин.
2. Выберу объекты: пачки с печеньем.
3.Дам объекту количественную характеристику: по 10 три раза – по 10 пачек печенья в трех коробках, да еще 5 пачек отдельно.
4.Сформулирую требование задачи: сколько пачек печенья привезли в магазин?
5.Смоделирую текст задачи: «В магазин привезли три коробки с печеньем по 10 пачек в каждой коробке, да еще 5 пачек отдельно. Сколько пачек печенья привезли в магазин?»

Текст задачи появляется на доске. Предлагается разобрать задачу, чтоб убедиться, будет ли предложенное выражение являться решением составленной задачи. После решения задачи подводится итог, что учитель составил задачу по предложенному выражению верно.

Следующий шаг – составление учащимися аналогичных задач по образцу, данному учителем, но предлагается изменить числовые данные. Предлагается выражение 8*4+.

-Решите задачу, записав решение в виде выражения.
На доске появляется выражение вида (6+4)*2.
Вывод: в данном выражении одну количественную характеристику сложили со второй количественной характеристикой и увеличили в два раза.

Следующее, что предстоит сделать, это составить задачу по этому же выражению.
-Сколько групп объектов должно быть в задаче? (три)
-Что известно о количестве объектов первой группы? (их 6)
-Что сказано о количестве объектов второй группы? (их 4)
-А что можно будет сказать про количество объектов третьей группы? (их в два раза больше, чем первых и вторых вместе)
-Составьте аналогичную задачу по этому же выражению, подобрав объекты сами. Можно сюжет изменить [Приложение № 2].

Задача 2: «В школьном концерте выступили 8 чтецов, певцов – в 2 раза меньше, а танцоров – на 3 больше, чем певцов. Сколько танцоров выступило в школьном концерте?»
-О чем говорится в задаче?
-Кто выступал в концерте?
-Что сказано о чтецах?
-Что сказано о певцах? Можем ли мы найти, сколько их было? Как?
-Что сказано о танцорах? Можем ли мы узнать, сколько их было? Как?
-Ответили мы на вопрос задачи?
-Составьте краткую запись.

Чтецы-8 чел.
Певцы-?, в 2 раза меньше, чем
Танцоры-?, на 3 больше, чем

— Решите задачу, записав решение в виде выражения.
На доске появляется запись 8:2+3.
Вывод: одну количественную характеристику уменьшили в 2 раза, тем самым нашли вторую количественную характеристику. Затем ко второй количественной характеристике прибавили еще 3, тем самым нашли третью (искомую) характеристику.

Предлагается составить аналогичную задачу.
-Сколько групп объектов должно быть в вашей задаче? (три)
-Что известно о количестве представителей первой группы объектов? (их 8)
-Что можете сказать о количестве представителей второй группы объектов? (мы не знаем сколько их, но знаем, что их в 2 раза меньше, чем первых)
-Что можете сказать о количестве представителей третьей группы? (не знаем, сколько их, но знаем, что их на 3 больше, чем вторых)
-Составьте аналогичную задачу по этому же выражению, подобрав другие объекты. Сюжет можно изменить [Приложение № 2].

3 этап – составление задач с описанием новой ситуации.
На данном этапе обучающиеся должны научиться составлять задачи с описанием иной ситуации сначала по образцу учителя, а затем самостоятельно. Поэтому здесь можно выделить два шага.
1 шаг – составление задач по образцу задачи учителя.
Решается задача: «Два мальчика разделили подаренные им 80 рублей поровну. Один из мальчиков истратил 15 рублей. Сколько денег у него осталось?»
-О ком говорится в задаче?
-Что сказано про мальчиков?
-Как разделили деньги мальчики?
-Можем сразу ответить на вопрос задачи? Почему?
-Можно узнать, сколько было денег у каждого мальчика?
-Составим краткую запись в виде чертежа.
1 м.
2 м.
? 15 руб.
-Что найдем сначала? Каким действием?
-Теперь можно ответить на вопрос задачи? Каким действием?
Задача решается, решение записывается в виде выражения 80:2-15
Делается вывод: определенное число группы объектов разделили на две равные части, и из одной части сняли определенное их количество.

«Два мальчика разделили подаренные им 80 рублей поровну. Один из мальчиков истратил 15 рублей. Сколько денег у него осталось?»
«В школу привезли 80 стульев, а парт – в 2 раза меньше. 15 парт отдали в музыкальную школу. Сколько парт из привезенных осталось в школе?»

