Что значит нерегулярные полимеры
Регулярные и нерегулярные полимеры.
Если в цепи полимера наблюдается монотонное чередование звеньев, т.е. соблюдается совершенный, дальний порядок звеньев по цепи, то полимер построен регулярно. Нарушение этого порядка ведет к нерегулярности строения цепи полимера. Нерегулярность цепи может обуславливаться разными причинами. Во-первых, нерегулярность цепи может определяться способом последовательного присоединения друг к другу одних и тех же мономерных звеньев. Так, при реакции полимеризации звенья могут соединяться двумя различными способами:
В первом случае присоединение называется “голова к хвосту”, во втором – “голова к голове”.
Во-вторых, нерегулярность цепи может обусловливаться разной степенью разветвленности, так как места присоединения боковой цепи, число ответвлений и их длина могут быть различными. Разветвленные полимеры построены очень нерегулярно.
В-третьих, нерегулярность цепи может быть следствием беспорядочного чередования мономерных звеньев различного химического строения. Этот вид нерегулярности в большинстве случаев наблюдается у сополимеров, так как при совместной полимеризации остатки мономеров могут соединяться хаотично.
Большое значение имеет стереорегулярность полимеров. Стереорегулярными называются полимеры, у которых все звено и все заместители расположены в пространстве в каком-либо определенном порядке. Если такой порядок в пространственном расположении отсутствует, то полимер стереорегулярен. У стереорегулярных полимеров возможна конфигурационная изомерия, к которой относятся цис-транс- и L-D-изомерия.
Цис-транс-изомерия характерна для полимеров, содержащих в главной цепи двойные связи. В цис-изомерах звенья распологаются относительно плоскости каждой двойной связи по одну и ту же сторону, в транс-изомерах-по разные:
Цис-изомер (натуральный каучук)
Оба соединения являются стереорегулярными. Полимер, в цепи которого остатки диена соединены беспорядочно в цис-и транс-положениях, стереорегулярен.
Вторым типом конфигурационной изомерии является L-D-изомерия, обусловленная наличием асимметрического атома углерода в цепи полимера:
Асимметрия углеродного атома обусловлена наличием двух различных заместителей А и В и различиями в длинах и пространственной конфигурации обеих молекулярных цепей, связанных с этим атомом (R¹R¢). Полимеры, у которых все соседние асимметрические углеродные атомы по крайней мере на протяжении одной макромолекулярной цепи обладают одинаковой пространственной конфигурацией, называются изотактическими полимерами. Полимер, макромолекулы которых простроены из звеньев с противоположной пространственной конфигурацией каждого следующего асимметрического углеродного атома в цепи, называются синдиотактическими полимерами.
Для синдиотактического строения такое совмещение заместителей возможно не для соседних звеньев, а только для звеньев, между которыми в цепи находится одно звено противоположной пространственной конфигурации:
Полимеры, у которых группы расположены в пространстве нерегулярно, называются атактическими.
Рис.3. Изотактические (а), синдиотактические (б), атактические (в) полиолефины
Конспект урока Биология, 10 класс Урок 2. «Неорганические соединения клетки. Углеводы и липиды. Регулярные и нерегулярные биополимеры»
Урок 2. «Неорганические соединения клетки. Углеводы и липиды. Регулярные и нерегулярные биополимеры»
3. Перечень вопросов, рассматриваемых в теме;
Урок позволит выявить особенности химического состава организмов, роль неорганических (воды, солей) и органических (углеводов, липидов) веществ в жизни клетки и организма.
Обучающиеся узнают, какие химические элементы входят в состав живых организмов, рассмотрят самое важное минеральное вещество на Земле, структуру молекулы воды и её биологическую роль, выяснят физические и химические свойства воды, благодаря которым возможно существование жизни на Земле.
Также обучающиеся увидят особенности строения органических веществ, узнают, на какие классы делятся углеводы и липиды, их значение для жизнедеятельности клетки и организма в целом.
4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);
Биологически значимые элементы, органогены, неорганические вещества, вода, водородная связь, гидрофильные вещества, гидрофобные вещества; органические вещества, регулярные и нерегулярные биополимеры; углеводы, липиды
Биологически значимые элементы – химические элементы, необходимые живым организмам для обеспечения нормальной жизнедеятельности.
Органогены — химические элементы, входящие в состав всех органических соединений, составляют около 98% массы клетки (углерод, водород, кислород, азот).
Неорганические вещества (неорганические соединения) клетки — простые вещества и соединения, не являющиеся органическими, не имеют характерного для органических веществ углеродного скелета.
Органические вещества – это сложные соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Органические соединения многообразны, но четыре группы из них имеют всеобщее биологическое значение: белки, нуклеиновые кислоты, углеводы и липиды.
Водородная связь – вид взаимодействия между молекулами вещества. Молекулы воды удерживаются за счет водородных связей, которые возникли между частично положительным атомом водорода одной молекулы и частично отрицательным атомом кислорода другой молекулы. Водородные связи заметно слабее по сравнению с ковалентными. Однако они намного крепче, чем стандартное молекулярное притяжение частиц, свойственное твёрдым и жидким телам.
Гидрофильные вещества – хорошо растворимые в воде вещества, молекулы которых полярны и легко соединяются с молекулами воды. К ним относятся ионные соединения (содержат заряженные частицы): соли, кислоты, основания и полярные соединения (в молекулах присутствуют заряженные группы): сахара, простые спирты, аминокислоты.
Гидрофобные вещества – нерастворимые в воде вещества, энергия притяжения молекул которых к молекулам воды меньше энергии водородных связей молекул воды. К числу гидрофобных веществ относятся жиры, полисахариды, нуклеиновые кислоты, большинство белков.
Буферность – способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне.
Полимер (от греч. «поли» — много) — многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество — мономер.
Регулярные полимеры – полимеры, в молекуле которых группа мономеров периодически повторяется (полисахариды).
Нерегулярные полимеры – полимеры, в которых нет определенной закономерности в последовательности мономеров (белки, нуклеиновые кислоты, некоторые полисахариды).
Углеводы – органические соединения, состоящие из атомов углерода, кислорода и водорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы).
Полисахариды – высокомолекулярные углеводы, молекулы которых представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды.
Липиды — обширная группа органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов
5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);
6. Открытые электронные ресурсы по теме урока (при наличии);
1.Российский общеобразовательный Портал www.school.edu.ru
2 Единая коллекция цифровых образовательных ресурсов www.school-collection.edu.ru
3.Каталог образовательных ресурсов по биологии http://www.mec.tgl.ru/index.php?module=subjects&func=viewpage&pageid=133
7. Теоретический материал для самостоятельного изучения;
В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.
Их делят на три группы:
Молекулярный состав клетки сложный и разнородный. Отдельные соединения — вода и минеральные соли — встречаются также в неживой природе; другие — органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.— характерны только для живых организмов.
Вода составляет около 80 % массы клетки; в молодых быстрорастущих клетках — до 95 %, в старых — 60 %.
Роль воды в клетке велика.
Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» — вода, «филее» — люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» — страх) — жиры, липиды и др.
Органические вещества в комплексе образуют около 20—30% состава клетки.
Углеводы — органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые — моносахариды (от греч. «монос» — один) и сложные — полисахариды (от греч. «поли» — много).
Моносахариды (их общая формула СnН2nОn) — бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.
Полисахариды относятся к полимерам — соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар — из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений — крахмал и клетчатка (целлюлоза). Последняя состоит из 150—200 молекул глюкозы.
Углеводы — основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO2 и Н2O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений — крахмал, у животных — гликоген).
Липиды — это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.
Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO2 и Н2O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.
8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).
Полимеры
Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть). |
…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2—CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.
Соединения, из которых образуются полимеры, называются мономерами.
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
Мономеры – низкомолекулярные вещества, из которых образуются полимеры. |
Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.
Классификация полимеров
Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.
Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.
Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Линейные | Разветвленные | Пространственные |
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. Целлюлоза, полиэтилен низкого давления, капрон | Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной Химические связи имеются и между цепями, образуя пространственную структуру Резина, фенолформальдегидные смолы |
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Классификация по происхождению
По способу получения полимеры делятся на: природные, синтетические и искусственные.
Природные волокна | Синтетические волокна | Искусственные |
Непосредственно существуют в природе Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.). Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе. Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука). Классификация по химическому характеруПо химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры). Найлон, капрон | Содержат атомы других хим. элементов (кремний и др.). Кремнийорганические полимеры |
Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).
Классификация по способу получения
Полимеры получают либо реакциями полимеризации, либо поликонденсацией.
Полимеризация | Поликонденсация |
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются. Полиэтилен, полипропилен и др. | Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт. Фенолформальдегидная смола, капрон |
Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера. |
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода). |
Свойства полимеров
По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.
Термореактивные | Термопластичные | Эластомеры |
Неплавкие и неэластичные материалы. Фенолформальдегидные смолы, полиуретан | Меняют форму при нагревании и сохраняют её. Полиэтилен, полистирол, поливинилхлорид | Эластичные вещества при разных температурах. Натуральный каучук, полихлоропрен |
Термореактивные полимеры — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.
Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.
Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.
Полимеризация и поликонденсация
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
Характерные признаки полимеризации. Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения. Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией. Важнейшие синтетические полимеры Изображение с портала orgchem.ru Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Поликонденсация
|