Что такое rnp в авиации
Требуемые навигационные характеристики RNP
Определение
Точность навигации
Системы зональной навигации (RNAV) и RNP в основном схожи. Основное различие между ними заключается в необходимости мониторинга и оповещения о производительности на борту. Навигационная спецификация, которая включает в себя требования для мониторинга и оповещения о производительности на борту, называется спецификацией RNP. Те спецификации, которые не имеют таких требований называется спецификацией RNAV. Поэтому, если радиолокационный контроль не предусмотрен УВД, пилот должен самостоятельно проконтролировать безопасность навигации по местности и вместо RNAV должен использоваться RNP.
RNP также относится к уровню производительности, необходимому для конкретной процедуры или конкретного блока воздушного пространства. Значение RNP, равное 10, означает, что навигационная система должна иметь возможность рассчитывать свое положение с точностью до квадрата с поперечным размером 10 морских миль. Значение RNP, равное 0,3, означает, что навигационная система воздушного судна должна иметь возможность рассчитывать свое положение с точностью до квадрата с поперечным размером 3/10 морской мили. Различия в этих системах обычно являются следствием избыточности бортовой навигационной системы.
Некоторое океаническое воздушное пространство имеет значение RNP, равное 4 или 10. Уровень RNP, на который способен летательный аппарат, определяет необходимое разницу между воздушными судами в отношении расстояния. Повышенная точность бортовых систем RNP представляет собой значительное преимущество для традиционных нерадиолокационных сред, поскольку число воздушных судов, которые могут вписаться в объем воздушного пространства на любой заданной высоте, представляет собой квадрат числа требуемого эшелонирования; то есть, чем ниже значение RNP, тем ниже требуемые стандарты эшелонирования по расстоянию и, в целом, больше воздушных судов может вписаться в объем воздушного пространства без потери требуемого эшелонирования. Это не только главное преимущество для операций воздушного движения, но и предоставляет большую возможность экономии средств для авиакомпаний, летающих над океанами, благодаря менее строгой маршрутизации.
История
RNP были введены в PANS-OPS (документ ICAO Doc 8168), который стал применяться в 1998 году.
В 1996 году авиакомпания Alaska Airlines стала первой авиакомпанией в мире, применившей RNP с заходом на посадку вниз по каналу Гастино в Джуно, Аляска. Капитан авиакомпании Аляски Стив Фултон и капитан Хэл Андерсон разработали более 30 подходов RNP для операций авиакомпании на Аляске. В 2005 году Alaska Airlines стала первой авиакомпанией, которая использовала RNP в Национальном аэропорту Рейгана, чтобы избежать заторов. В апреле 2009 года Alaska Airlines стала первой авиакомпанией, получившей одобрение от FAA для проверки RNP.
С 2009 года регулирующие органы в Перу, Чили и Эквадоре внедрили более 25 процедур захода на посадку по RNP AR, разработанных совместно с LAN Airlines. Преимущества включали сокращение выбросов парниковых газов и улучшенный доступ к аэропортам, расположенным в гористой местности. Использование подходов RNP AR в Куско, недалеко от Мачу-Пикчу, сократило отмены из-за плохой погоды на 60 процентов на рейсах, выполняемых по локальной сети.
В октябре 2011 года Boeing, Lion Air и Индонезийский генеральный директорат гражданской авиации выполнили проверочные полеты для проверки индивидуальных процедур RNP AR в двух аэропортах с вызовами на местности, в Амбоне и Манадо, Индонезия. Они выступили в качестве пионеров использования точной навигационной технологии RNP в Юго-Восточной Азии.
Описание и предназначение
Текущие конкретные требования системы RNP включают в себя:
Способность следовать желаемому наземному маршруту с надежностью, повторяемостью и предсказуемостью, включая кривые пути;
В местах, где для вертикального наведения включены вертикальные профили, используются вертикальные углы или ограничения высоты для определения желаемой вертикальной траектории.
Возможности мониторинга производительности и оповещения могут предоставляться в различных формах в зависимости от установки системы, архитектуры и конфигураций, включая:
отображение и индикацию как требуемой, так и расчетной производительности навигационной системы;
мониторинг работы системы и оповещение экипажа о несоблюдении требований RNP;
дисплеи отклонения между полосами, масштабированные до RNP, в сочетании с отдельным мониторингом и оповещением о целостности навигации.
Система RNP использует свои навигационные датчики, архитектуры и режимы работы для удовлетворения требований спецификации навигации RNP. Требования RNP могут ограничивать режимы эксплуатации воздушного судна, например, для низкой RNP, где техническая ошибка полета (FTE) является существенным фактором, и ручной полет может быть запрещен. Установка двойной системы/датчика также может потребоваться в зависимости от предполагаемой операции или необходимости.
Мониторинг производительности и требования к оповещению
Требования к мониторингу производительности и предупреждению для RNP 4, Basic-RNP 1 и RNP APCH имеют общую терминологию и применение. Каждая из этих спецификаций включает требования к следующим характеристикам:
Точность: Требование к точности определяет 95% суммарную погрешность системы (TSE) для тех величин, где задано требование к точности. Требование к точности соответствует навигационным спецификациям RNAV и всегда равно значению точности. Уникальным аспектом навигационных спецификаций RNP является то, что точность является одной из характеристик производительности, которая отслеживается на 100%;
Неисправности самолета: Неисправность бортового оборудования учитывается в правилах летной годности. Неисправности классифицируются по степени влияния уровня самолета, и система проектируется таким образом, чтобы снизить вероятность сбоя или смягчить его последствия. Требования к характеристикам неисправностей воздушных судов не являются уникальными для навигационных спецификаций RNP;
Сбои сигналов в пространстве: Характеристики сигнала в пространстве навигационных сигналов являются обязанностью Национального агентства разведки.
Применение мониторинга производительности
Хотя TSE (оборудование для безопасности на транспорте) может значительно меняться со временем по ряду причин, навигационные спецификации RNP обеспечивают гарантию того, что распределение TSE остается подходящим для конкретной операции.
По этой причине важны оперативные процедуры для мониторинга FTE.
Области деятельности
Океаническое и удаленное континентальное воздушное пространство
Океаническое и удаленное континентальное воздушное пространство в настоящее время обслуживается двумя навигационными приложениями, RNAV 10 и RNP 4. Оба в основном используют GNSS для поддержки навигационного элемента воздушного пространства. В случае RNAV 10 никакой формы наблюдения ОВД не требуется. В случае RNP 4 используется контракт ADS (ADS-C);
Терминальное воздушное пространство: прилет и вылет
Существующие концепции воздушного пространства терминала, которые включают в себя прилет и вылет, они поддерживаются приложениями RNAV. В настоящее время они используются в Европейском регионе и США. Европейское приложение RNAV воздушного пространства терминала известно как P-RNAV (Precision RNAV). Хотя спецификация RNAV 1 разделяет общую точность навигации с P-RNAV, эта региональная спецификация навигации не удовлетворяет всем требованиям спецификации RNAV 1.
Начиная с 2008 года, приложение воздушного пространства терминала Соединенных Штатов, ранее известное как US RNAV Type B, было приведено в соответствие с концепцией PBN и теперь называется RNAV 1. Базовый RNP 1 был разработан главным образом для применения в нерадиолокационном воздушном пространстве терминала с низкой плотностью. Ожидается, что в будущем будет разработано больше приложений RNP как для полетов на маршруте, так и для воздушного пространства терминала.
СОДЕРЖАНИЕ
Точность навигации
Некоторое океаническое воздушное пространство имеет значение возможности RNP 4 или 10. Уровень RNP, который может обеспечить воздушное судно, определяет требуемое эшелонирование между воздушными судами по отношению к расстоянию. Повышенная точность бортовых систем RNP представляет собой значительное преимущество перед традиционными нерадиолокационными средами, поскольку количество воздушных судов, которые могут поместиться в объем воздушного пространства на любой заданной высоте, является квадратом количества требуемого эшелонирования; иными словами, чем ниже значение RNP, тем ниже требуемые стандарты эшелонирования и, в целом, тем больше воздушных судов может поместиться в объем воздушного пространства без потери требуемого эшелонирования. Это не только серьезное преимущество для операций воздушного движения, но и возможность значительной экономии средств для авиакомпаний, летающих над океанами, благодаря менее жестким маршрутам и лучшим доступным высотам.
Заходы на посадку с RNP со значениями RNP, которые в настоящее время ниже 0,1, позволяют воздушным судам следовать точным трехмерным криволинейным траекториям полета через загруженное воздушное пространство, вокруг чувствительных к шуму районов или по сложной местности.
История
Процедуры RNP были введены в PANS-OPS (ICAO Doc 8168), который стал применяться в 1998 году. Эти правила RNP были предшественниками нынешней концепции PBN, в соответствии с которой характеристики для полетов на маршруте определяются (вместо таких элементов полета, как как схемы пролета, изменчивость траекторий полета и дополнительный буфер воздушного пространства), но они не привели к значительным конструктивным преимуществам. В результате не было преимуществ для сообщества пользователей и практически отсутствовала реализация.
В 1996 году Alaska Airlines стала первой авиакомпанией в мире, которая применила подход RNP при заходе на посадку по проливу Гастино в Джуно, Аляска. Капитан авиакомпании Alaska Airlines Стив Фултон и капитан Хэл Андерсон разработали более 30 заходов на посадку по RNP для операций авиакомпании на Аляске. В 2005 году Alaska Airlines стала первой авиакомпанией, которая применила подходы RNP к национальному аэропорту Рейган, чтобы избежать заторов. В апреле 2009 года Alaska Airlines стала первой авиакомпанией, получившей одобрение FAA на проверку собственных заходов на посадку по RNP. 6 апреля 2010 года Southwest Airlines перешла на RNP.
Установлено на заходах на посадку по RNP
Описание
Текущие особые требования к системе RNP включают:
RNP APCH поддерживает все типы участков и терминаторы пути, используемые в стандартной RNAV, включая TF и RF. Процедуры RNP AR поддерживают только два типа участков:
Возможности мониторинга производительности и оповещения могут предоставляться в различных формах в зависимости от установки, архитектуры и конфигурации системы, включая:
Система RNP использует свои навигационные датчики, архитектуру системы и режимы работы для удовлетворения требований навигационной спецификации RNP. Он должен выполнять проверки целостности и разумности датчиков и данных, а также может предоставлять средства для отмены выбора определенных типов навигационных средств для предотвращения перехода на неадекватный датчик. Требования RNP могут ограничивать режимы работы воздушного судна, например, для низкого RNP, когда летно-техническая ошибка (FTE) является существенным фактором, а полет экипажа в ручном режиме может быть запрещен. Также может потребоваться установка двойной системы / датчика в зависимости от предполагаемой операции или потребности.
Система RNAV, способная обеспечить выполнение требований к характеристикам спецификации RNP, называется системой RNP. Поскольку для каждой навигационной спецификации определены конкретные требования к характеристикам, воздушное судно, утвержденное для спецификации RNP, не будет автоматически утверждено для всех спецификаций RNAV. Аналогичным образом, воздушное судно, утвержденное для спецификации RNP или RNAV, имеющей строгие требования к точности, не автоматически утверждается для навигационной спецификации, имеющей менее строгие требования к точности.
Обозначение
Для океанических, удаленных, маршрутов и конечных операций спецификация RNP обозначается как RNP X, например RNP 4.
Требования к мониторингу производительности и предупреждению
Требования к мониторингу характеристик и предупреждению для RNP 4, Basic-RNP 1 и RNP APCH имеют общую терминологию и применение. Каждая из этих спецификаций включает требования к следующим характеристикам:
Применение мониторинга характеристик и оповещения о воздушном судне
Хотя TSE может значительно измениться со временем по ряду причин, в том числе по указанным выше, навигационные спецификации RNP обеспечивают уверенность в том, что распределение TSE остается подходящим для данной операции. Это вытекает из двух требований, связанных с распределением TSE, а именно:
Обычно требование 10 −5 TSE обеспечивает большее ограничение производительности. Например, для любой системы, которая имеет TSE с нормальным распределением поперечной ошибки, требование мониторинга 10 −5 ограничивает стандартное отклонение 2 × (значение точности) /4,45 = значение точности / 2,23, тогда как требование 95% позволил бы стандартному отклонению быть таким большим, как значение точности / 1,96.
Важно понимать, что, хотя эти характеристики определяют минимальные требования, которые должны быть выполнены, они не определяют фактическое распределение TSE. Можно ожидать, что фактическое распределение TSE, как правило, будет лучше, чем требование, но должно быть свидетельство фактической производительности, если должно использоваться более низкое значение TSE.
При применении требования к мониторингу характеристик к воздушному судну могут быть значительные различия в том, как управлять отдельными ошибками:
Области деятельности
Океанические и отдаленные континентальные
Океаническое и удаленное континентальное воздушное пространство в настоящее время обслуживается двумя навигационными приложениями, RNAV 10 и RNP 4. Оба в основном используют GNSS для поддержки навигационного элемента воздушного пространства. В случае RNAV 10 никакого наблюдения ОВД не требуется. В случае RNP 4 используется контракт ADS (ADS-C).
Континентальный по маршруту
Воздушное пространство терминала: прилет и вылет
Существующие концепции воздушного пространства аэродрома, включая прибытие и вылет, поддерживаются приложениями RNAV. В настоящее время они используются в Европейском (EUR) регионе и США. Приложение RNAV в европейском аэродроме известно как P-RNAV (Precision RNAV). Хотя спецификация RNAV 1 имеет общую навигационную точность с P-RNAV, эта региональная навигационная спецификация не удовлетворяет в полной мере требованиям спецификации RNAV 1. С 2008 года приложение воздушного пространства в аэровокзале Соединенных Штатов, ранее известное как RNAV типа B США, было согласовано с концепцией PBN и теперь называется RNAV 1. Базовая RNP 1 была разработана в основном для применения в нерадиолокационном воздушном пространстве аэродрома с низкой плотностью движения. Ожидается, что в будущем будет разработано больше приложений RNP как для воздушного пространства на маршруте, так и для аэродрома.
Подход
Заходы на посадку по RNP на 0,3 и 0,1 мили в аэропорту Квинстауна в Новой Зеландии являются основными подходами, используемыми Qantas и Air New Zealand как для международных, так и для внутренних рейсов. Из-за ограничений местности заходы на посадку по ILS невозможны, а обычные заходы на посадку по VOR / DME имеют ограничения на снижение более чем на 2000 футов над уровнем аэропорта. Подходы и вылеты RNP следуют изогнутым траекториям ниже уровня местности.
Подход, требующий специального разрешения от самолетов и экипажей
Процедуры захода на посадку по приборам с использованием RNP с обязательной авторизацией или RNP AR (ранее известными как процедуры захода на посадку с особыми требованиями к самолетам и экипажам или SAAAR) основаны на концепции NAS, основанной на характеристиках. Определяются требования к характеристикам для выполнения захода на посадку, и воздушные суда квалифицируются в соответствии с этими требованиями к характеристикам. Обычные зоны оценки препятствий для наземных навигационных средств основаны на заранее определенных характеристиках воздушного судна и навигационной системе. Критерии RNP AR для оценки препятствий являются гибкими и предназначены для адаптации к уникальным условиям эксплуатации. Это позволяет подходить к конкретным требованиям к характеристикам, необходимым для схемы захода на посадку. Эксплуатационные требования могут включать избегание местности и препятствий, разрешение конфликтов в воздушном пространстве или устранение экологических ограничений.
RNP AR APCH определяется как схема захода на посадку по RNP, для которой требуется боковой TSE ниже стандартных значений RNP на любом участке схемы захода на посадку. Подходы RNP включают возможности, требующие специальных разрешений на воздушные суда и летные экипажи, аналогичные полетам ILS категории II / III. Все заходы на посадку с использованием RNP AR имеют уменьшенные площади оценки боковых препятствий и поверхности пролета вертикальных препятствий в соответствии с требованиями к характеристикам воздушного судна и летным экипажам. Следующие характеристики отличаются от РНП АПЧ:
При выполнении захода на посадку по RNP AR с использованием линии минимумов менее RNP 0,3 ни одна точка отказа не может вызвать потерю наведения в соответствии со значением RNP, связанным с заходом на посадку. Как правило, самолет должен иметь по крайней мере два датчика GNSS, двойные системы управления полетом, двойные системы данных о воздухе, двойные автопилоты и один инерциальный эталонный блок.
При выполнении захода на посадку по RNP AR с уходом на второй круг менее RNP 1.0 ни одна точка отказа не может привести к потере наведения, соответствующей значению RNP, связанного с схемой ухода на второй круг. Как правило, самолет должен иметь по крайней мере два датчика GNSS, двойные системы управления полетом, двойные системы данных о воздухе, двойные автопилоты и один инерциальный эталонный блок.
Планирование полета
Ручное или автоматическое уведомление о квалификации воздушного судна для выполнения полетов по маршруту обслуживания воздушного движения (ОВД), по схеме или в воздушном пространстве предоставляется УВД через план полета.
Характеристика требований RNP RNAV
Разумеется, работа по развитию концепции RNP RNAV ведется не только RTCA, но и ИКАО. Одна группа экспертов ИКАО по пролету препятствий (ОСР) разрабатывает критерии для процедур RNP RNAV, а другая группа по вопросам эшелонирования (RGCSP) — критерии по эшелонированию полетов RNP RNAV [4]. По результатам работы этих групп разработаны критерии построения схем захода на посадку для RNP0.3 и интервалы эшелонирования на маршрутах с RNP4.
Для обеспечения точных заходов и посадок с использованием RNAV точность навигации в вертикальном плане тоже должна быть включена в RNP. В результате спектр типов R. NP для захода на посадку стал занимать диапазон от RNP1 до RNP 0.003/Z, где число Z выражает требование к точности вертикального наведения, выраженное в футах.
Планируемые типы RNP для захода на посадку представлены в табл. 1.3.
Сертификацию по RNP1 имеют навигационные системы (FMS), которые зарубежная промышленность начала производить с 1990 г.
Воздушные суда выпуска 1998 г. и позднее могут претендовать на сертификацию по RNP0.03/125 и даже ниже. Однако пока отсутствуют процедуры такой сертификации.
Первые публикации процедур RNP RNAV в Европе ожидаются не ранее 2005 г., а обязательной такая навигация станет с 2010 г.
RNP задаются требованиями четырех основных параметров:
2) обеспечение целостности навигации при использовании оборудования RNAV;
3) готовность оборудования RNAV для навигации;
4) непрерывность навигации при использовании оборудования RNAV.
Планируемые типы RNP для захода на посадку
Требуемая точность(95% вероятность), м. миля/фут
Для заходов на посадку, посадок, торможения, руления по CAT III: ILS, MLS и GNSS/GBAS
Для заходов на посадку по CAT II с ВПР до 30 м: ILS. MLS и GNSS/GBAS
Для заходов на посадку по CAT I с ВПР до 60 м: ILS, MLS и GNSS/GBAS или SBAS
Для заходов на посадку RNAV/VNAV с поддержкой SBAS
Для заходов на посадку RNAV/VNAV с поддержкой SBAS или Baro-VNAV
Начальный и промежуточный участки захода, вылеты
Начальный и промежуточный участки захода, вылеты. Применяет в тех случаях, когда RNP0.3 не может быть обеспечен из-за недостаточной инфраструктуры, a RNP1 не достаточно из-за высоких препятствий
STAR, начальный и промежуточный участки захода на посадку, вылеты
Кроме точности любой тип RNP включает критерии целостности, готовности и непрерывности обслуживания. Эти критерии имеют математические описания и выражаются численным значением. Численные значения критериев разные для маршрутов и районов аэродромов (ТМА), а что касается заходов на посадку, то учитывается еще и тип захода на посадку.
При сертификации систем применяются чисто математические способы оценки
всех составляющих RNP, которые не учитывают возможные ограничения на использование навигационных систем — датчиков. Поэтому на эксплуатанта возлагается
обязанность самостоятельно оценивать целостность, готовность и непрерывность обслуживания перед выполнением полета, учитывая текущую информацию о состоянии навигационных систем (NOTAM по радиосредствам, специальные извеще
ния о состоянии GPS) и применяемых специальных средств прогнозирования. Например, для оценки готовности системы GPS, как датчика оборудования RNAV, ус
тановлена процедура RAIM-прогнозирования, позволяющая определить возмож-
ность использования системы GPS в заданном месте в заданное время. Примеры такой оценки приведены далее.
Самым “готовым» и «непрерывным» датчиком RNAV является инерциальный датчик, который готов и непрерывно работает всегда, если его включить и корректно выставить. Но у этого типа датчиков существуют проблемы с другими составляющими RNP — точность работы и целостность, особенно при длительных полетах.
Проблем с точностью у датчика GPS нет, но есть проблемы с готовностью и непрерывностью обслуживания. По этой причине для полетов по приборам с использованием GPS обязательно надо иметь как минимум RAIM (лучше FDE), а для заходов на посадку в сложных метеоусловиях — системы функционального дополнения WAAS/LAAS, которые кроме повышения точности, доводят характеристики готовности и непрерывности обслуживания до установленных соответствующим RNP значений.
Основные особенности B-RNAV и P-RNAV заключаются в том, что, кроме показателя точности в 5 и 1 м. Милю, из всего набора характеристик RNP оговариваются как обязательные только некоторые из них. Основных цифры целостности, готовности и непрерывности, обязательных для RNP-RNAV, достигать не требуется, поскольку безопасность применения зональной навигации B-RNAV и P-RNAV обеспечивается развитой инфраструктурой ОВД и возможностью экипажа использовать обычные навигационные средства при отказе системы RNAV. Что касается безопасности заходов на посадку в режиме RNAV, например по GPS, то, как дополнительная мера безопасности, применяется требование иметь запасной аэродром с обычными средствами захода — ILS, VOR, DME.
Особенностью RNP-RNAV является то, что необходимо соблюдать все требования установленного типа RNP не только по точности, но и по целостности, готовности и непрерывности обслуживания.
Основная цель введения RNP — обеспечение ОВД в каком либо районе воздушного пространства. RNP устанавливаются государствами в зависимости от интенсивности воздушного движения, сложности маршрутов полетов и с учетом всей инфраструктуры CNS.
В районах и на маршрутах RNP органы ОВД обязаны следить за точностью навигации и, при необходимости, корректировать траекторию полета ВС. Поэтому невозможно вводить строгие RNP в районах, где не обеспечено адекватное наблюдение за воздушной обстановкой и качественная связь с воздушным судном.
Развитие систем связи, наблюдения, средств стратегического и оперативного планирования полетов должно опережать темпы введения строгих RNP, что прослеживается в Европе. В этой связи эксплуатанты должны направлять усилия не только на повышение точности навигации, но и на модернизацию всего комплекса оборудования ВС для того, чтобы вписаться в опережающее развитие систем связи и наблюдения. Эксплуатант не получит разрешение на полеты в районах будущих RNP, не имея требуемых в этих районах систем связи и наблюдения.
Для производства полетов в условиях RNP в п. 6.1.18 документа [1] говорится, что используемое навигационное оборудование выбирается эксплуатантом. Основное условие заключается в том, чтобы это оборудование обеспечивало уровень точности выдерживания навигационных характеристик, установленный для каждого конкретного типа RNP. При этом необходимо учитывать следующие аспекты:
1) эксплуатанты должны получить соответствующее разрешение от своих государств;
2) до получения разрешения эксплуатант должен представить государственному органу ГА подтверждение того, что данный тип оборудования соответствует установленным требованиям;
3) эксплуатант вносит в эксплуатационную документацию (РЛЭ ВС, РТО, РПП, РК и т. д.) ограничения и условия, навигационные процедуры для штатных и нештатных ситуаций, прописывает правила обновления баз данных, технического обслуживания, утверждает программы и проводит подготовку летного и технического персонала;
4) государствам следует установить соответствующие административные процедуры с тем, чтобы исключить перегруженность своих служб выдачи разрешений и свести к минимуму расходы эксплуатантов.