Объект – деньги.
Действием деления определенное количество денег делится на две равные части.
Из одной части денег отнимается определенное количество рублей. Объект – парты и стулья.
Действием деления находится количество второй группы объектов, т.е. парт (уменьшаем количество стульев в два раза).
Из второй группы объектов отнимается определенное их количество.

-Глядя на выражение, с помощью которого записано решение этих двух задач, и судя по сравнению содержания этих задач, к какому выводу можно прийти? (с помощью одного и того же выражения записано решение двух совершенно разных задач)
Далее детям предлагается составить задачу, аналогичную той, которая составлена учителем (Приложение № 2).
2 шаг – самостоятельное составление задачи другого вида по выражению ранее решенной задачи.
Всем классом разбирается задача: «У Мити 3 игрушечных динозаврика, у Саши – в 2 раза больше, чем у Мити, а у Славы – на 4 динозаврика больше, чем у Саши. Сколько динозавриков у Саши?»
В итоге получается выражение 3*2+4.
-Что обозначает действие умножения в этой задаче? (количество динозавриков Мити увеличили в два раза)
-Что означает действие умножения в высказывании «карандаши разложили в 2 коробки по 3 штуки»? (по 3 взяли два раза)
-Попробуйте составить задачу, в которой какие-либо 3 объекта возьмут два раза, да еще добавят 4 такие же объекта.

4 этап – составление памятки.
На данном этапе необходимо составить алгоритм, которым смогут пользоваться учащиеся при составлении задач по выражению.
-С чего начинаем, когда нам предложено то или иное выражение? (смотрим, какие действия в этом выражении, какое действие выполняется первым, вторым)
-Вспомним, что мы находим действием умножения (сумму одинаковых слагаемых, либо увеличиваем число в несколько раз).
-Вспомним, что мы находим действием деления (деление на равные части, деление по содержанию, уменьшение числа в несколько раз).
-Теперь необходимо выбрать, что мы будем делать с будущими объектами, используя данное действие.
-Можно приступить непосредственно к придумыванию задачи? (да, можно)
-Что теперь нам необходимо придумать? (сюжет задачи)
-Далее что делаем? (придумываем объекты)
-Как теперь связать объекты с выражением? (подумать, какой объект связать с той или иной числовой данной)
-Условие задачи практически готово, чего еще не хватает в будущей задаче? (требования)
-Составив требование, что нужно сделать? (сформулировать текст задачи)
-Сформулируем памятку в виде пунктов плана:

1. Посмотрю на действие, которое выполняется первым, и подумаю, что я могу найти этим действием.
2. Придумаю сюжет задачи.
3. Придумаю объекты задачи.
4. Свяжу объекты с числовыми данными выражения.
5. Составлю требование задачи.
6. Сформулирую текст задачи.

Учащиеся готовят для себя памятки в виде карточек, чтобы иметь возможность использовать их в дальнейшей работе.

5 этап – составление задач в парах.
1. Первый ученик решает задачу, составляя выражение. Второй ученик составляет аналогичную задачу. Затем меняются ролями.
Задача 1: «Мама сварила 33 кг варенья. 5 кг варенья она налила в одну банку, а остальное – в 7 банок поровну. Сколько килограммов варенья она налила в каждую банку?»
Задача 2: «Засолили 89 кг огурцов, 65 кг поместили в бочку, а остальные разложили поровну в 8 банок. Сколько килограммов огурцов положили в каждую банку?»
2. Первый ученик решает задачу, составляя выражение. Второй ученик составляет по этому выражению задачу с описанием новой ситуации. Затем меняются ролями [Приложение № 3].
Задача 1: «18 учеников сели по 2 ученика за парту. Еще 4 парты остались свободными. Сколько всего парт?»
Задача 2: «20 яблок разложили по 5 яблок на тарелки. Еще 5 тарелок остались пустыми. Сколько всего тарелок?»

6 этап – индивидуальная работа.
Каждому учащемуся предлагается решить задачу, составив выражение. А затем дается задание составить задачу по этому выражению, но с описанием новой ситуации. Задачи даются по вариантам.
Задача 1: «В школьный хор из первых классов взяли 9 учеников, из вторых классов – в 2 раза больше, чем из первых классов, а из третьих – на 3 ученика меньше, чем из вторых классов. Сколько учеников взяли в школьный хор из третьих классов?»
Задача 2: «На молочной ферме работало 8 школьников, в поле – в 4 раза больше, чем на ферме, а в саду – на 10 школьников меньше, чем в поле. Сколько школьников работало в саду?»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *